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Abstract 

In general insurance, measuring the uncertainty of future loss payments and estimating the claims reserve are 

primary goals of actuaries. To deal with these tricky tasks, a broad literature is available on deterministic and 

stochastic approaches, most of which aims at straightforwardly modelling the overall claims reserve. In this 

paper by an extended, very general and reproducible case-study, we analyze the reserving process by attributing 

to each cell of the lower part of the run-off triangle a Compound mixed Poisson Process, calibrated upon both 

the numbers of claims and future average costs and considering as well the dependence among incremental 

claims. We provide analytically the moments of both incremental payments and the total reserve. Furthermore, 

we accordingly consider the probability distribution of the claims reserve, which is necessary for the assessment 

of the Risk Reserve capital requirement in a Solvency II framework. To test the impact of the model under 

different scenarios, insurers and lines of business, the case study is thoroughly analyzed by exploiting the 

Fisher-Lange average cost method. 

Keywords: stochastic models for claims reserve, reserve risk, collective risk model, average cost methods, 

Solvency II 

1. Introduction 

The estimation of liabilities for outstanding claims is a key issue in general insurance. For a long time 

deterministic methods, e.g. the worldwide used Chain-Ladder (CL) algorithm (see for instance Friedland (2010)), 

have been applied to obtain the value of these provisions. Under the Solvency II framework (see European 

Commission (2009, 2013, 2015)) and the new international accounting principles in insurance (e.g. IAS and 

IFRS), the evaluation of the uncertainty of future claims obligations is also required. To achieve this aim, 

stochastic models have been introduced. Our contribution belongs to these approaches. To understand the 

innovations we are proposing a short survey of this topic is necessary. 

The literature on claim reserving is very wide. Though limited, we start this survey by commenting on the 

research by Thomas Mack, one of the pioneers in this research field. He proposed in (Mack, 1993) a 

non-parametric way of computing the standard error of the CL method by separating uncertainty on reserve 

estimation due to the data (Process Error) from uncertainty deriving from the method used to estimate 

parameters (Estimation Error). Later, in a parametric context, Generalized Linear Models (GLM) have been used 

to provide both appropriate variability of the reserve estimate and a general inferential set up based on the 

maximum likelihood approach (see Renshaw and Verrall (1998)). GLM residuals have led the way to a 

semiparametric bootstrapping procedure. By fitting appropriately incremental payments, this methodology (see 

England (2002); England and Verrall (1999)) re-samples from the corresponding adjusted Pearson residuals. 

Practitioners often use a GLM Over-Dispersed Poisson (ODP) model (see England and Verrall (2002)), since this 

provides estimates closei to the standard Chain-Ladder approach used worldwide. The probability distribution of 

outstanding claims can be easily derived from the Monte-Carlo procedure. Recent developments are presented in 

Pinheiro et al. (2003) and Tee et al. (2017)ii. Further generalization of GLMs in loss reserving exploits the 

richness of the Tweedie family of distributions (see Peters et al. (2009); Wüthrich (2003)). For extensions to a 

flexible multivariate approach to consider the dependence between claims of different lines of business (LoBs) 
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see Avanzi et al. (2016). Other deterministic methods, such as Bornhuetter-Ferguson, have been recently 

integrated with a stochastic structure based on a Bayesian approach (England and Verrall, 2006; England et al., 

2012), aiming at measuring the prediction error of the reserve estimate (Alai et al., 2009; Saluz et al., 2011). 

Seeing that so many methods have been developed, the International Actuarial Association (2004) suggested a 

standard methodology based on a paper by Meyers et al. (2003) focusing on the collective approach typically 

used for premium risk. This methodology assumes that the overall reserve of a single LoB follows a compound 

mixed Poisson process. The assumptions are that open claim counts are Negative Binomial distributed and that 

the severity of outstanding claims has a known mean and coefficient of variation, whatever the type accident 

and/or the development year (see also Martìnez-Miranda et al. (2015) and Meyers (2008) for similar approaches). 

The drawback to this approach is that it directly estimates the overall claims reserve without decomposing it into 

accident years. This seems too naïve since empirical studies have shown that significant differences exist among 

claims of different accident and development years. Furthermore, actuarial practice suggests considering the time 

dependency of average payments (see, e.g., Friedland (2010) for more details). 

Our research falls within this framework. The point is how to model the claims of different accident and 

development years by considering separately consistent estimates of the average cost and the claim counts. To 

achieve this aim, we extend the IAA approach by modelling each single cell of the lower run-off triangle through 

a Collective Risk Model (CRM) based on a Compound mixed Poisson Process, where both the number of claims 

and the severities are mixed random variables. So doing, from an actuarial point of view we add further 

flexibility to the model. By adding parameter uncertainty for numbers and claims, we consider as well the 

correlation between incremental claims within the triangle. This point is not covered by standard ODP 

methodologies (see below for details). In this paper by an extended, very general and reproducible case-study, 

we show the effect of this parameterization. We obtain the analytical formulae of the moments of the reserve 

distribution by assuming only the knowledge of the main moments of the two random variables (the number and 

the claim size of future payments) involved in the CRM. Similar to other papers on this topic, Monte Carlo 

simulations are used to derive the outstanding claims distributions for each accident year, for the overall reserve, 

and for the next calendar year. This technique is almost compulsory since the number of claims involved in the 

convolution Poisson process is so large that the exact distribution is numerically unfeasible. Furthermore, since a 

one-year time horizon for capital requirement evaluation is prescribed by the Solvency II project (European 

Commission, 2009), we compute the one-year reserve risk by adapting the re-reserving method, assuming CRM 

as the underlying stochastic methodology (see Diers (2009) and Ohlsson and Lauzeningks (2008) for "one-year” 

approaches based on the Bootstrap-CL method). In this way, we are also able to simulate the claims development 

result and thus evaluate the capital requirement for the reserve risk. 

To test the impact of our proposal with respect to other methods, we have applied it to different insurers and to 

several LoBs. We explore the effects on the claims reserve (such as the Best Estimate plus Risk Margin 

according to the Solvency II framework) and on the capital requirement obtained by either the Internal Model or 

the Standard Formula (both Market-Wide and Undertaking Specific approaches). We calibrate the model's 

parameters using real data based on the number of claims to be paid and the future average costs for each cell of 

the triangle that is to be estimated. To achieve this aim, we will make use of the Fisher-Lange method (see Fisher 

and Lange (1973) and Ottaviani (1983) for a slightly modified version). At present, this method is available in 

the literature only in a deterministic version. We have extended it to a stochastic framework as well. 

