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Abstract 

Mathematical creative ability is one of the most important skills students must have to process the information 
provided in resolving the problem. Before using mathematical creative skills, prior knowledge becomes the most 
crucial thing that allows students to connect all existing information so that they can construct new knowledge 
through assimilation or accommodation processes. The process of forming mathematical concepts with 
metacognitive questions that might be carried out by students causes a metacognitive process in students that will 
affect their mathematical behavior.  

The purpose of this study is to (1) analyze prior knowledge of what students miss or forget so that they have 
difficulty to answer the given geometry problem, (2) how the learning path of creative thinking of students with the 
application of metacognitive approach. This type of research is Design Research to improve the quality of 
learning. This type of research is research design, data collection techniques .The researcher gave 2 geometry 
questions to 38 8th graders selected randomly in SMP Medan city. Questions given are tailored to Cognitive level 
4 (C4) for questions 1 and C5 for question 2 based on Bloom's taxonomy. Data analysis techniques are descriptive 
qualitative.This study shows that prior knowledge becomes important to build students' mathematical creative 
ability to gain new knowledge, especially in the field of geometry. The most problematic topics that make it 
difficult for them to understand geometry are the area of the rectangle and the cube webs. In dividing the rectangle 
into two equal parts, students still have not created another form of flat build or have not been able to get out of the 
rectangular pattern or exactly the same as the available problem. 

There are five phases of learning trajectory of hierarchically creative mathematical thinking, which is orientation 
to problem, problem solving plan, plan realization, previous knowledge mastery / concept of mathematical 
creativity and evaluation of result obtained. Students do metacognition on the learning path of creative thinking in 
a comprehensive way from evaluation to planning, action to the formation of prior knowledge and selection of 
creative ideas. From these explanations, it is important that teachers need to ensure students have enough prior 
knowledge to make it easier to construct new knowledge, as well as to make learning fun and meaningful so that 
students will remember knowledge in long-term memory. 

Keywords: mathematical creative ability, geometry, prior knowledge, metacognitive approach 
1. Introduction 

Thinking is a necessary thing in a process that involves manipulating and transforming information in memory. 
The ability to create new and original ideas in manipulating and transforming information is called creative 
thinking. Gardner (2004) views creativity as one of the 'multiple intelligences' that encompass a wide range of 
brain functions of constructing cognitive schemes. A student's cognitive level will work broadly when using 
creativity. The creative aspects of the brain can help explain and interpret abstract concepts, allowing children to 
attain greater mastery, on subjects such as mathematics, especially geometry that are often difficult to understand 
with regards to spatial abilities. In the process of solving mathematical problems students need to come up with 
creative ideas. The process of creative thinking can be seen from the perspective of Wallas’ (1926) theory. Wallas 
in his book The Art of Thought states that the creative process includes four stages: preparation (gathering relevant 
information), incubation (received inspiration), and verification (testing and evaluating ideas acquired). 
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Figure 4. Average ability of mathematical creative thinking for each indicator 

 

From Figure 4, it can be seen that there is an increase in the average of mathematical creative ability in fluency 
indicator of 0.10, on flexibility indicator is 0.26, at elaboration indicator is 0,06, and at indicator of originality 
equal to 0,16. This shows the students' mathematical creative thinking ability using learning tools developed based 
on metacognitive approach has increased from trial I to trial II. Here is an example of the problem and completion 
of the students in Table 1 below. 
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This study consists of three stages with two repetitions that can be done repeatedly until found a new theory which 
is the result of a revision of the experimental learning theory. Here are the steps in research design. 

Phase I: Preliminary Design 

At this stage a literature study of square materials and cube webs and metacognitive approaches can be established 
in a strategy conjecture and the path of students' mathematical creative learning. Then proceed with a discussion 
between the researcher and teacher about the condition of the class, the needs of research, schedule and how the 
implementation of research with the teacher concerned.  At this stage also designed learning trajectory and 
hypothetical learning trajectory. Then from local instructional theory is formulated which consists of learning 
objectives. This conjecture aims as a guide (guide) to anticipate the strategies and thoughts of students who appear 
and develop in learning activities. Conjectures are dynamic and can be organized and revised during the teaching 
experiment. 

Stage II: Teaching Experiment 

In this second phase is to pilot teaching activities that have been designed in the first phase of the class. This trial 
aims to explore and hypothesize students' strategies and thoughts during the learning process. During the process, 
conjecture can be modified as a revision of local instructional theory for subsequent activities. Teachers act as 
teachers and researchers as the focus of observing each activity and key moments during the testing process. At 
this stage a series of learning activities conducted then researchers observe and analyze what happened during the 
learning process that took place in the classroom. 

