
Higher Education Studies; Vol. 6, No. 4; 2016
ISSN 1925-4741 E-ISSN 1925-475X

Published by Canadian Center of Science and Education

146

ICT Teachers’ Acceptance of “Scratch” as Algorithm Visualization
Software

Fatih Saltan1 & Mehmet Kara1

1 Department of Computer Education & Instructional Technology, Amasya University, Amasya, Turkey

Correspondence: Fatih Saltan, Department of Computer Education & Instructional Technology, Amasya
University, Amasya, Turkey. E-mail: fsaltan@gmail.com

Received: October 19, 2016 Accepted: October 28, 2016 Online Published: November 22, 2016

doi:10.5539/hes.v6n4p146 URL: http://dx.doi.org/10.5539/hes.v6n4p146

Abstract

This study aims to investigate the acceptance of ICT teachers pertaining to the use of Scratch as an Algorithm
Visualization (AV) software in terms of perceived ease of use and perceived usefulness. An embedded mixed
method research design was used in the study, in which qualitative data were embedded in quantitative ones and
used to explain the results. The data were collected from 214 pre-service ICT teachers studying in four large
public universities. Data was gathered through a questionnaire adapted from David’s Technology Acceptance
Survey (1989) and through open-ended questions. T-test and Pearson correlation, as well as descriptive statistics,
were used to analyze quantitative data and constant analysis techniques were used to analyze qualitative data.
Both kinds of data were mixed and are presented in the results section. The results show that pre-service ICT
teachers mainly have positive and similar Scratch acceptance scores in terms of usefulness and ease of use. The
factors explaining participants’ perceived usefulness are identified as visual interface (37%), pedagogy(36%),
and computational thinking (27%). The majority of the participants also found Scratch to be easy to use.
Pre-service ICT teachers explained that what makes AV software easy to use is color separation (40%), drag and
drop (30%), and familiar interface (30%). Additionally, no significant difference between the acceptance scores
of the participants was found in terms of gender, years of programming experience, programming background,
and the high school they graduated from as indicators of programming experience. Results congruent with
previous studies regarding Scratch were found by the current study.

Keywords: Algorithm Visualization, ICT teachers’ perceptions, computer programming

1. Introduction

Teaching programming to students of all grade levels has gained importance, especially with the introduction of
the term called Computational Thinking. Wing (2006) first introduced this concept as “solving problems,
designing systems, and understanding human behavior, by drawing on the concepts fundamental to computer
science” (p. 33) with an emphasis on computer science. Cuny, Sinder, and Wing (2010) redefined the concept as
“the thought processes involved in formulating problems and their solutions so that the solutions are represented
in a form that can be effectively carried out by an information-processing agent”. Based on the latter,
computational thinking has clearly become an interdisciplinary concept based on, but not limited to computer
science. Today, this concept is accepted as a 21th century skill by the scholars of education and a required skill
for students of all grade levels. Obviously, this definition is based on computer science, particularly
programming knowledge and skills. This means that acquisition of this skill requires teaching programming to
all students, from the elementary to the university level. Acquisition of computational thinking skills is certainly
not a concern restricted to educators and researchers; it is also a concern for countries worldwide, since they
have begun to realize the importance of Information and Communication Technologies (ICT) instruction for
technological and economic development (Wilson, Sudol, Stephenson, & Stehlik, 2010). Therefore, increasing
attention is being given to computational thinking and related research topics (Grover & Pea, 2013), including
the use of algorithms as the central element of computational thinking (Cortina, 2007).

However, programming instruction is not so straightforward, even for undergraduate students studying
computer-related disciplines. There are lots of problems documented by researchers which can cause novice
programming students to fail and dropout of the programming course (Federici, 2011). Some of the identified
challenges of teaching programming to university students are lack of understanding of the larger elements,

hes.ccsenet.org Higher Education Studies Vol. 6, No. 4; 2016

147

abstract concepts, application of what is learnt, and lack of practical and concrete learning situations (Lahtinen,
Ala-Mutka, & Jarvinen, 2005). In a recently conducted study with the participation of students in a
computer-related discipline, these challenges were reported as “programming knowledge, programming skills,
understanding semantics of the program, and debugging” (Özmen & Altun, 2014). This study also underlines
that lack of practice and lack of algorithm usage, along with lack of knowledge, are major problems causing
student failure in programming courses.