The paper is organized as follows. Section 2 presents the general CRM structure of our proposal and the main 

analytical results. Section 3 focuses on parameter calibration and the Fisher-Lange method used to estimate the 

mean of the random variables involved in the procedure. In Section 4, the model has been extended with the aim 

of evaluating the capital requirement in a framework consistent with the Solvency II approach. In Section 5, a 

detailed case study based on real data from the Motor Third-Party Liabilities line of business is reported. Claims 

reserve distribution is compared to the popular ODP bootstrap method. We provide comparative scenarios related 

to other lines of business. Finally, we assess the aggregate capital requirement both by assuming linear 

correlation and by exploiting different copula functions. Conclusions follow. 

2. Methodology 

In insurance, claims are typically classified according to when they are incurred, called the accident year (AY), 

and when they are paid, called the development year (DY). CRM, typically used to evaluate premium risk, 

exploits collective risk theory in order to estimate incremental claims, i.e. the sum of all the claims incurred in a 

specific AY but not yet paid in a specific DY. It models aggregate claims by a random sum of random claims, 

each identically distributed according to a claim-size distribution. In this context, some authors have shown how 
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to obtain the convolution under some limited assumptions (see Daykin et al. (1993)) and how to find an 

approximate distribution of the total reserve distribution (Daykin et al., 1993; Klugman et al., 2008). We extend 

those results by finding the moment generating function (m.g.f.) of the incremental claims when both the number 

of claims and the losses are mixed random variablesiii (r.v.), showing the effect on claim reserve of correlation 

among incremental claims. 

The overall amount of claims and the corresponding number of claims for each AY and DY are typically reported 

in matrices of dimension 𝑡 ×  𝑡+, where rows (𝑖 = 1,… , 𝑡) represent AY and columns (𝑗 = 1,… , 𝑡+) are DY. In 

the actuarial field, these matrices are called Run-Off Triangles. They report claims incurred in the i-th AY and 

paid in the j-th DY (namely, in the calendar year 𝑖 + 𝑗 − 1). Therefore, the data are available only in the upper 

left part of the Run-Off matrix (i.e. only for 1 ≤ 𝑗 ≤ 𝑡+ and 𝑖 + 𝑗 ≤ 𝑡 + 1) and will be denoted by 𝑋𝑖,𝑗.  

The main interest of actuaries is the estimation of future payments, i.e. the claims that must be allocated to each 

cell of the matrix where data are still missing. For 1 ≤ 𝑗 ≤ 𝑡+ and 𝑖 + 𝑗 > 𝑡 + 1, these cells include unknown 

values from appropriate 𝑋̃𝑖,𝑗 r.v.s. 

Note that frequently columns are not equal to rows because of payments incurred at time 𝑖 = 1 that still have to 

be paid. Hence, we have a tail in the triangle (i.e. 𝑡+ = 𝑡 + 1). Instead, we have 𝑡+ = 𝑡 when all claims from 

the first AY are fully run-off by the end of the last observed DY (𝑗 = 𝑡). In this case, the payments in the triangle 

represent the complete run-off of claims. In order to build up a stochastic model based on the Compound Poisson 

Process, we assume that, in each cell of the lower part, the incremental paid claim cost is equal to the aggregate 

claim amount: 

𝑋̃𝑖,𝑗 = ∑𝑍𝑖,𝑗, 

 ̃ , 

   

 (1) 

where: 

- 𝑁̃𝑖,𝑗 is typically assumed to be Poisson distributed with parameter 𝑛𝑖,𝑗 . In this paper, we consider a 

mixed Poisson Process. To include the uncertainty due to parameter estimation, market heterogeneity 

and external background factors (such as weather, economic conditions, etc.), 𝑛𝑖,𝑗  is multiplied by a 

structure r.v.  ̃𝑖,𝑗 (see Daykin et al. (1993) for an application of structure variables in premium risk 

modelling). In the next section, we will assume  ̃𝑖,𝑗 to be a Gamma r.v. with mean equal to 1 (i.e. the 

shape and the scale parameters are equal, for example, to q) and standard deviation equal to   ̃ , 
. The 

constraint  ( ̃𝑖,𝑗) = 1 assures that the average number of claims stays at the expected level. Hence, 

 ̃𝑖,𝑗 will impact the variability of 𝑁̃𝑖,𝑗 . In general, if we refer to the missing lower part of the triangle, 

𝑛𝑖,𝑗  represents the expected number of claims in the cell  𝑖, 𝑗 . The average paid claim is given by 

averaging costs 𝑚𝑖,𝑗 =  (𝑋̃𝑖,𝑗    𝑁̃𝑖,𝑗). 

- 𝑍𝑖,𝑗,  is the random amount (loss) of the h-th claim settled after 𝑗 − 1 years and occurred in accident 

year i. As with the claim count variable, we measure the parameter uncertainty of a single claim cost by 

means of a structure variable having an impact only on variability. This uncertainty is described by a 

multiplicative random variable  ̃𝑖,𝑗, assumed to be Gamma distributed with a mean equal to 1 (therefore, 

the parameters are both equal, for example, to r for the same reason reported above for 𝑁̃𝑖,𝑗) and a 

standard deviation of   ̃ 
. In each cell  𝑖, 𝑗  in the lower part of the triangle the claim sizes 𝑍𝑖,𝑗,  for 

 = 1,2, …, are assumed non-negative i.i.d. random variables. Furthermore, as customary in actuarial 

applications (see Daykin et al. (1993)), the mutual independence of the claim count and claim costs 

within a single cell is also assumed. Also structural variables  ̃𝑖,𝑗 and  ̃𝑖,𝑗 are assumed independent. 

