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Abstract

Background: Ambient ozone (O;) pollution has increased globally since preindustrial times. At present, O; is
one of the major air pollution concerns in Thailand, and is associated with health impacts such as chronic
obstructive pulmonary disease (COPD). The objective of our study is to estimate the burden of disease attributed
to O3 in 2009 in Thailand based on empirical evidence.

Methods: We estimated disability-adjusted life years (DALYs) attributable to O; using the comparative risk
assessment framework in the Global Burden of Diseases (GBD) study. We quantified the population attributable
fraction (PAF), integrated from Geographic Information Systems (GIS)-based spatial interpolation, the
population distribution of exposure, and the exposure-response coefficient to spatially characterize exposure to
ambient O; pollution on a national scale. Exposure distribution was derived from GIS-based spatial interpolation
05 exposure model using Pollution Control Department Thailand (PCD) surface air pollution monitor network
sources. Relative risk (RR) and population attributable fraction (PAF) were determined using health impact
function estimates for Os.

Result: PAF (%) of COPD attributable to O; were determined by region: at approximately, Northern = 2.1,
Northeastern = 7.1, Central = 9.6, Eastern = 1.75, Western = 1.47 and Southern = 1.74. The total COPD burden
attributable to O; for Thailand in 2009 was 61,577 DALYs. Approximately 0.6% of the total DALY's in Thailand
is male: 48,480 DALYSs; and female: 13,097 DALYs.

Conclusion: This study provides the first empirical evidence on the health burden (DALYSs) attributable to O3
pollution in Thailand. Varying across regions, the disease burden attributable to O; was 0.6% of the total national
burden in 2009. Better empirical data on local specific sites, e.g. urban and rural areas, alternative exposure
assessment, e.g. land use regression (LUR), and a local concentration-response coefficient are required for future
studies in Thailand.

Keywords: ambient ozone pollution, population attributable fraction, geographic information system, spatial
interpolation, burden of disease, disability adjusted life years

1. Introduction

Ground-level ozone or ambient ozone pollution (Os) is one of the major air pollution concerns at both national
and global levels which are associated with health impacts, such as premature mortality due to respiratory
infection (Huang, Dominici, & Bell, 2005; Ito, Thurston, & Silverman, 2007; M. Jerrett et al., 2009). The Global
Burden of Diseases study 2010 (GBD, 2010) (WHO, 2011) estimated that the burden attributed to O3 exposure
distributions accounted for 0.2 million or 0.1% of global DALYs in 2010, approximately 6.3% larger than the
burden in 1990 (Lim et al., 2012). A study by Anenberg et al (Anenberg, Horowitz, Tong, & West, 2010) using
the chemistry transport model, estimated global annual respiratory mortality of 0.7 + 0.3 million (6.3 + 3.0
million years of life lost), or 1.1% + 0.5% of all respiratory mortalities were associated with O; pollution. In
addition, almost 80% of the total global O; pollution impact in this study occurred in Asia. Since 1997, O; has
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dramatically exceeded the standard level in many areas of Thailand because of rapidly expanding cities,
increasing population density, increasing trend in the number of fossil fuel vehicles and electricity generation
(Ruchirawat, Settachan, Navasumrit, Tuntawiroon, & Autrup, 2007; Thanh & Lefevre, 2000). O3 can be formed
in mega cities and carried toward rural areas and distributed across the country via atmospheric transport
pathways, therefore, it is necessary to quantify the health burden of O; pollution at the national level.

Global estimates of ozone by the powerful chemistry transport model may be under or over-estimating the
results because it does not use national level empirical data at the local level. Thailand has used O; surface
monitored measurements from the Pollution Control Department in recent years, which when used with data
from geographic information system (GIS), can improve simulated O; distribution at a specific level. GIS is a
well-known program and has been used to estimate the exposure distribution in many environmental
epidemiology studies including O; pollution exposure (Moral Garcia et al., 2010; Hunova, 2011; Nuckols & Lars
Jarup, 2004; Veronica, 2013). To estimate the health burden attributed to Oz in Thailand, it is necessary to
develop an accurate prediction of the distribution of O; exposure values at non-measurement locations with the
empirical data available at the local level.

Our main objective was to estimate the attributable burden of disease due to O3 exposure in Thailand using the
spatial interpolation of O3 concentrations, health impact function and calculated disability-adjusted life years
(DALYs), which are a composite metric that measures both deaths and disabilities, combined with the
comparative risk assessment method (Lim et al., 2012; Murray, 1994).