Computer science educators and researchers have been striving to find pedagogical and technological ways to
make the programming instruction process easier and more effective. One of these proposed solutions is to use
Algorithm Visualization (AV), since many of the aforementioned problems in learning how to program stem
from a faulty grasp of practical usage of algorithms. AV is defined as the graphical illustration of algorithms via
software developed for this purpose (Hundhausen, 2002), which aims to facilitate student understanding of the
way computer algorithms function (Haundhausen & Brown, 2008). There are many AV software programs
aiming to assist novice programmers in learning programming concepts in a visual way, such as Scratch, Alice,
Android Appinventor, Scriptease, Kodu, and so forth. These programs have gained popularity in teaching
programming, especially as they provide novice programmers with the opportunity to focus more on design and
development rather than on programming syntax (Grover & Pea, 2013); decrease the cognitive load through the
avoidance of the handling of syntax errors (Kelleher & Pausch, 2005, p. 131); and a fun and comfortable
learning context (Kelleher, Pausch, & Kiesler, 2007). In this respect, according to Brennan and Resnick (2012),
these AV software programs help learners develop computational thinking skills through design and
development of interactive media. Considering all these advantages, AV software is an innovative technology
for teaching programming to novice programmers and young students.

Of all these AV software programs, Scratch was chosen for this study due to several reasons. Scratch is a popular
AV software, which was particularly designed to teach young students programming (Maloney, Resnick,
Silverman, & Eastmond, 2010). First of all, it includes more programming concepts than other AV software
programs and it has a context supporting active learning (Koorsse, Cilliers, & Calitz, 2014). Secondly, in their
evaluation of some visual algorithm software, Koorsse, Cilliers, and Calitz (2014) list the characteristics of
Scratch as “Assists with developing knowledge of programming principles and concepts”, “Constructivist to
promote self-study”, “Assists with the understanding of code execution”, “Develops code comprehension”,
“Feedback to guide solution creation”, and, most importantly, “Promotes problem solving and planning”. Among
these characteristics, problem solving and planning is a crucial one for the development of computational
thinking skills. In the same vein, Brennan and Resnick (2012) reported seven computational thinking concepts
that are used in Scratch projects which can be applied in programming or other disciplines. These concepts are
“sequences”, “loops”, “parallelism”, “events”, “conditionals”, “operators”, and “data”. Thus, due to its
technological and pedagogical features, Scratch was chosen as the AV software for the current study.

The studies pertaining to the use of Scratch generally indicate improvements in teaching programming in spite of
some drawbacks. The research studies revealed that Scratch is useful for helping students use computational
constructs (Meerbaum-Salant, Armoni, & Ben-Ari, 2013); engage in programming processes (Resnick et al.,
2009); acquire programming skills and motivation (Begosso & Silva, 2013), develop positive attitudes toward
programming (Genç & Karakuş, 2012); gain experience working with advanced programming languages (Wolz,
Leitner, Malan, & Maloney, 2009); and make reflections on their daily experiences (e.g., mathematical
experiences) (Ke, 2014). However, there are still drawbacks to the use of Scratch for teaching programming. For
example, Koorsse, Cilliers, and Calitz (2014) reported that although students perceive Scratch to be as useful as
Robomind and B#, there was no significant evidence indicating that the students using Scratch or other AV
software achieved better results in programming. After reviewing 22 experimental evaluations, this significant
difference issue was reported and criticized by Hundhausen (2002) as the drawback of AV technology from the
pedagogical standpoint. In another study, Meerbaum-Salant et al. (2013) found out that students still have
difficulties with learning some concepts in spite of the use of Scratch. The final drawback of Scratch or other
visual algorithm software programs is that they are generally used in extracurricular activities, such as summer
campsor computer clubs (Meerbaum-Salant et al., 2013; Wolz, Maloney, & Pulimood, 2008). To conclude, the
literature on Scratch usage reveals its numerous advantages, as well as the pedagogical or technological
problems waiting to be solved to maximize its effectiveness for educational purposes.