Within this framework, we can obtain the exact moments and cumulants of 𝑋̃𝑖,𝑗 for any 𝑖, 𝑗 (see Savelli and 

Clemente (2010) for some preliminary results). Given a generic 𝑌̃, let 𝑀𝑌̃ 𝑡  and 𝐹𝑌̃ 𝑦  be the m.g.f. and the 

cumulative distribution function, respectively. To keep notation as simple as possible, for the next few steps we 

drop subscripts and use 𝑋̃ = 𝑋̃𝑖,𝑗. Next, let 𝑀𝑋̃ 𝑡  be the m.g.f. referred to the cell 𝑖, 𝑗. We have: 



http://ibr.ccsenet.org     International Business Research                    Vol. 12, No. 3; 2019 

126 

 

𝑀𝑋̃ 𝑡 =  [𝑒𝑡𝑋̃] = ∑ [𝑒𝑡 𝑍̃1+⋯+𝑍̃𝑘 |𝑁̃ = 𝑘] Pr[𝑁̃ = 𝑘]

∞

𝑘 0

. 

Recalling that by assumption 𝑍  are i.i.d., then  

𝑀𝑋̃ 𝑡 =   ̃ * 𝑍̃[𝑒
𝑡𝑍̃]

𝑘
|𝑁̃ = 𝑘 +  =   ̃[𝑀𝑍̃[𝑡]

𝑘| 𝑁̃ = 𝑘] = 𝑀 ̃[ln𝑀𝑍̃[𝑡]]. 

If 𝑁̃ is a mixed Poisson r.v. as described above (see (1)), then: 

𝑀 ̃ 𝑡 =  [𝑒 ̃𝑡] =   ̃[𝑀 ̃ 𝑡| ̃ =   ] =  [𝑒 ̃𝑛(𝑒𝑡− )] = 𝑀 ̃(𝑛 𝑒
𝑡 − 1 ) 

and 

𝑀𝑋̃ 𝑡 = 𝑀 ̃(𝑛 𝑀𝑍̃[𝑡] − 1 ). (2) 

If, for exampleiv, 𝑍~𝐺𝑎 𝛼, 𝛽 , and we assume to multiply the shape parameter 𝛼 by  ̃ distributed as a Gamma 

r.v. with    ̃ = 1 and standard deviation   ̃, we have the mixed r.v. 𝑍 ̃~𝐺𝑎 𝛼 ̃, 𝛽 . 

Recalling that 𝑀𝑍̃ 𝑡 = (
𝛽

𝛽−𝑡
)
𝛼

 with 𝛽 > 𝑡, we have: 

𝑀𝑍̃ ̃
 𝑡 =  [𝑒 𝑍̃ ̃𝑡] =   ̃[𝑀𝑍̃ 𝑡| ̃ =   ] = ∫ 𝑒

 𝛼   (
𝛽

𝛽−𝑡
)
 𝐹 ̃   

∞

0

= 𝑀 ̃ (𝛼 ln (
𝛽

𝛽 − 𝑡
)). (3) 

Combining (2) and (3), we obtain: 

𝑀𝑋̃ 𝑡 = 𝑀 ̃ (𝑛 [𝑀 ̃ (𝛼 ln (
𝛽

𝛽 − 𝑡
)) − 1]) =   ( − 𝑛  ( − 𝛼 ln (

𝛽

𝛽 − 𝑡
))

− 

+ 𝑛)

− 

. 

Taking the derivative in t = 0: 

𝑀′
𝑋̃ 𝑡 |𝑡 0 = 𝑛 (𝑍) = 𝑛𝑚 =  (𝑋̃) 

𝑀′′
𝑋̃ 𝑡 |𝑡 0 = 𝑛

𝛼

𝛽2
+ 𝑛  − + 1 𝑚2 + 𝑛2𝑚2   − + 1  

= 𝑛 𝑍̃
2 + 𝑛𝑚2  ̃

2 + 𝑛𝑚2 + 𝑛2𝑚2  ̃
2 + 𝑛2𝑚2 

which gives: 

 𝑋̃
2 = 𝑛𝑎2,𝑍̃ + 𝑛𝑚2  ̃

2 + 𝑛2𝑚2  ̃
2 

where 𝑎2,𝑍̃ is the second raw moment of 𝑍. 

We deduce that the standard deviation is affected by three components: the first refers to the process error related 

to claim count and claim size, while the others describe the parameter uncertainty of the claim size and the claim 

count, respectively. The coefficient of variation of 𝑋̃𝑖,𝑗 is: 

  (𝑋̃𝑖,𝑗) = √
𝑎2,𝑍̃ , 

𝑛𝑖,𝑗𝑚𝑖,𝑗
2 +

  ̃ 
2

𝑛𝑖,𝑗
+   ̃ , 

2 = √
1 +  𝑍̃ 

2 +   ̃ 
2

𝑛𝑖,𝑗
+   ̃ , 

2  (4) 

As 𝑛𝑖,𝑗 approaches infinity, the coefficient of variation is affected only by the standard deviation of the structure 

variable  ̃𝑖,𝑗, while the standard deviation of the random variable  ̃𝑗 has a decreasing effect on variability as 

𝑛𝑖,𝑗 increases. The comparative scenarios reported in Savelli and Clemente (2010) confirm that in most cases the 

parameter uncertainty on claim size contributes in a limited way to the overall variability with respect to  ̃𝑖,𝑗. 

Now, we extend these results to derive the cumulants of claims reserve, considering also the correlation between 

the different cells in the lower triangle containing the number of claims and the average claims cost of the same 

DY. A realistic assumption regarding the number of claims is  ̃𝑖,𝑗 =  ̃ ∀𝑖, 𝑗 and it will be assumed that 

 ̃𝑖,𝑗 =  ̃𝑗  ∀𝑖. We use a specific uncertainty for each DY, since the claims costs for each j are estimated separately. 

The main characteristics of the claims reserve, 𝑅̃, can be derived. As expected, the average claims reserve is 

straightforwardly equal to: 
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 (𝑅̃) = ∑ (𝑅̃𝑖)

𝑡

𝑖  

= ∑∑  (𝑋̃𝑖,𝑗)
𝑡+

𝑗 𝑡−𝑖+2

𝑡

𝑖  

= ∑∑ 𝑛𝑖,𝑗𝑚𝑖,𝑗

𝑡+

𝑗 𝑡−𝑖+2

𝑡

𝑖  

. 