2. Method
2.1 Overall Approach to Estimating Burden Attributable to O;

GBD uses the disability-adjusted life-year (DALY) as developed by the Burden of Disease workgroup at the
World Health Organization (WHO) to quantify the burden of disease. DALY is the sum of the years of life lived
with a disability (YLD) and years of life lost (YLL). Our methods are based on the GBD 2010 comparative risk
assessment (Lim et al., 2012). We use an integrated method that combines exposure assessment based on surface
monitoring measurements and comparative risk assessment (CRA) to quantify the burden of disease attributed to
ambient Oj; pollution as shown in Table 1. The comparative risk assessment method used to calculate the
attributable burden due to O; in this study is based on epidemiological evidence for O; exposure.
Exposure-response relationships for O; are derived from epidemiological studies in GBD 2010, to calculate
attributable fractions, and are then multiplied by disecase burden, and expressed in DALY attributable to Os
(WHO, 2004).

Essentially, the estimation of the burden attributable to O; consists of three main steps: (1) measuring the total
burden of disease associated with the risk factor at the population level, (2) estimating the population attributable
fraction (PAF), and finally (3) applying the PAF to the total burden of disease.

Table 1. Risk factors included, exposure variables, theoretical-minimum-risk exposure distributions, and
outcomes affected

Theoretical
Air Main data Exposure .. . Source of
. Exposure . . minimum-risk .
pollution . Outcomes Subgroup sources for estimation relative
type definition exposure method exposure risks
P P distribution
Ambient
. Surface Jerrett and
. concentrations .
Ambient L Surface monitor Colleague
of ozone in air, Age >25 . 33.3-41.9 parts
ozone . COPD monitor measurements e (M. Jerrett
. measured in years per billion
pollution parts per measure-ments  and GIS etal.,
r
o interpolation 2009
billion P )

2.2 Data Sources
2.2.1 O; Exposure

The most important part of the O3 concentration estimation is the extrapolation of pollutant levels at different
spatial locations based on empirical data from air quality monitoring stations in Thailand. The monitoring
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stations are located in six-regions (Northern, Northeastern, Eastern, Western, Central, and Southern) and monitor
particulate matter (PM 10), fine particles (PM 2.5), CO, NO,, SO,, and ground-level ozone. The stations are
operated by the Thailand Pollution Control Department (PCD), which has been monitoring O3 since 1992
through the Thailand air quality monitoring network. The network consists of 55 continuous monitoring stations
in 23 provinces, and 52 O; monitor stations across the country (Pollution Control Department, 2007). Figure 1
illustrates the location of these air quality monitoring stations and regions, and Table 2 shows the number of O3
surface-monitoring stations by regions in Thailand.

® Monitoring Stations
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I Northern
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77 Southern
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%_l Bangkok Metropolitan Region
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Figure 1. Area of the study and location of surface monitoring stations network

Table 2. Number of O; surface monitor stations and regional categorization in Thailand

Locations Number of stations

Central (including Bangkok Metropolitan Area) 28

Northern 10
Northeastern 2
Eastern 8
Western 1
Southern 3
Total 52

Note. source: (Pollution Control Department, 2007).

Geo-statistics and spatial exposure modeling techniques were applied to air pollution exposure assessment in a
number of environmental-health studies (Hunova, 2011; M. Jerrett et al., 2013; Thepanondh & Toruksa, 2011).
The spatial modeling technique estimates the unknown value of an un-observed area within the area covered by
using an existing known value observation. GIS allowed us to study and analyze spatial distributions of O3
pollution on a national level based on empirical data. Because of these advantages, GIS can also be a powerful
tool to show spatial distribution of the exposure. Without a GIS assessment, exposure distribution analysis of

3
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national air pollution data would be difficult to obtain.

Inverse distance weighting (IDW) is a deterministic interpolation method and based on the nonlinear
interpolation technique that uses a weighted average of the attribute values from nearby known value data to
estimate the value of that attribute at unknown data locations. Moreover, IDW showed good results for
assessment and monitoring of ambient air quality parameters (Dilip Kumar Jha, Sabesan, Anup Das, Vinithkumar,
& Kirubagaran, 2011).