It is obvious that the use of AV software (Scratch in particular) for teaching programming is a relatively
innovative method and there are some problems regarding their integration into programming instruction. The
source of the problems might be the pedagogical use of these software programs, as well as their technological
features. From the pedagogical standpoint, the problems with the use of AV can be overcome through teacher

hes.ccsenet.org Higher Education Studies Vol. 6, No. 4; 2016

148

training and subsequent teaching and support (Howland & Good, 2015; Robertson, Macvean, & Howland, 2013;
Meerbaum-Salant et al., 2013). In this regard, the recommendations for the solution of the current problems
point out teacher training. For example, for the learning problems especially experienced by young learners,
Meerbaum-Salant et al. (2013) suggest “careful teaching, close, and effective mentoring”. According to
Robertson et al. (2013), the long term achievement of innovative technologies, including AV, relies on the
degree to which teachers accepts them for use in their practices. In the same vein, Cordova, Eaton, and Taylor
(2011) emphasized the key role of teacher training for the use of ALICE to teach programming. In addition,
considering the difficulties of teaching programming at the university level, even in computer-related disciplines,
it is a requisite to use AV for teaching novice programmers. In this regard, it is important to investigate
preservice ICT teachers’ acceptance of AV (Scratch in this case) for the successful adoption and integration of
these technologies, both in universities and K12 schools.

1.1 Purpose of the Study

Although AV software’s visual properties are motivating and encouraging, particularly for novice programmers,
there is no comprehensive study on teachers’ acceptance of AV software. The purpose of this study is to
investigate pre-service ICT teachers’ acceptance of Scratch as an AV software in terms of perceived ease of use
and perceived usefulness. Specifically, the research questions of this study are as follows:

1) To what extent do ICT teachers accept usage of AV software for learning programming?

2) Is there a difference in acceptance of AV software related to gender, programming experience, programming
background, and the high school ICT teachers graduated from?

2. Method

2.1 Research Design

The embedded mixed methods research design was used in this study. According to Creswell et al. (2007), in
this design, one type of data can provide support to the other ones. It is especially useful when qualitative data
are embedded within quantitative data. In the current study, the research data were mainly collected in
quantitative form to determine participants’ acceptance of Scratch. The qualitative data embedded in the results
were collected to determine and explain the reasons why participants accept or do not accept Scratch.

2.2 Participants

Participants in the study were undergraduate students studying in the Computer Education and Instructional
Technology (CEIT) departments off our large, public universities, which are in charge of training ICT teachers
in Turkey. All pre-service teachers voluntarily participated in the study. Most of the participants (71%)
graduated from vocational school. 48.6% of them were female (N=104) and 51.4% of them (N=110) were male.
Pre-service teachers were somewhat experienced in using AV. All of them stated that they had used an AV
program like Scratch within the scope of a course.

2.3 Instruments

Data was gathered through a questionnaire adapted from David’s technology acceptance survey (1989) and
open-ended questions. Participants were asked four demographic questions, five open-ended questions, and 18
likert-type questions, on which 1 means strongly disagree and 5 means strongly agree. David’s technology
acceptance survey (1989) consisted of two factors: perceived usefulness and perceived ease of use. The validity
of the instrument was provided in its development study. As for the reliability, Cronbach Alpha coefficients were
calculated to check the internal consistency of the scale. The Coefficient Alpha for Usefulness was obtained
as .960, which indicates excellent reliability, the Coefficient Alpha for Ease of Use was obtained as .804, which
indicates good reliability, and the Coefficient Alpha for the overall scale was obtained as .931, which indicates
excellent reliability (see Table 1). The obtained values indicate that the internal consistency of the scale and
sub-scales are satisfactory. Open-ended questions were developed based on the related literature and revised
based on the reviews of subject field experts.

hes.ccsenet.org Higher Education Studies Vol. 6, No. 4; 2016

149

Table 1. Internal consistency of the scale

Scale Number of Items Coefficient Alpha

Perceived Usefulness 9 .960

Perceived Ease of Use 9 .804

Overall Scale 18 .931

2.4 Data Collection Procedure

Before the data collection phase, students studying in the CEIT departments of four public universities were
invited to voluntarily participate in Scratch training. Then, Scratch was introduced to the volunteer participants
for four weeks and, with the mentoring of the instructors, they were individually assigned to develop Scratch
projects within this timeframe. The instructors provided feedback about their work during the project
development process. Upon completion of their individual Scratch projects, all participants were asked to
voluntarily answer the questionnaire items. They were also asked to answer the open-ended questions on the
questionnaire, in order to collect qualitative data.