Stage III: Retrospective Analysis 

After testing the data obtained from the learning activities in the class were analyzed and the results of this analysis 
were used to plan the activities as well as to develop the design on the next learning activity. The purpose of 
retrospective analysis in general is to develop local level instructional theory. At this stage the HLT is compared to 
the students' creative learning path points as the findings of this research are 5 points of the path, i.e. problem 
orientation, problem solving plan, plan realization, previous knowledge mastery / mathematical creativity concept 
and evaluation of the results obtained. Students do metacognition on the learning path of creative thinking in a 
comprehensive way from evaluation to planning, action to the formation of prior knowledge and selection of 
creative ideas. 

This finding is in line with Osbon (1953) developing seven stages of the creative thinking process: orientation, 
preparation, analysis, ideas, incubation, synthesis, and evaluation. This means that the orientation to the problem 
as the starting point of the learning path of students' creative mathematics on the findings of this research is in line 
with Osbon's (1953) opinion that someone doing problem orientation at the stage of the creative thinking process is 
the first step in the introduction of the problem. In addition, the researchers found that students metacognition 
activities in line with the opinion Schoenfeld (1992) states that there are 3 ways to do metacognition in learning 
mathematics, namely belief or intuition, knowledge of thought processes, and self-awareness in the independence 
of learning. One's beliefs influence the problem solving of mathematics in building a way / strategy to solve the 
problem. Knowledge of the thinking process refers to how effectively one uses his thinking process, while 
consciousness itself refers to the accuracy of a person in preparing what to do in solving math problems. 

When students are able to design, monitor, and reflect their learning process consciously, in essence they will 
become more confident and more independent in learning. Learning independence is a private possession for 
students to continue their long journey in meeting intellectual needs. The teacher's job is to develop the 
metacognitive ability of all students as a learner, without exception. 

The concept of metacognition is the idea of thinking about the mind to oneself. Includes an awareness of what a 
person knows (metacognitive knowledge), what a person can do (metacognitive skills) and what one knows about 
his own cognitive abilities (metacognitive experiences). Metacognitive ability is a knowledge procedure. This is 
what a person deliberately does to control cognition.  

Gravemeijer and van Eerde (2009) argue that students should provide opportunities to build and develop their 
ideas and thoughts when constructing mathematics. Educators can choose appropriate learning activities as a basis 
to stimulate students to think and act when constructing mathematics. In the process of the activity, the educator 
must anticipate any mental activity that arises from the student by still paying attention to the purpose of learning, 
imagery and anticipation is called Hypothetical Learning Trojectory (HLT). 

Actually the whole concept of mathematics has been learned since they sat in elementary school and the 
characteristics of mathematics are continuous learning. So actually in some concepts, reviews remember waking 
flat square, constructing six square pieces into a wake-up space, and mentioning objects that resemble cubes in 
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everyday life. 

But in reality they also do not really understand this math concept. The researcher then conducted an interview 
with a mathematics teacher at the school and found that he thought geometry was the most difficult material to 
understand. For the topic of geometry itself, students find it hard to imagine the position of points, lines and spaces 
in space and to relate the information provided and understand the problem itself. According to the researcher, this 
can actually happen because they do not have enough prior knowledge to be able to connect information, process 
it, and represent the given problem so that it can be reflected in their mind until finally students can understand the 
purpose of the given problem. Also have a shadow of how to do the problem. 

Before students recognize the difference between cube nets and non-cube nets students are trained to make cube 
nets. The preceding knowledge that the student must possess is square and its properties by giving examples and 
non-square instances, then cubes and their properties after the students understand continued with the introduction 
of cube nets and so on. The full path can be seen in Table 2 below: 

 

Table 2. Hypothetical learning of cube net 

Period Period 1 Period 2 Period 3 Period 4 Period 5 

Topic Cubes and Cubes Net 

Subtopic 
Square and 

kinds 
Cubes and kinds

Introduction of the 

Cube Net 
Creating Cube Nets 

Recognizing the 

difference between 

cube webs and 

non-cube nets 

Meeting I II III IV V 

Learning 

Activity 

Plan 

Review 

considering the 

square wake 

Constructing six 

square pieces 

into a space 

Mentioning objects 

that resemble 

cubes in everyday 

life 

1) Find the cube nets 

with 1-4-1 pattern 

2) Find the cube nets 

with 2-3-1 

3) Find the cubes webs 

with pattern 2-2-2 

4) Find the cube nets in 

3-3 patterns  3-3 

5) Finding new cube 

webs (if any) 