The model formula of IDW interpolation is given by;
(Zi
2i( % )

j T S L
Zl(d?j)

(M

Z; is the estimated of Oz concentrations value at location j;

Z; is the measured of O; concentrations value at location i;

d; is the distance from measured value at location i to the estimated value at location j;
n is the number of O; concentrations measured value points used for interpolation.

In addition to the IDW method, several studies used the Kriging method to evaluate O; exposure (Denby et al.,
2010; Gorai, Tuluri, & Tchounwou, 2014; Kethireddy, Tchounwou, Ahmad, Yerramilli, & Young, 2014; Roberts,
Voss, & Knight, 2014). Kriging weights the distance between measured locations based on its spatial correlation
to produce variograms and a covariance factor for predicting the unknown locations (Wong, Yuan, & Perlin,
2004). In this study, cross-validation analysis was used to evaluate the performance of the spatial interpolation
techniques and the uncertainty of the maps (Janssen, Dumont, Fierens, & Mensink, 2008); we used Pearson
correlation (r) between the measured values at the monitoring stations and the model predictions. We assessed
the model performance by statistical performance indicators comparing the Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE). The equation is given by;

1 !
MSE = \/;Z?]ﬂ(xi —X')? (2)
1 ,
MAE = 231, 1X; - X'y 3)
Where, X;, X'; and N are measured, estimated and number of variables.

2.2.2 Relative Risks and Population Attributable Fraction

The population attributable fraction (PAF) has long been used to estimate the proportion reduction of burden that
can be attributed to specified risk factors (Levin, 1953; Rockhill, Newman, & Weinberg, 1998) . If these risk
factors were eliminated, it can be concluded that the burden would be reduced from these risk factors. Generally,
an exposure-based approach to determine the PAF attributed to O; requires three components of data: the
exposure of the O;, the population of exposure (Pe), and the exposure-response relationships or Relative Risk
(RR). We calculated the health impact function for O; based on a log-linear relationship between relative risk
(RR) and concentrations defined by an epidemiological study (M. Jerrett et al., 2009). We used relative risk from
this study because it is the first study that showed significant O3 long-term health impact. In addition, the GBD
2010 only used RR from this study for their estimations. We assumed that the background O; concentrations, the
relationship between Oz and health impact in Thailand, are on the same scale as the GBD 2010. The health
impact function was evaluated based on the relationship between relative risk (RR) and the change in O;
concentrations, defined as follows;

RR = expP(x—%*o) “)

Where B is the concentration-response coefficient (CR), which is the slope of the log-linear between Oj
concentrations and mortality, and X - X, or Ax is the concentration change from baseline conditions (), defined
as follows:

X = Average annual 1-hours daily maximum O; concentrations in 1997-2009 (ppb)
X = Theoretical minimum or background concentrations (ppb)

We calculated the burden of disease attributable to ambient O; pollution by multiplying the total disease burden
and the PAF which was determined by equation 5 (Murray, Ezzati, Lopez, Rodgers, & Vander Hoorn, 2003),
where Pe is the population distribution of the exposure and RR is the relative risk.
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Pe(RR-1)
Pe(RR-1)+1

PAF = (5)

The exposed population may itself be divided into multiple categories based on level or length of exposure each

with its own relative risk. With multiple (n) exposure categories, the PAF is given by the following generalized

form(Murray et al., 2003) :

PAF = Y. Pei(RR;—1)
. Pei(RR;—1)+1

i=

(6)

PAF = Proportion of disease burden attributable to O;.
Pe; = Proportion estimates of the population that’s exposed to O; by grid i.
RR; = Relative risk (magnitude of the association between O; and disease) by grid i.

We used relative risk of chronic obstructive pulmonary disecase (COPD) from Jerrett et al. (M. Jerrett et al., 2009).
The population data used in this study was obtained from the 2000 Gridded Population of the World, Version 3
(GPWv3) generated by the SEDAC (Socioeconomic Data and Applications Center) project at Columbia
University (CIESIN, 2005). This population dataset estimated human population from national and subnational
input sources (usually administrative sources) of varying resolutions into regular latitude- longitude grids at the
resolution of 2.5 arc-minute grid cells (or ~5km at the equator). All population ages > 25 years is assumed to be
exposed because it is not known exactly what proportion of the population is exposed to air pollution at the
national level (AIHW, 2010). We used Pe as the proportion of population at ages > 25 years, which was obtained
from Department of Provincial Administration Thailand (Department of Provincial Administration, 2009), and
assumed to be constant across the country (Figure 2).
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Figure 2. Geographic population distribution of exposure (Pe)

2.2.3 Estimating Burden Attributable to O;
To estimate the disease burden attributable to O3, the attributable burden (AB) is multiplied by the total COPD
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disease burden (TB) estimates for the disease and the attributable fraction (PAF). We then estimated the disease
burden attributable to O3 according to the formula:

AB = PAF x TB (7)
PAF = Proportion of cases that attributed to Os.
TB = Total COPD disease burden (DALYS).