2.5 Data Analysis

Based on the research questions, descriptive and inferential statistics and constant analysis techniques were
conducted. The quantitative data were analyzed descriptively and presented as means, standard deviations,
percentiles, and frequencies. As for the inferential statistics analyses, t-test and Pearson correlation analyses were
conducted to determine the mean differences between the groups and the correlations, respectively.

The qualitative data was analyzed using content analysis techniques (Patton, 2002; Miles & Huberman, 1994).
Answers to the open ended questions were coded. Emerging codes were categorized and described with their
percentage and frequency. In order to ensure internal validity, emerging categories were verified by two different
researchers. Inter-coder reliability was calculated as 73 percent. The qualitative data were embedded within the
quantitative data and mixed in the results part of the study.

3. Results

The results are presented under the research questions based on the qualitative and quantitative analysis.

3.1 To What Extent Do ICT Teachers Accept Usage of AV Software for Learning Programming?

The participants were asked to respond to 18 items with answers ranging from 1 to 5 on a Likert-type scale
which evaluate two factors of the TAM model; namely, “Perceived usefulness” and “Perceived ease of use”. The
mean scores of the items ranged from 3.16 to 3.91. Item 16, which is a reverse item, was transformed for the
analysis: “Interaction via Scratch requires too much mental effort”, had the lowest mean score (M=3.16,
SD=1.06). Item 10, which is “It is easy to learn how to use Scratch”, had the highest mean score (M=3.91,
SD=1.03). Overall, the “Perceived usefulness” factor had a mean score of 3.69 (SD=.98) and the “Perceived ease
of use” had a mean score of 3.22 (SD=.47). These results show that participants mainly have positive and similar
acceptance ratings for the items and the factors in the scale.

On the other hand, qualitative analysis indicated that most of the participants think that AV software is useful in
learning computer programming. Their explanations of why they found it useful fell under three factors: visual
interface (37%), pedagogy (36%), and computational thinking (27%) (see Figure 1). Participants mostly
perceived AVs to be useful because they offers a powerful graphical interface to users. For example, one
participant stated: “Of course, it (Scratch) facilitates learning because it saves programming logic from being
boring by making it visual”.

Also, some participants said AV software utilizes various pedagogical methods based on user needs. They
indicated that in the traditional approach, every student completes the same programming activities, which have
equal difficulties and numbers, but AVs provide an individualized learning environment. In addition, some of the
participant indicated that AV improves users’ computational thinking ability, especially problem solving and
designing systems by utilizing the fundamentals of computer programming. In this regard, one ICT teacher said,
“I had major problems with learning programming. After being introduced to Scratch, I have begun to create
algorithms of the works to be done with ease and I now find programming more pleasurable”.

hes.ccsenet.org Higher Education Studies Vol. 6, No. 4; 2016

150

Figure 1. Categories explaining perceived usefulness

Qualitative analysis was also conducted to understand what participants think about ease of use of AV software.
Results indicated that all but nine participants perceived AV software to be easy to use. Fifteen participants
asserted that it should be easier to use. Eleven participants also said that it is easy to use, but users need a bit of
practice. The resulting categories are listed in Table 2. For example, one participant indicated:

“The interface and the usage of the functions are quite easy and understandable. But, continual practice with
different examples is needed to improve skills. In this way, students can progress their learning by
comprehending the fundamentals and logic of programming”.

Table 2. Perceived ease of use

Categories Frequency (N=128)

Yes, ease of use 170

Yes, but can be better 15

Yes, but need practice 11

No, not ease of use 9

Moreover, ICT teachers explained what makes AV software easy to use under three categories: color separation
(40%), drag and drop (30%), and familiar interface (30%). In the AV program, different colors are used for code
blocks that have different functions. Most ICT teachers indicated that that was what made AVs easy to use. It
was also mentioned that users are able to drag and drop code blocks instead of writing them. In this regard, one
participant said, “I find it easy to use. Since it is drag-drop, users are much more motivated in a visual
environment by using code blocks representing codes”.