We can explicitly compute the covariance between each pair of incremental payments as: 

 𝑜𝑣(𝑋̃𝑖,𝑗 , 𝑋̃ ,𝑘) =  [ (𝑋̃𝑖,𝑗𝑋̃ ,𝑘| ̃ =  ,  ̃𝑖,𝑗 =  ̃𝑗 ,  ̃ ,𝑘 =  ̃𝑘)] −  (𝑋̃𝑖,𝑗) (𝑋̃ ,𝑘) = 

 

= {
    ̃2 − 1 (𝑛𝑖,𝑗𝑚𝑖,𝑗𝑛 ,𝑘𝑚 ,𝑘) =   ̃

2 𝑛𝑖,𝑗𝑚𝑖,𝑗𝑛 ,𝑘𝑚 ,𝑘

(   ̃2  ( ̃𝑗
2) − 1)𝑛𝑖,𝑗𝑚𝑖,𝑗𝑛 ,𝑗𝑚 ,𝑗

       
𝑓𝑜  𝑗 ≠ 𝑘

𝑓𝑜  𝑗 = 𝑘
. 

In particular, for 𝑗 = 𝑘 (i.e. between AYs) the correlation coefficient is: 

𝜌(𝑋̃𝑖,𝑗 , 𝑋̃ ,𝑘) =
(   ̃2  ( ̃𝑗

2) − 1)𝑛𝑖,𝑗𝑚𝑖,𝑗𝑛 ,𝑗𝑚 ,𝑗

 𝑋̃𝑖,𝑗
 𝑋̃ .𝑘

 

where  𝑋̃𝑖,𝑗
2 = (𝑛𝑖,𝑗𝑎2,𝑍̃ , 

+ 𝑛𝑖,𝑗𝑚𝑖,𝑗
2   ̃ 

2 + 𝑛𝑖,𝑗
2 𝑚𝑖,𝑗

2   ̃
2). 

Since it was assumed that    ̃ =  ( ̃𝑗) = 1, and since  𝑎   ̃ =    ̃2 − 1 ≥ 0 (the same holds for  𝑎 ( ̃𝑗)), 

it follows that    ̃2  ( ̃𝑗
2) ≥ 1 and, therefore, 𝜌(𝑋̃𝑖,𝑗 , 𝑋̃ ,𝑘) ≥ 0. This term is not considered by the IAA 

approach; it contributes to the reserving process by inflating the overall variance, that is: 

 2(𝑅̃) = ∑∑  2(𝑋̃𝑖,𝑗)
𝑡+

𝑗 𝑡−𝑖+2

𝑡

𝑖  

+ ∑ ∑  𝑜𝑣(𝑋̃𝑖,𝑗 , 𝑋̃ ,𝑘)
 ,𝑘

  𝑖   𝑗 𝑘
𝑖,𝑗

= ∑∑ (𝑛𝑖,𝑗𝑎2,𝑍̃ , 
+ 𝑛𝑖,𝑗𝑚𝑖,𝑗

2   ̃ 
2 + 𝑛𝑖,𝑗

2 𝑚𝑖,𝑗
2   ̃

2)
𝑡+

𝑗 𝑡−𝑖+2

𝑡

𝑖  

+ ∑∑𝑛𝑖,𝑗𝑚𝑖,𝑗𝑛 ,𝑘𝑚 ,𝑘

 ,𝑘
𝑗 𝑘

𝑖,𝑗

  ̃
2 + ∑ ∑ (   ̃2  ( ̃𝑗

2) − 1)𝑛𝑖,𝑗𝑚𝑖,𝑗𝑛 ,𝑘𝑚 ,𝑘

 ,𝑘
  𝑖   𝑗 𝑘

𝑖,𝑗

 

(5) 

For each DY and AY, the first term sums the variances of the single cells in the lower triangle. The second term 

considers the dependency between claims counts for different DY. The third addendum introduces an implicit 

correlation between AYs due to the structure variables that jointly affect the whole triangle. It is clear that the 

variance is not lower than the sum of the variances of the claim payments in each cell: 

 2(𝑅̃) ≥ ∑∑  2(𝑋̃𝑖,𝑗)
𝑡+

𝑗 𝑡−𝑖+2

𝑡

𝑖  

. 

The results can be used in closed form to find the distribution of outstanding claims following methodologies 

based on approximation: for example, Normal Approximations, the recursive Panjer method, the fast Fourier 

transform, etc. (Daykin et al., 1993; Klugman et al., 2008), or using simulation methods. The latter approach will 

be used later to estimate the distribution, since it is much more numerically robust and computationally feasible. 

Moreover, this approach is almost compulsory when single claims for each cell of the run-off triangle are 

available. In this case, we may customize each time event with its proper distribution function by an appropriate 

fitting procedure. This extends the capability of standard CRM by adding a mixture of distributions (not 

necessarily of the same family) and by solving the not-rare cases where some accident, development or calendar 

years are affected by specific events (e.g. large losses, a change in the claims inflation rate, a change in 

legislation, etc.) or commercial strategies. 

3. Parameter Estimates Using the Fisher-Lange Method 

As mentioned above, to apply a CRM we need both the expected number of the paid claims triangle and, 

correspondingly, its expected cost. To estimate the claims reserve we have chosen the Fisher-Lange Method (F-L) 

(Fisher and Lange, 1973; Ottaviani, 1983) since this allows for a separate description of the number and the cost 

of claims and it is not based only on the aggregate payments. Alternatives are available in the literature, such as 

Paid or Incurred Chain-Ladder, Bornhuetter-Ferguson. All of these are widely used in actuarial practice; however, 



http://ibr.ccsenet.org     International Business Research                    Vol. 12, No. 3; 2019 

128 

 

they do not possess the desirable property of F-L. 

F-L belongs to frequency-severity methods (see Friedland (2010)) where ultimate claims are forecasted by 

multiplying the estimate of the ultimate number of claims by the estimate of the ultimate average value. The 

following is a sketch of the F-L method. The incremental number of claims (𝑛𝑖,𝑗) is supposed to be related to the 

number of reserved claims at the valuation date (𝑛  ,𝑡− +1
) through the coefficients 𝑎𝑙𝑖 𝑗 and 𝑣𝑖,𝑗 as follows: 

𝑛𝑖,𝑗 = 𝑛  ,𝑡− +1 
∙ 𝑎𝑙𝑖 𝑗 ∙ 𝑣𝑖,𝑗 

where: 

- 𝑎𝑙𝑖 𝑗 is the percentage of claims reserved having a payment in future years. At the valuation date, it is 

the portion of claims at reserve having effectively a payment in the future, regarding implicitly either nil, 

reopened and IBNR claims. Through these percentages (one for each duration), estimated on the basis of 

past data and applied to 𝑛  ,𝑡− +1
, we obtain the estimate of the number of claims to be paid in the future for 

each accident year i. 