The total COPD disease burden (DALY) dataset was obtained from BOD Thailand (Thai BOD) (BOD, 2009),
which published the national disease burden in Thailand (BOD, 2009). We assumed that the ratio of males to
females (sex ratio), is on the same scale as the Thai BOD (Bundhamcharoen, Odton, Phulkerd, &
Tangcharoensathien, 2011).

3. Results

We present a number of comparisons of the results using the different spatial modeling described in section 2.
The statistical summary of model performance corresponding to Kriging and IDW interpolation methods are
presented in Table 3. Considering the average from the O; concentrations of 1997 and 2010, the mean predicted
O; concentration of IDW and Kriging in Thailand were: 108.25 ppb (95% CI, 108.1-108.4) and 99.7 ppb (95%
CI, 99.5-99.8). In this case, IDW was shown to have an approximately 8.6% larger mean predicted concentration
than the Kriging model. Both interpolation models showed that the average O; concentrations in Thailand
exceeded the standard. Furthermore, the IDW model showed the maximum Os concentration to be approximately
169.6 ppb, while the Kriging model gave 131.4 ppb, or a 29% difference. Figure 3 illustrates the cross validation
between the measured values at the monitoring stations and the model predictions. For both models, the Pearson
correlation of the IDW model (r = 0.272) was lower than the Kriging model (r = 0.5). In addition, the model
performance assessments showed that the MAE and RMSE for O; varied from 17.9 to 20.25 and 22.58 to 25.13,
respectively. These results revealed that the Kriging interpolation method performed with 10-12% better
accuracy than the IDW method, and clearly indicates that the Kriging provides optimal interpolation model for
the exposure assessment based on the empirical dataset in the present study. In addition, the spatial distribution
of O; concentration from the IDW and Kriging model are presented in Figure 4. The Kriging model clearly
indicates that the highest O; concentration levels in the Central and Eastern regions with a range of 117-131 ppb
and, the lowest levels in southern region, with a range of 69-83 ppb.

We then calculated AX in six regions and discovered that the average AX values were between 64.7-84.9 ppb in
Thailand (Table 4). We calculated the summation of PAF grids (Figure 4) by region, as shown in Table 4. Our
best PAF estimation indicates that the western region had the lowest PAF value, or about 1.47% of the total
COPD burden. The highest PAF value was located in the central region, which produced 9.6% of the total COPD
burden reflecting the highest O; concentration levels.

Table 5 summarizes the entire attributable burden due to O; pollution by region in Thailand. The total burden of
disease in Thailand was 10.2 million DALYSs, and the estimated total COPD burden in Thailand was 259,512
DALYs (male: 204,312 DALYs; female: 55,199 DALYs) (BOD, 2009). Figure 5 illustrates the distribution of
population attributable fractions (PAF) to COPD in Thailand. The Total COPD burden attributable to O; among
six regions was approximately 61,577 DALYs (0.6% of total DALYs) (male: 48,480 DALYSs; female: 13,097
DALYs). The highest attributed O; burden was clearly located in the central region including the Bangkok
Metropolitan Area. The burdens were approximately 9.6% of the total COPD burden, or about 24,812 DALYs,
while the lowest attributed burden was located in the western region, which approximately 1.47% of total COPD
burden, or about 3,804 DALYs.
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Table 3. Statistical summary and model performance parameters of spatial interpolation model

Statistics measured

Interpolation methods (unit : ppb)

IDW Kriging
Mean 108.25 99.7
95% Confidence Interval for Mean 108.1-108.4 99.5-99.8
Median 109.42 98.42
Std. Deviation 12.03 14.17
Minimum 58.94 68.84
Maximum 169.62 131.42
Correlation coefficients (P-value)) 0.272 (0.051) 0.50* (0.00)
MAE 20.25 17.9
RMSE 25.13 22.58