Moreover, ICT teachers indicated that the interface of the AV software is similar to the interface of common
computer programs. Therefore, participants do not have difficulty using AV to learn computer programming.

3.2 Is There a Aifference in the Acceptance of AV Software in Terms of Gender, Programming Experience,
Programming Background, and the High School ICT Teachers Graduated from?

An independent samples t-test was conducted to test if there is a difference between the mean scores of the
participants’ technology acceptance in terms of gender. The factors in the scale were adopted as the dependent
variables. The results obtained are shown in Table 3.

hes.ccsenet.org Higher Education Studies Vol. 6, No. 4; 2016

151

Table 3. Independent samples t-test results for acceptance and gender

 t df Sig. (2-tailed) Mean Difference Effect Size (Cohen’s d)

Perceived Usefulness .033 210 .974 .004 .004

Perceived Ease of Use 1.041 210 .299 .067 .145

According to Table 3, the mean score of the male participants is higher than that of the female participants, with
a mean difference of .004. However, there is no significant mean difference between the perceived usefulness
scores of the female (M=3.690, SD=.978) and male participants (M=3.694, SD=.986) with a small effect size
according to Cohen’s (1998) standards; t (210)=0.033, p>.05, d=.005. Table 3 indicates similar results for
perceived ease of use. Similarly, there is no significant mean difference between the perceived ease of use scores
of female (M=3.182, SD=.428) and male (M=3.249, SD=.497) participants with a small effect size and mean
difference of .067; t (210)=1.041, p>.05, d=.144.

Whether participants’ acceptance of AV software differed depending on the high schools they graduated from
was also checked through an independent samples t-test. For this purpose, the participants were grouped by
whether they graduated from a vocational or non-vocational high schools. The assumption was that the
participants who graduated from vocational high schools had programming education background. The
independent t-test results are demonstrated in Table 4. The participants who graduated from vocational high
schools have higher mean scores than those who graduated from non-vocational high schools, with a mean
difference of .180 in terms of perceived usefulness. Table 4, however, shows that there is no significant mean
difference between the perceived usefulness scores of the participants who graduated from vocational (M=3.728,
SD=.995) and those who graduated from non-vocational high schools (M=3.549, SD=.922) with a small effect
size; t (209)=1.105, p>.05, d=.187.

Table 4. Independent samples t-test results for acceptance and high school

 t df Sig. (2-tailed) Mean Difference Effect Size (Cohen’s d)

Perceived Usefulness 1.105 209 .270 .180 .187

Perceived Ease of Use 1.206 209 .229 .093 .208

In the same vein, in spite of the mean difference of .093 in favor of the participants who graduated from
vocational high schools, there is no significant difference between the perceived ease of use mean scores of those
who graduated from vocational (M=3.237, SD=.480) and those who graduated from non-vocational high schools
(M=3.144, SD=.412) with a small effect size; t (209)=1.206, p>.05, d=.208.

An independent samples t-test was conducted again to investigate whether the acceptance scores of the
participants differ based on their previous higher education background before the ICT teacher training program.
In accordance with this purpose, the participants were grouped according to whether they had graduated from a
computer-related associate degree program (N=10) or had not (N=202). The independent samples t-test results
are indicated in Table 5 below.

Table 5. Independent samples t-test results for acceptance and previous higher education background

 t df Sig. (2-tailed) Mean Difference Effect Size (Cohen’s d)

Perceived Usefulness 1.167 210 .245 .370 .407

Perceived Ease of Use .194 210 .846 .029 .069

The participants who previously enrolled in an associate degree program had a higher mean score than those who
did not. But, according to Table 5, there is no significant mean difference between the perceived usefulness

hes.ccsenet.org Higher Education Studies Vol. 6, No. 4; 2016

152

scores of the participants who previously enrolled in an associate degree program (M=4.044, SD=.827) and those
who did not (M=3.674, SD=.985) with a small effect size; t (210)=1.167, p>.05, d=.407. A similar result was
obtained for the mean scores of perceived ease of use. There is no significant mean difference between the
perceived ease of use scores of the participants who previously enrolled in an associate degree program
(M=3.244, SD=.370) and the ones who did not (M=3.215, SD=.470) with a small effect size; t (210)=.194, p>.05,
d=.069.