- 𝑣𝑖,𝑗 is the claim settlement speed, representing the timing of the claims count payments estimated to have 

effectively a payment in the future. In practice, we need an estimate concerning the timing of the paid 

claims count in the future for each separate accident year. This can be obtained by the number of claims 

effectively paid in the last calendar year for different development years (𝑗 = 2,… , 𝑡+), but where the origin 

of different accident years has to be made homogeneous (by a proportionality rule based on the number of 

reported claims). Moreover, the average of the last three calendar years is often taken into account to assure 

a greater stability of the estimate (this option will be adopted in our numerical examples). 

To estimate expected average paid costs (𝑚𝑖,𝑗) for each cell of the future triangle, including future inflation, four 

steps are needed: 

1. adjust the historic payments (set in the upper part of the run-off triangle) to the current value of the last 

calendar year available by annual effective economic inflation rates (i.e. endogenous inflation is not taken into 

account); 

2. compute the average paid claims for each cell of the triangle obtained at step 1; 

3. select for each development year the average cost (𝑚̅𝑗) as a simple average (or alternatively as a weighted 

average, having the number of effective paid claims as weights) of all/part of available average costs for the 

same duration (average by column)v. The simple average will be adopted in our numerical examples; 

4. inflate the chosen average cost of each column, according to the total claim inflation (either endogenous 

and exogenous), 𝑖 , expected in the future: 

𝑚𝑖,𝑗 =

{
 
 

 
 

𝑚̅𝑗 ∙ ∏  1 + 𝑖  

 𝑖+𝑗 

  𝑡+2

 if 𝑗 < 𝑡+

 𝑚̅𝑗 ∙ ∏  1 + 𝑖  

 𝑖+𝑡+  

  𝑡+2

 if 𝑗 = 𝑡+

. 

In this way we obtain both the expected number of paid claims (𝑛𝑖,𝑗) and average paid cost (𝑚𝑖,𝑗) for each cell of 

the future triangle. 

Calibrating the parameters according to F-L, the average of the CRM model equals the F-L Best Estimate. It is 

noteworthy that, by using results for  (𝑅̃), we also obtain a measure of variability of the F-L estimate (or of any 

other deterministic method based on the number and the cost of claims), which otherwise would not have been 

available. 

4. Main Impact in a Solvency II Framework 

In actuarial science, any new method proposed for the distribution of claims reserve until the complete run-off of 

claims must be accomplished through comments on its impact on the uncertainty of the valuation of this liability. 

To address this issue, we must consider that insurers deal with the Solvency II framework in order to assess the 

capital requirement for reserve risk. In this case, models must be adapted in order to catch the “one-year” risk, as 
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detailed in the next Section. This view assures consistency with the one-year time horizon prescribed by 

Solvency II for capital assessment purposes. The Solvency II Directive (see European Commission (2009, 2015)) 

codifies and harmonises European Union (EU) insurance legislation. It primarily concerns the amount of capital 

that an insurer in the EU must hold to reduce the risk of insolvency. Both quantitative and qualitative measures 

for the calculation of technical provisions and capital requirements are set out; these came into force at the 

beginning of 2016. Focusing on reserve risk, either a Standard Formula (SF) or an Internal Model (IM) is 

allowed for capital estimation. The IM capital requirement in 𝑡 = 0 at the 𝛼 confidence level (𝑆 𝑅𝛼) is 

obtained as the difference between the quantile of the distribution of the insurer obligations at year end of the 

next accounting year (𝑅 
−), opportunely discounted at time zero with the risk-free discount factor 𝑣 , and the 

best estimatevi at time 0 (𝑅0  : 

𝑆 𝑅𝛼 = 𝑣  𝑎𝑅𝛼(𝑅̃ 
−) − 𝑅0  (6) 

where 𝑣  is the one-year risk-free discount factor provided by EIOPA. 𝑅̃ 
− , i.e. the r.v. of the insurer's 

obligation at the end of the following year, is the convolution of the payments that occurred in year 1 (i.e. the 

elements located on the next diagonal of the triangle) and the best estimate at time 𝑡 = 1, given the additional 

information available during the year. 

The tricky task is the estimation of  𝑎𝑅𝛼(𝑅̃ 
−). At present, all the methodologies provided in the literature are 

applied to stochastic models based on the C-L method. In particular, the “re-reserving” method (Diers, 2009; 

Ohlsson and Lauzeningks, 2008) derives the distribution of 𝑅̃ 
− when the ODP-Bootstrap is used. We can adapt 

this fruitful method to our context. 

1. The first step is to assess the opening reserve estimate 𝑅0 , which is calculated with the underlying 

reserving model, in our case the F-L described in Section 3 and the C-L method when Bootstrap is applied. 

2. Next, it is necessary to simulate the number of claims and incremental payments for the next calendar year 

𝑡 = 1, for each former accident year, using the underlying ultimate stochastic reserving process (i.e. the CRM 

model in our case). By so doing, we only have to simulate the subsequent diagonal in the development triangles. 

The sum of the claim payments on the simulated diagonal corresponds to the following year's payments. 

3. The results in Step 2 are used to carry out a best estimate for the closing reserve in each simulation path, 

according to the underlying reserving model. This process is called re-reserving. 

𝑅̃ 
− is the convolution of the distributions derived from the second and the third step. As a result, we can 

compute both the quantile of the discounted one-year technical result and the SCR.  

5. Case Study 

The case study refers to claims on the Motor Third Party Liability (MTPL) line of business of two Italian 

insurance companies. The dataset covers 12 consecutive accounting yearsvii. For confidentiality, the data has 

been modified applying proportionality coefficients and the fictitious company names SIFA and AMASES have 

been used. SIFA is a small-medium-sized company, whereas AMASES is a company roughly 10 times larger (in 

terms of claims reserve volume). 

Discounted Best Estimate obtained by the classical Chain-Ladder method is equal to roughly €233 (million) for 

SIFA and €2.566 (billion) for AMASES. The datasets report the number of paid and reserved claims, the number 

of closed and reopened claims, the number of reported claims, and the incremental payments and booked 

reserves amounts. Run Off triangles for MTPL and other LoBs are available on the website of the corresponding 

Author. As usual in an MTPL reserving context, data are summed up in 12x12 triangles with a tail. For the first 

AY, a complete run-off period longer than DY 12 is present. A tail must subsequently be added. In these triangles, 

the tails are the level of statutory reserve fixed by the companies. As is customary in the actuarial literatureviii, the 

tail (12+) will be added to the payments of the last development year (12), reconciling the triangle to a standard 

regular shape. 