Note. * Correlation is significant at the 0.01 level (2-tailed).
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Figure 3. Predicted and actual average daily maximum O; concentrations (1997-2009) by monitoring stations
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Figure 4. Exposure maps of O3 concentrations in Thailand (2009), IDW (left) and Kriging (right)
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Figure 5. Spatial variation of population attributable fractions (PAF) to COPD in Thailand (2009)
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Table 4. Population > 25 years, change in concentrations, relative risk and population attributable fractions

. (9
Ax RR PAF grid; (% of total COPD

Region Pop > 25 DALYjs)

(millions) Mean r9nSe°Z)nCI for Mean IQHSG"Z)HCI for Mean 95% CI for mean
Northern 3.9 64.7 57.9-71.4 1.29 1.26-1.32 0.0007 0.0006-0.0008
Northeastern 13.7 60.8 58.8-62.7 1.27 1.26-1.28 0.0014 0.0013-0.00143
Central 12.7 84.9 81.8-88.04 1.39 1.38-1.41 0.005 0.004-0.006
Eastern 24 80.5 74-86.9 1.37 1.34-1.40 0.0014 0.0013-0.0015
Western 1.9 83.97 76.7-91.2 1.39 1.35-1.43 0.0008 0.0007-0.0009
Southern 52 43.5 40.4-46.6 1.19 1.17-1.20 0.00058 0.0005-0.0006

Table 5. Attributable O; burden in Thailand
Attributable O3 burden (DALY) Total DALYSs

Region % of total DALYs
Both sexes  Male Female  (millions)
Northern 5,490 4,322 1,168 1.4 0.39
Northeastern 18,430 14,510 3,920 33 0.55
Central 24,813 19,535 5,278 3.0 0.83
Eastern 4,531 3,567 963 0.7 0.69
Western 3,804 2,995 809 0.5 0.77
Southern 4,510 3,551 959 1.3 0.35
Total 61,577 48,480 13,097 10.2 0.60

4. Discussion

This study estimated the health burden of diseases due to O3, using GIS interpolation models and health impact
function, and followed the comparative risk assessment method (CRA) from the global burden of disease (GBD)
study. This approach makes it possible to assess the burden attributable to empirical data sources for O; exposure,
e.g., surface monitor measurements, while taking into consideration the population exposure at the national level.
Our results indicate that the burden of disease attributable to O; is approximately 61,577 DALYs (0.6% of total
DALYs) (male: 48,480 DALYS; female: 13,097 DALYs). The only source of relative risks due to O3 from the
GBD study is Jerrett et al. (2009), a major cohort study in the United States and also the first study to show
significant O; exposure long-term health impacts.

We estimated O; exposure by two spatial exposure-modeling techniques, i.e., IDW and Kriging. The
cross-validation technique was used to test the model accuracy from the air pollution exposure study
(Thepanondh & Toruksa, 2011), because it does not require additional data collection from areas without an air
surface monitoring station. It removes a known point from the interpolated dataset and the residual dataset is
used to evaluate the prediction at the known point that it had been removed. The model performance indicator of
each of the interpolation methods is shown in Table 4, and the predicted cross-validation data is shown in Figure
2. Both interpolation techniques were useful for estimating the exposure from the unknown areas, but the results
showed that the Kriging, which produced smaller RMSE and MAE values, performed better than IDW. Using
the Kriging method as shown in Figure 4, an O; concentration exposure map from spatial distributed
interpolation was produced.

From our study, the average AX value in Thailand = 69.3 ppb (95% CI 62-70). These figures are larger than
Horowitz’s simulation at 10-25 ppb (Horowitz, 2006); Horowitz used the chemistry transport model to generate
globally simulated O; concentrations of 30-50 ppb in area of Thailand. To improve these results at the national
level, increasing the number and distribution of monitoring stations is required in the future because of a lack of
representative surface monitored data in some high population provinces (populations > 1 million) in Thailand.
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For example, Ubon ratchathani, Udon Thani and Buriram in northeastern region, Nakhon Si Thammarat in
southern region, all high population provinces, lack representative surface monitored data.