Distinguishing which 

are the cube webs and 

which are not the 

cube nets based on 

their properties 

Understanding 

the meaning of 

square 

Understanding 

the sense of 

waking up and 

knowing the 

name of the wake

Understanding the 

meaning of the 

cube webs 

Mention the 

properties of a 

square 

Mention these 

properties 

Understanding the 

properties of the 

cube webs 

Mention the 

square elements 

Mention the 

elements 

Knowing how to 

make cube nets 

 

Before the students assigned to solve the problems associated with the properties of rectangles, students should 
understand it in advance with real objects or drawing a rectangle with the mention of anything that is in the 
rectangle so that it is students understand the sense of the rectangle. Any point in the creative learning path should 
be passed students to solve the problem by finding creative solutions to mathematics. To know every path of 
creative thinking can be viewed from the characteristics/behaviors of students when learning activities taking 
place, for example, students always want to get solutions to problems encountered, like to get ideas of mathematics 
and would like to browse what information know and asked the question. The points of the trajectory of the 
complete creative learning in Learning Trajectory serve at Table 3 here. 
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Table 3. Learning trajectory the rectangle topic for grade viii at junior high school 

Period Period-1 Period-2 Period-3 Period-4 Period 5 

Topic Rectangle 

Sub Topic 

Understand 

definition of the 

rectangle 

Understand kinds 

of the rectangle 

Understand kinds 

of the rectangle by 

picture 

Identifying kinds of the 

rectangle and using to 

determine 

circumference and area 

Solve a related 

problem in applying 

the rectangle properties

determine the 

circumference and area

Many 

meetings 
Meeting 1 Meeting 2 Meeting 3 Meeting 4 Meeting 5 

Plan the 

Learning 

Activities 

1 

Observe the 

images or 

objects in the 

classes that are 

rectangular. 

1 

Review from:

The sides, 

corners, and 

diagonal. 

1

Review from:

The sides, 

corners, and 

diagonal. 

1

Lower 

circumference 

formula and the 

area of a rectangle.

1 

Identify 

problems related to 

the circumference 

and the area of a 

rectangle. 

2 
Draw a 

rectangle 
2 

Review from:

2 swivel and 

2 symmetry 

the 

symmetry. 

2

Review from:

2 swivel and 2 

symmetry the 

symmetry. 

2

Applying the 

formula to the 

circumference and 

the area of a 

rectangle based on 

the image 

rectangle. 

2 

Looking closely at 

the problems 

associated with 

application of the 

circumference and 

the area of a 

rectangle. 

3 

Describes 

definition of a 

rectangle 

3 

Review from:

4 ways to be 

paired to 

occupy their 

frames. 

3

In terms of: 

4 ways to 

paired 

occupy 

the frame. 

3

Calculate the 

circumference and 

the area of a 

rectangle 

3 

Solving real related 

round-and wide 

rectangle. 

 

4. Conclusion 

In answering the question of dividing rectangles into two equal parts, all students can provide answers to fluency, 
flexibility, elaboration and originality. But the ability of students to provide many answers to each indicator of 
creative thinking varies. The ability of mathematical creative thinking that students have is not a single ability to 
solve the problem of dividing a rectangle into 2 equal parts and drawing cube nets. Other capabilities such as the 
ability to draw a flat building connect the concept of flat building with other sciences, aesthetic values of flat-build 
images; suspect the broad similarity of two flat wakes and the ability to intuit mathematical concepts. There are 
five phases of learning trajectory of hierarchically creative mathematical thinking, which is orientation to problem, 
problem solving plan, plan realization, previous knowledge mastery/concept of mathematical creativity, and 
evaluation of result obtained. Students do metacognition on the learning path of creative thinking in a 
comprehensive way from evaluation to planning, action to the formation of prior knowledge and selection of 
creative ideas. 

From these explanations, teachers should also help ensure students have enough prior knowledge to make it easier 
to build new knowledge, as well as to make learning fun and meaningful so that students will remember knowledge 
in long-term memory. For the next researcher is how to build their previous knowledge that can support the 
learning of geometry in accordance with the time given in the learning process. 
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