We have initially applied our proposal as explained in Section 2. Specifically, for each missing cell of the Run Off 

triangle the number of claims is supposed to be distributed as a Negative Binomial, achieved by mixing a Poisson 

with a Gamma random variable. The average of the Poisson was set to 𝑛𝑖,𝑗  ̃, where 𝑛𝑖,𝑗 is estimated by the FL 

algorithm (see Section 3) and  ̃ is supposed to be Gamma distributed with    ̃ = 1 and   ̃ equals to 0.03 and 

0.08 for AMASES and SIFA, respectively. Standard deviations have been estimated by taking into account the 

implicit correlation between claim counts derived by the Mack prediction error formula (see Mack (1993)). 

Furthermore, by fitting the empirical distribution of the severities, we picked up the Gamma distribution to 

describe the cost of claimsix. To guarantee coherence with the expected overall cost computed with the other 
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method, the mean was set equal to the average cost of the cell, i.e. 𝑚𝑖,𝑗 (estimated by F-L as described in 

Section 3). The standard deviation is computed by knowing the coefficients of variation  𝑍̃ 
 of the observed 

claims for each DY; the standard deviation depends on both the LoB of interest and the company's portfolio 

characteristic. An accurate estimate of  𝑍̃ 
 is a key issue, since the standard deviation depends on it. This 

estimation is not an obvious task. In general, data from the Claim DataBase of the company and for each 

development year is necessary. This data is often only available to internal actuaries and is rather difficult to 

obtain, even for an external actuary (e.g. involved in a take-over evaluation). To consider parameter uncertainty 

as described in Section 2, we have assumed that  𝑍̃ 
 is affected by a structure variable  ̃𝑗 distributed according 

to a Gamma with    ̃ = 1,   ̃ = 0.03 for both companies, derived by applying the Mack prediction error 

formula to claim costs (see Mack (1993)). As our perspective is based on uncertainty measurement, our 

comments will mainly focus on the impact of the method on the variability of the reserves. First, let us consider 

some differences between the claims reserve for each accident year. The coefficient of variation and the 

skewness by AY, from 1 to 12, are reported in Figure 1. We focus here on the second and third-order moments 

since the best estimate equals the F-L deterministic method claims reserve estimate. Differences between 

companies are very noticeable in earlier accident years. Both moments fall with a faster rate for SIFA, the 

smallest insurer. 

 

Figure 1. Coefficient of variation and Skewness of claims reserve distributions for accident year (CRM model) 

 

For SIFA the overall (total) coefficient of variation equals 0.087, and there is not-negligible skewness (+0.15). 

There is a lower variability and skewness, 0.033 and +0.06, respectively, for AMASES. The analysis of the 

asymmetry of probability distribution of the claims reserve is a big issue in the actuarial field, since both 

non-proportional reinsurance strategies and capital requirements (see results below) are strictly dependent on the 

skewness of the distribution. In general, the shape of this distribution also indicates how much an insurer is 

exposed towards large or extreme losses. It is noteworthy that the CV and skewness for the overall claims 

reserve are low with respect to the single AY. This is due to the significant contribution (roughly 30% of total 

reserve) of the current generation (i.e. 12), where estimates are very low. 

In order to propose some sensitivities, we compared the CRM approach to the Bootstrapping method (see 

England and Verrall (1999)) widely used by practitioners. The last approach assumes the application of the 

ChainLadder or ODP methods and the corresponding adjusted Pearson residuals with a constant scale 

parameter for different development years along with the assumption of incremental payments generated by a 

given distribution, e.g. Gamma, LogNormal.  

Table 1 compares the coefficient of variation and the skewness given by the ODP Bootstrap and CRM methods. 

In general, CRM with respect to the Bootstrap model captures the diversification effect by returning a much 

larger variability for the smallest insurer while shrinking it for the largest one. A less prominent effect is 

produced on skewness. Differences are partly due to the different assumptions implicitly included in the F-L and 

CL deterministic methods, both of which are applied here without any “professional judgement” (which instead 

is always present in real valuations). This may lead to different averages on both discounted and undiscounted 

bases. For simplicity's sake, results based on different probabilistic assumptions (e.g. LogNormal, ODP, Normal 

and Negative Binomial) are not reported in this paper. In general, for Bootstrap we have obtained a skewness 

ranging from 0.05 to 0.08 for SIFA and from 0.078 to 0.085 for AMASES. On the other hand, CRM returns a 

significantly different skewness for the two insurers, with a systematically lower value for the larger company 
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because of its larger number of paid claims. 

Table 1. Comparison of CV and skewness of the claim reserve distribution derived from both CRM and ODP 

Bootstrap 

 CV Skewness 

 CRM (F-L) ODP Bootstrap (C-L) CRM (F-L) ODP Bootstrap (C-L) 

SIFA 0.087 0.046 0.15 0.08 
AMASES 0.033 0.037 0.06 0.08 

Note: 50,000 simulations - discounted values. 

 

We have also evaluated how our model behaves over a one-year time horizon, as requested under the Solvency II 

framework, by comparing it with the most widely used methodology, One-Year Bootstrap. In this regard, Figure 

2 reports the quantiles of Claims Development Result (CDR) distributions derived by both methodsx.  𝐷𝑅̃ is 

usually defined as  𝐷𝑅̃ = 𝑅0 − 𝑣 𝑅̃ 
− and measures how far the discounted insurer obligation at the end of the 

following year is from the initial reserve. In other words, it measures profit ( 𝐷𝑅 > 0) or losses ( 𝐷𝑅 < 0) after 

the reserving process. As partially shown also by the characteristics of the Reserve distributions (see Table 2), 

CRM and Bootstrap provide similar distributions when the large insurer is considered. However, of note is the 

heavier left tail when Bootstrap is applied, which leads to a greater capital requirement. ODP Bootstrap provides 

instead a significant underestimation of extreme losses for SIFA Insurer. 