Finally, Pearson product moment correlation was conducted to investigate whether there is a relationship
between participants’ programming experience and their acceptance of Scratch in terms of perceived usefulness
and perceived ease of use. The participants’ responses regarding their programming experience in terms of years
and their ratings for the perceived usefulness and perceived ease of use factors were used for the vicariate
correlations. The programming experiences of the participants who provided their years of experience with the
percentage of 93.87 (N=199) ranged from 1 to 10 years with the mean of 4.05 years. 6.13% of the participants
(N=13) did not provide information about their previous programming experience. Table 6 demonstrates the
results obtained from Pearson correlation between participants’ programming experience and their perceived
usefulness and perceived ease of use ratings.

Table 6. Pearson correlation between programming experience and scratch acceptance

 Perceived Usefulness Perceived Ease of Use

Programming Experience
Pearson Correlation (r) .112 .008

Sig. (2-tailed) .116 .916

According to Table 6, there is a positive correlation between programming experience and perceived usefulness.
The Pearson correlation coefficient in this case indicates a small correlation according to Cohen’s (1988)
guidelines. This small positive correlation can be observed in Figure 2. However, there is no significant
relationship between participants’ programming experience and their responses about perceived usefulness; r
(199)=.112, p>.05.

Figure 2. Pearson correlation between programming experience and perceived usefulness

hes.ccsenet.org Higher Education Studies Vol. 6, No. 4; 2016

153

The Pearson correlation analysis results revealed that there is no significant correlation between participants’
programming experience and perceived ease of use; r (199)=.008, p>.05. The Pearson correlation coefficient
obtained in the analysis of this case indicates a negligible relationship since it is approximately zero.

4. Discussion

The study results, first of all, revealed that preservice ICT teachers mainly have positive and similar acceptance
of Scratch in terms of usefulness and ease of use. The qualitative results provided key information about the
reasons why they have positive acceptance of it.

They find Scratch useful due to the visual interface, pedagogy, and computational thinking factors. The first
factor, visual interface, provides them with an engaging learning environment rather than a boring and
threatening one. According to Grover and Pea (2013), visual interface provides learners with an opportunity to
concentrate more on design and creation instead of programming syntax. So, visual interface is a critical element
for students’ acceptance of Scratch. Another factor underlined by the participants which affects their acceptance
is pedagogy. They believe that Scratch is useful for learning and teaching programming because it facilitates the
algorithm creation process in an easier and more concrete manner. Creating algorithms for problems, lack of
practice and knowledge are reported by Özmen and Altun (2014) as the major problems in learning
programming. Additionally, the abstract nature of programming and lack of practical and concrete learning
contexts are the reasons for difficulty, for especially novice learners (Lahtinen, Ala-mutka, & Järvinen, 2005).
Congruent with these previous studies, the concrete nature of Scratch for algorithm creation is another factor for
participants’ acceptance. The final factor stated by the participants which explains the usefulness of Scratch is
Computational thinking. They stated that Scratch is not only a useful tool for teaching programming, but also
useful for helping students gain computational thinking skills since it facilitates the formulation of the
encountered problems and create algorithms for their solutions. As Cortina (2007) stated, formulation and use of
algorithms are major components of computational thinking. Similar results were obtained in the literature
revealing the facilitating role of AV for obtaining computational thinking skills (Grover & Pea, 2013; Lye &
Koh, 2014). Therefore, Scratch’s facilitating role for learners to gain computational thinking plays a crucial role
in its acceptance.

The majority of the participants also found Scratch to be easy to use. They explained why Scratch is easy to use
by underlining color separation, drag and drop, and familiar interface features. The results demonstrated that
color separation and drag-drop features makes programming understandable and motivating. Similar results were
found in the literature that lack of motivation is a problem in learning programming (Lahtinen, Ala-mutka, &
Järvinen, 2005) and AV software provides learners with motivation and engagement (Begosso & Da Silva, 2013;
Grover & Pea, 2013). The third factor affecting their acceptance in terms of ease of use is familiar interface. Lye
and Koh (2014) reported that Scratch has interface features similar to traditional visual programming languages.
In conjunction with their conclusion, the results of this study showed that Scratch has interface properties similar
to traditional software and this enabled students to master Scratch and consequently have positive acceptance.