Figure 4 illustrates how the population attributable fraction due to Oz exposure varies across Thailand. The
population attributable fraction was the highest in the Central region (including Bangkok Metropolitan Area),
most likely because the higher population distribution of exposure (figure 2) and Os concentrations levels (figure
4) are located in this region. Furthermore, we found that the spatial variation of population attributable fractions
were generally more consistent with the population distribution of exposure than the O3 concentrations, similar to
the previous study that suggested the exposure comes with population; no population, no exposure (Hao,
Flowers, Monti, & Qualters, 2012). The highest attributable COPD burden due to O; was located in Central
region, or about 24,812 DALYs. This may be due to the population distribution of exposure and pollution levels,
but also because the total COPD DALY in the Central region was consistently high as well. However, the
Northern region, which had the highest COPD DALY in Thailand, had lower estimated Oj; attributable disease
burden than the Central region (5,490 DALYs). This may be because the O; concentrations were slightly lower
(64.7 ppb, 95% CI; 57.9-71.4) than the Central region (84.9 ppb, 95% CI; 81.8-88.04), the population
distribution of exposure was relatively smaller than the Central region, and the major sources of air pollution
which are associated with COPD in the Northern region may differ from the Central region (e.g. forest fire, and
garbage burnings)(Sukitpaneenit & Kim Oanh, 2014; Wiwatanadate, 2014).

In a previous study, GBD 2010 (Lim et al., 2012), estimated the disease burden attributable to O; to be
approximately 0.1% of the global DALYs (152,434 deaths: both sex) in 2010, our best estimate, however, is
0.45-1%, depending on the province/region, or a total of 61,577 DALYs (0.6% of the total national disease
burden). Our results indicate that our PAFs were slightly greater than the GBD study. One explanation may be
that the exposure estimation method. GBD used the global chemistry transport models (Fiore, Dentener, Wild,
Cuvelier, & Schultz, 2009; Stevenson et al., 2006) to estimate the distribution of O;. GBD did not link the
available surface monitor data and statistical model to estimate exposure distribution similar to the fine
particulate matter (PM2.5) in their study, which reflects a lack of available local empirical data. In addition, the
estimations for the O; disease burden in Thailand are approximate to the United Arab Emirates (UAE). Based on
the air quality monitoring stations in the UAE, and the spatial exposure modeling technique, Ying Li et al. (Li et
al., 2010) estimated that disease attributed to ground-level Oz exposure in UAE was approximately 0.8% (95%
CI; 0.2-2%) of the total UAE disease burden in 2007.

We note that our study has some inherent limitations, which need to be addressed. We rely on O; pollution data
from existing monitoring stations network. In addition, the exposure assessment based on the surface monitoring
measurements may vary, depending on location, air quality monitoring stations density and seasonal variation in
O; pollution which may not be uniformly distributed across Thailand. For that reason, it is possible that our
model was overestimates to simulate annual O; exposure into large scale area (e.g. national scale). We
recommend that future research should consider another ambient air quality model to simulate O; concentrations,
e.g. land use regression (Ryan & LeMasters, 2007) and photochemical modeling (Fann et al., 2012) to more
accurately assess O; pollution and population exposure on a national scale.

In the study limitation, we assumed that the exposure was equal for all members of the population > 25 years
(AIHW, 2010). For that reason, it should be noted that using an urban/local area-weighting method to estimate
population exposure (Zhang, Qi, Jiang, Zhou, & Wang, 2013) due to O;, and the higher resolution population
dataset at a resolution of 30 arc-seconds (~1km), which allocating census block population and household
information into regular latitude longitude grids (Balk et al., 2006), are required to improve the contribution on
the Pe factor at the local level.

Another limitation is that our study relies on the health outcome model from the GBD study (Lim et al., 2012),
and also concentration—response coefficients (CR) from an epidemiological study (M. Jerrett et al., 2009) despite
differences in health status, lifestyle, age structure, and medical care (Anenberg et al., 2010). Therefore, we did
not account for short-term effects by the ambient O; pollution, which is related to cardiovascular and respiratory
mortality (e.g. Bell et al., 2004). These limitations may be eliminated in future research if local epidemiological
studies are available.

5. Conclusion

Our study aims to estimate the disease burden attributed to ozone in Thailand. This study presents an integrated
exposure assessment, using a spatial interpolation model from empirical data, population distribution exposure
and health impact function to estimate national disease burden attributable to O;. Our study indicated that
ambient O; is one of the major air pollutants that exerts adverse effects on the environment and human health in
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Thailand. The estimated COPD burden cause by Oj; in our study was about 0.6% of the national burden each year.
It is our hope that the results will initiate more precise O; and/or other air pollution health burden estimations
among scientists in future environmental health burden studies. Finally, this study provides the first national
estimate and can inform decision-making by stakeholders and policy-makers to promote and manage a health
co-benefit of green economy in the future.
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