 

Figure 2. qqplot of CDR distributions derived from CRM and ODP Bootstrap 

 

Table 2 shows the ratios between SCR for reserve risk and the Best Estimate of Loss Reserve, obtained using 

ODP Bootstrap and CRM for both insurers based on three different confidence levels. The benchmark is the 99.5% 

confidence level adopted by the Solvency II Directive. The capital requirement is derived from the left tail of the 

CDR distribution in (6) (i.e. 𝑆 𝑅99.5% = − 𝑎𝑅0.5%( 𝐷𝑅̃)). As expected, the smaller insurer has a higher SCR 

ratio due to the more skewed claims reserve distribution. Furthermore, differences between models are more 

significant for SIFA Insurer and for higher confidence levels because of the skewness effect. 

 

Table 2. SCR ratio obtained by CRM and ODP Bootstrap for both insurers with a One-Year time horizon 

 𝑆 𝑅0     0 

 CRM(F-L) ODP Bootstrap (C-L) 

 99.00% 99.50% 99.97% 99.00% 99.50% 99.97% 

SIFA 22.4% 26.4% 44.4% 9.1% 10.1% 13.6% 
AMASES 5.8% 6.6% 10.0% 6.7% 7.5% 10.3% 

Note: 50,000 simulations - discounted values. 

 

Focusing only on the benchmark level of 99.5%, Figure 3 shows the SCR ratio obtained by several approaches in 

order to verify if an internal model may permit the saving of capital compared to the standard formula. In 

particular, besides the internal models described above (ODP Bootstrap and CRM), capital has been quantified 
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by the Delegated Acts (DA) standard formula (European Commission, 2015) through either the market-wide or 

one of the several specific undertaking approaches. A market-wide capital charge is determined as three times the 

volatility factor  , provided for each LoB (equal to 9.5% for MTPL), and multiplied by the volume measurexi.  

As expected, both insurers have the same capital ratios obtained from the market-wide formula. Moreover, DA 

allows us to estimate the volatility factor through a credibility structure equal to a weighted average of the 

market-wide volatility factor and a specific estimate of  (known as the undertaking-specific approach - USP). 

For this specific estimate of reserve risk variability, the approach based on Wüthrich and Merz formula 

(Wüthrich and Merz, 2008) is applied herexii. 

 

Figure 3. SCR ratio derived from different methodologies 

 

It is noteworthy that the USP approach gives a significant saving of capital for both insurers with respect to the 

market-wide formula and that this approach is not so far from the results obtained by the ODP Bootstrap method. 

The CRM model leads instead to a SCR ratio similar to a market-wide standard formula for SIFA and to a capital 

amount for AMASES that is lower than that resulting from USP and bootstrapping. 

Figure 3 also aims to check the impact of the Lognormal distribution assumption regarding claims reserve in the 

standard formula. In this regard, we quantify the capital requirement by applying the 𝜌 𝑥  function to the 

coefficient of variation obtained respectively by the Bootstrap and CRM model. As in premium risk valuation, it 

is confirmed that the LogNormal (with only two parameters)xiii can underestimate the capital requirement when 

the underlying random variable has a significant positive skewness. 

The CRM model has also been applied to other LoBs by exploring both the total run-off and the one-year 

approach. In particular, two relevant lines of business, General Third-Party Liabilities (GTPL) and Motor Own 

Damages (MOD), have been analyzed. For simplicity's sake, we report only the main results in terms of 

quantiles and capital requirement ratio (see Figure 4 and 5). 
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Figure 4. qqplot of CDR distributions derived from CRM and ODP Bootstrap for GTPL and MOD 

 

 

Figure 5. SCR ratios for MTPL, GTPL and MOD (partial internal models vs DA standard formula) 

 

First of all, the CRM model shows consistent results when compared to classical methodologies, as it represents 

a viable alternative for deriving the distribution of claims reserve. In particular, as expected all approaches 

(simulations and closed formulae) confirm the greater dispersion for the GTPL line. In fact, GTPL provides a 

higher SCR ratio than MTPL because of more relevant CV and skewness. Moreover, it is noteworthy that the 

standard formula (GTPL market-wide volatility factor is equal to 11%) leads to a lower capital requirement than 

does the internal model (either ODP Bootstrap or CRM) for SIFA. Only the USP approach guarantees a saving of 

capital because of the very low CV. The larger company instead has lower requirements both for IM and USP 

along with greater savings when using methodologies based on the Chain-Ladder assumptions. As regards the 

MOD, models based on Chain-Ladder assumptions (such as ODP Bootstrap and the Wüthrich-Merz Formula) 

provide higher SCR ratios for AMASES. On the contrary, CRM reflects the dimensional effect, returning a 
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negligible capital for AMASES and a ratio for SIFA higher than that provided by the MW approach. The 

standard formula, based on a 10% volatility factor, gives lower requirements (see CRM for SIFA and Bootstrap 

for AMASES). This LoB clearly shows how the shape of the distribution could be very different by varying the 

models. In this case, the assumptions of the models are heavily affected by the data used. For example, 

considering the case of AMASES, the volatility of development factors, used by Bootstrap, leads to a more 

volatile distribution, which is not caught by the CRM model. Having at our disposal the marginal distributions, 

the aggregate capital requirement can also be derived by using either a correlation approach, as provided by QIS 

and the DA Standard Formula, or copula functions, in order to take into account tail dependencies, which are 

usually not negligible in this context (for details see Savelli and Clemente (2011)). We could finally obtain the 

aggregate SCR for both companies. Table 3 summarizes the loss reserve distribution showing a prominent 

weight of MTPL and a greater weight of MOD for the small Insurer. The Solvency II Standard Formula proposes 

an aggregation of SCR based on the given correlation matrix (see Table 4 from European Commission (2015) 

p.255 Annex IV). 

 

Table 3. Share of Total Best Estimate 

 MTPL GTPL MOD Total 

SIFA 69.7% 24.1% 6.2% 100.0% 
AMASES 76.6% 22.3% 1.1% 100.0% 

Table 4. Correlation matrix 

 MTPL GTPL MOD 

MTPL 1 0.5 0.5 
GTPL 0.5 1 0.25 
MOD 0.5 0.25 1 

 

We compare this solution with copula functions calibrated to assure comparable correlation coefficients. Not 

having at disposal the time series of CDR of the three LoBs, we used the correlation matrix reported in Table 4. 