In addition, the study sought to determine whether participants’ acceptance varies depending on gender, years of
programming experience, programming background and the type of high school they graduated from as
indicators of programming experience. The results indicated that there is no significant difference between their
acceptance scores in terms of gender, programming background, and the high school type they graduated from
and there is also no significant correlation between programming experience and their acceptance. These results
mean that students have acceptance of Scratch regardless of gender and programming experience, although it
was reported in the literature that the challenge of learning programming varies depending on gender (Howland
& Good, 2015; Yurdugül & Aşkar, 2013) and experience (Lau & Yuen, 2011; Özmen & Altun, 2014). For this
reason, the non-significancy has important implications for programming instruction at the university level, since
this could be considered an advantage of Scratch for its widespread adoption by all learners, particularly novice
programmers.

5. Conclusion and Implications for Future Studies

The overall results obtained in this study indicate that preservice ICT teachers have positive acceptance of
Scratch due to its distinguished features and, more importantly, their acceptance is independent of their gender
and programming experience. As Guzman and Nussbaum (2009) stated, teacher training plays a central role in
the successful integration of technology in schools. In the same vein, since the acceptance of a technology in all
school levels relies on teacher acceptance (Robertson, Macvean, & Howland, 2013), these results suggest that
the introduction of Scratch in ICT teacher training programs may encourage its widespread acceptance and
integration in schools. Additionally, the results also suggest that its facilitating, motivating, and engaging nature

hes.ccsenet.org Higher Education Studies Vol. 6, No. 4; 2016

154

for learning and teaching programming will be helpful for preservice ICT teachers to gain required programming
and computational thinking skills.

This study was conducted based on a four-week Scratch training at the university level. Therefore, the focus of
future studies must be on the integrated use of AV in the introductory programming courses at the university
level. Moreover, as indicated in the literature, AV software is used in K12 settings only within extracurricular
activities such as computer clubs and summer camps. For this reason, the focus of future studies must also be on
the widespread acceptance and integration of AV in K12 education.

References

Begosso, L. C., & da Silva, P. R. (2013, October). Teaching computer programming: A practical review. In 2013
IEEE Frontiers in Education Conference (FIE) (pp. 508-510). IEEE.
https://dx.doi.org/10.1109/fie.2013.6684875

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the development of
computational thinking. In Proceedings of the 2012 annual meeting of the American Educational Research
Association. Vancouver, Canada.

Cordova, J., Eaton, V., & Taylor, K. (2011). Experiences in computer science wonderland: A success story with
Alice. Journal of Computing Sciences in Colleges, 26(5), 16-22.

Cortina, T. (2007). An introduction to computer science for non-majors using principles of computation. ACM
SIGCSE Bulletin, 39(1), 222. https://dx.doi.org/10.1145/1227504.1227387

Creswell, J. W., Plano Clark, V. L., Gutmann, M. L., & Hanson, W. E. (2003). Advanced mixed methods
research designs. Handbook of Mixed Methods in Social and Behavioral Research, 209-240.

Cuny, J., Snyder, L., & Wing, J. (2010). Demystifying Computational Thinking for Non-Computer Scientists,
Work in Progress.

Federici, S. (2011, October). A minimal, extensible, drag-And-Drop implementation of the C programming
language. In Proceedings of the 2011 conference on information technology education (pp. 191-196).
ACM.

Genç, Z., & Karakuş, S. (2012). Tasarımla Öğrenme: Eğitsel Bilgisayar Oyunları Tasarımında Scratch Kullanımı.
In 5th International Computer & Instructional Technologies Symposium.