In this case, we are not focused on the calibration of copula functions, but even for practical purposes we 

aggregate CDR distributions providing a consistent comparison between internal model and standard formula. In 

particular, two classical elliptical copulas (Gaussian and t-Student) and two classical Archimedean copulas 

(Clayton and Mirror Gumbelxiv) are applied. We test the latter class to consider the tail dependency contribution 

to the aggregation process. Furthermore, it is well-known that this class of copulas has one generating function 

and usually one parameter that characterizes the dependence structure of the joint distribution function; however, 

the use of only one parameter could be extremely restrictive in a higher-dimensional case. A two-level hierarchy 

of Archimedean copulas is applied here to solve this issue. In this specific case, first the aggregated distribution 

between MOD and GTPL lines has been obtained and then the result has been aggregated with the distribution of 

MTPL. Figure 6 compares the aggregated distribution of CDR derived for each model and company by using 

Gaussian and Clayton Copula. As expected, there is a significant fat left tail when the Clayton Copula is used. 

Furthermore, of note is the lower volatility of the aggregate distribution of SIFA when ODP-Bootstrap is applied. 
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Figure 6. qqplot of Aggregate CDR distributions derived from Gaussian and Clayton Copulas 

In terms of the capital requirement, Figure 7 shows how both Internal Models (ODP and CRM) lead to similar 

capital requirements for AMASES and a significant savings in the capital requirement with respect to the MW 

approach of the Standard Formula. On the other hand, the Chain Ladder-based approaches (Standard Formula 

USP and ODP-Bootstrap) tend to underestimate the capital requirements when SIFA is considered. 

 

Figure 7. SCR ratios derived from different methodologies 
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6. Conclusions 

The CRM model applied to each cell of the run-off triangles may represent a viable alternative to the stochastic 

models for reservation available in the literature. Parameter estimates may be obtained using claims DataBase 

and an average cost method that provides separate estimates for the number of future payments and average 

claim costs. Our approach allows us to customize the stochastic process of each time event with its proper 

distribution function by means of an appropriate fitting procedure. This extends the capability of the standard 

CRM by solving the not-rare cases where some years are affected by specific events or commercial strategies. 

The LoBs analyzed in the case study show that CRM has a different impact with respect to ODP Bootstrap. In 

general, CV and skewness of claims reserve distribution are more sensitive to insurer size when the CRM model 

is applied, as would be expected. Moreover, by aggregating LoBs using the copula methodology we have shown 

how CRM sheds light on the uncertainty of future costs, especially when small volume companies are analyzed. 

Some sensitivities show the relevance of having a reliable parameter calibration and the strict link between 

parameter uncertainty and the variability of the overall claim reserve. In particular, attention should be paid to 

the estimation of the standard deviation of the structure variable  ̃ in order to properly capture the correlation 

inside the triangle. The coefficient of variation of the total run-off claims reserve distribution is significantly 

affected by that value. The One-Year approach represents a key approach to be fully investigated in order to 

perform evaluations consistent with Solvency II. If CRM is used for reserve risk, a strong consistency with the 

premium risk modelling might result when appropriate. Further research will regard methods to introduce 

stochastic inflation along with analyses to evaluate the effect of tail factors on CRM and on both the One-Year 

and Total Run-Off approaches. 
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Notes 

                                                        
i
 Bootstrapping usually gives a best estimate not exactly coincident with the "true mean" (obtained by the 

deterministic chain-ladder), since the mean of the adjusted Pearson residuals may not equal zero. 

ii See England and Verrall (2006) for a procedure related to Mack's Bootstrapping model and for a version of 

ODP with non-constant scale parameters. See Pinheiro et al. (2003) for a version of Bootstrap based on Pearson 

residuals standardized with a factor depending on the diagonal of the "hat" matrix. 

iii Random variables will be represented by a tilde over upper/lower cases. This is compliant with notation used 

in most actuarial studies. 

iv To describe costs, Lognormal or Gamma distributions are generally used (see e.g. Klugman et al. (2008)). 

Often the best fit is obtained by applying a Gamma distribution to the claim costs. If the Lognormal is chosen, as 

its m.g.f. is not defined, results can be obtained only by approximation or simulation. 

v As regard the methodology of average cost assessment, the F-L method implicitly assumes that settlement of 

partial claims payment is consistent over time. 

vi According to Article 76 of the Solvency II Directive European Commission (2009), the claims reserve must be 

equal to the current amount that insurance and reinsurance undertakings would have to pay if they were to 

transfer their insurance and reinsurance obligations immediately to another insurance or reinsurance undertaking. 

This definition leads to a claims reserve evaluated as the sum of the best estimate and risk margin. As prescribed 

by Solvency II (see European Commission (2015)), risk margin is not considered in (6) to avoid problems of 

circularity. 

vii The effect of direct reimbursement (CARD), introduced in 2007 in the Italian Insurance Market, is not 

considered here. 

viii The main stochastic approaches (as ODP Bootstrap, Merz and Wüthrich formula, etc.) are usually applied to 

triangles without a tail. 

ix It may be shown that the choice of the claim-size distribution has a negligible impact on the variability of the 

reserve distribution but a large effect on skewness (see in this regard Savelli and Clemente (2010), Section 5). 

However, several analyses on empirical datasets show that the Gamma distribution is a satisfactory choice. 

x Be aware that axis scale might be different for a matter of illustration. 

xi Since QIS5 (European Commission, 2010), the capital requirement (𝑁𝐿) for reserve risk was obtained jointly 

with premium risk as 𝑁𝐿 = 𝜌    , where 𝜌    is a function that measures the difference between the 99.5% 

quantile and the mean of a LogNormal distribution with a standard deviation equal to  . Furthermore, V is the 

volume measure (equal to Best Estimate of Loss Reserve for reserve risk). Delegated Acts (European 

Commission, 2015) have replaced this formula by assuming 𝑁𝐿 = 3  . 

xii The approach has been proposed in QIS5 and also confirmed by European Commission (2015). 

xiii For a LogNormal distribution, it could be proven that there is a strict relationship between the variability 

coefficient and skewness 𝛾(𝑋̃) =   (𝑋̃) (3 +   2(𝑋̃)). 

xiv Mirror Gumbel is a copula with the same Kendall Tau and swapped tail concentration functions with respect 

to the original Gumbel copula, resulting in a heavy concentration of probability on left tail (see Venter (2002) 

and Savelli and Clemente (2011) for further details on flipping a copula). 

 

 

 

 

 

 

 
Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 

license (http://creativecommons.org/licenses/by/4.0/). 