Grover, S., & Pea, R. (2013). Computational Thinking in K-12: A Review of the State of the Field. Educational
Researcher, 42(1), 38-43. https://dx.doi.org/10.3102/0013189X12463051

Guzman, A., & Nussbaum, M. (2009). Teaching competencies for technology integration in the classroom.
Journal of Computer Assisted Learning, 25(5), 453-469.
https://dx.doi.org/10.1111/j.1365-2729.2009.00322.x

Howland, K., & Good, J. (2015). Learning to communicate computationally with Flip: A bi-modal programming
language for game creation. Computers & Education, 80, 224-240.
https://dx.doi.org/10.1016/j.compedu.2014.08.014

Hundhausen, C. D. (2002). Integrating algorithm visualization technology into an undergraduate algorithms
course: Ethnographic studies of a social constructivist approach. Computers & Education, 39(3), 237-260.
https://dx.doi.org/10.1016/S0360-1315(02)00044-1

Hundhausen, C. D., & Brown, J. L. (2008). Designing, visualizing, and discussing algorithms within a CS 1
studio experience: An empirical study. Computers & Education, 50(1), 301-326.
https://dx.doi.org/10.1016/j.compedu.2006.06.002

Ke, F. (2014). An implementation of design-based learning through creating educational computer games: A
case study on mathematics learning during design and computing. Computers & Education, 73, 26-39.
https://dx.doi.org/10.1016/j.compedu.2013.12.010

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming
environments and languages for novice programmers. ACM Computing Surveys (CSUR), 37(2), 83-137.
https://dx.doi.org/10.1145/1089733.1089734

Kelleher, C., Pausch, R., & Kiesler, S. (2007, April). Storytelling alice motivates middle school girls to learn
computer programming. In Proceedings of the SIGCHI conference on Human factors in computing systems
(pp. 1455-1464). ACM.

hes.ccsenet.org Higher Education Studies Vol. 6, No. 4; 2016

155

Koorsse, M., Cilliers, C., & Calitz, A. (2015). Programming assistance tools to support the learning of IT
programming in South African secondary schools. Computers & Education, 82, 162-178.
https://dx.doi.org/10.1016/j.compedu.2014.11.020

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005, June). A study of the difficulties of novice programmers.
ACM SIGCSE Bulletin, 37(3), 14-18. https://dx.doi.org/10.1145/1151954.1067453

Lau, W. W., & Yuen, A. H. (2009). Exploring the effects of gender and learning styles on computer
programming performance: Implications for programming pedagogy. British Journal of Educational
Technology, 40(4), 696-712. https://dx.doi.org/10.1111/j.1467-8535.2008.00847.x

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through
programming: What is next for K-12? Computers in Human Behavior, 41, 51-61.
https://dx.doi.org/10.1016/j.chb.2014.09.012

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch programming language
and environment. ACM Transactions on Computing Education (TOCE), 10(4), 16.
https://dx.doi.org/10.1145/1868358.1868363

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science concepts with scratch.
Computer Science Education, 23(3), 239-264. https://dx.doi.org/10.1080/08993408.2013.832022

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.

Özmen, B., & Altun, A. (2014). Undergraduate Students’ Experiences in Programming: Difficulties and
Obstacles. Turkish Online Journal of Qualitative Inquiry, 5(3). https://dx.doi.org/10.17569/tojqi.20328

Patton, M. Q. (2002). Oualitative Research-Evaluation Methods (3th ed.). ThousandOaks, CA: Sage.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., … Kafai, Y. (2009).
Scratch: Programming for all. Communications of the ACM, 52(11), 60-67.
https://dx.doi.org/10.1145/1592761.1592779

Robertson, J., Macvean, A., & Howland, K. (2013). Robust evaluation for a maturing field: The train the teacher
method. International Journal of Child-Computer Interaction, 1(2), 50-60.
https://dx.doi.org/10.1016/j.ijcci.2013.05.001

Wilson, C., Sudol, L., Stephenson, C., & Stehlik, M. (2010). Running on empty: The failure to teach K-12
Computer Science in the digital age. Tech. Rep. ACM.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
https://dx.doi.org/10.1145/1118178.1118215

Wolz, U., Leitner, H. H., Malan, D. J., & Maloney, J. (2009, March). Starting with scratch in CS 1. ACM
SIGCSE Bulletin, 41(1), 2-3. https://dx.doi.org/10.1145/1539024.1508869

Yurdugül, H., & Aşkar, P. (2013). Learning programming, problem solving and gender: A longitudinal study.
Procedia-Social and Behavioral Sciences, 83, 605-610. https://dx.doi.org/10.1016/j.sbspro.2013.06.115

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/4.0/).

