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Abstract 
Introduction: Visual inspection by magnetic resonance (MR) images cannot detect microscopic tissue changes 
occurring in MS in normal appearing white matter (NAWM) and may be perceived by the human eye as having 
the same texture as normal white matter (NWM). The aim of the study was to evaluate computer aided diagnosis 
(CAD) system using texture analysis (TA) in MR images to improve accuracy in identification of subtle 
differences in brain tissue structure. 

Material and Methods: The MR image database comprised 50 MS patients and 50 healthy subjects. Up to 270 
statistical texture features extract as descriptors for each region of interest. The feature reduction methods used 
were the Fisher method, the lowest probability of classification error and average correlation coefficients 
(POE+ACC) method and the fusion Fisher plus the POE+ACC (FFPA) to select the best, most effective features 
to differentiate between MS lesions, NWM and NAWM. The features parameters were used for texture analysis 
with principle component analysis (PCA) and linear discriminant analysis (LDA). Then first nearest-neighbour 
(1-NN) classifier was used for features resulting from PCA and LDA. Receiver operating characteristic (ROC) 
curve analysis was used to examine the performance of TA methods. 

Results: The highest performance for discrimination between MS lesions, NAWM and NWM was recorded for 
FFPA feature parameters using LDA; this method showed 100% sensitivity, specificity and accuracy and an area 
of ܣ௭ = 1 under the ROC curve. 

Conclusion: TA is a reliable method with the potential for effective use in MR imaging for the diagnosis and 
prediction of MS. 

Keywords: Multiple Sclerosis; Magnetic Resonance Imaging; Classification; Diagnosis; Computer-Assisted; 
Artificial Intelligence 

1. Introduction 
Multiple sclerosis (MS) is a common chronic disorder of the central nervous system characterized by progressive 
degeneration and destruction of myelin (Compston & Coles, 2002). Diagnostic evaluation of MS can be difficult 
and must be performed by a specialized neurologist in treating MS. Magnetic resonance imaging (MRI) has been 
the most frequently-used technique since the 1980s for evaluating MS lesions within the brain and spinal cord 
and to monitor its progress (Thompson et al., 2000; Young et al., 1981). Conventional MRI is not adequate for 
detection of microscopic tissue changes in normal appearing white matter (NAWM) (Whiting et al., 2006). 
Recent MRI studies have shown that the measurement of the volume of brain and focal lesions, diffusion 
weighted imaging–derived parameters and magnetic transfer ratio techniques can provide more pathologically 
specific information when diagnosing MS (Bakshi et al., 2008; Rovira & León, 2008). 
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Structural abnormalities in medical imaging can be extracted by visual inspection, but complex patterns of 
pathology are difficult to interpret. Recent demand for a quantitative approach has rapidly increased. Since 
humans usually assess texture qualitatively, computerized texture analysis (TA) can increase the accuracy of 
assessment. Texture has different grey-level values, brightness, coarseness and colour across the image (Materka, 
2004; Materka & Strzelecki, 1998). Tissues from normal brain and MS lesion have different texture features. At 
times, patterns within an image may be different, but are perceived by the human eye as having the same texture. 
Texture analysis detects pathological changes that cannot be perceived by the human eye using conventional 
MRI techniques. This mathematical technique increases quantification of and information about macroscopic 
MS lesions in the brain that are usually undetectable using conventional measurement of lesion volume and 
number (Fazekas et al., 1999). Recent studies have employed TA to assess MS lesion to differentiate between 
lesions, normal white matter (NWM) and NAWM and to monitor the progression of MS. The present study 
provides additional information to support this method. 

Studies have attempted to classify MS lesions, NWM and NAWM. Zhang et al. (Zhang, Tong, Wang, & Li, 2008) 
used TA to classify MS lesions, NWM and NAWM. They showed that a combined set of texture features made it 
easier to distinguish MS lesions from NWM and NAWM. They also concluded that texture features were not 
successful for discriminating NWM from NAWM. Harrison et al. (Harrison et al., 2010) indicated that TA can be 
effective in classifying MS lesions from NWM and NAWM at 96%-100% accuracy. Tozer et al. (Tozer, 
Marongiu, Swanton, Thompson, & Miller, 2009) extracted texture features from magnetization transfer MRIs for 
normal controls and subjects with either clinically isolated syndrome (CIS) or MS. The texture features were 
compared between groups and it was found that there were no significant differences between the control and 
CIS subjects, but that parameters differed between MS subjects and the other groups. Mathias et al. (Mathias, 
Tofts, & Losseff, 1999) found significant differences in texture features between a normal control and a MS 
patient and a significant correlation between texture features and disability of the spinal cord. Multi-scale 
amplitude modulation–frequency modulation (AM–FM) texture analysis (Murray, Pattichis, Barriga, & Soliz, 
2012) was used to evaluate the texture in multiple frequency scales. In this regard, Loizou et al. (Loizou et al., 
2011) employed AM–FM features to differentiate between NWM, NAWM, and brain lesions at 0 and 6–12 
months. Their findings indicated that there were significant differences in the AM–FM features between the 
groups. 

The present study used TA to evaluate texture features extracted from MR images to differentiate between MS 
lesions, NWM and NAWM and to classify the different tissues. The most important texture features in TA are 
computed from statistical, model-base, structural and transform methods. texture features are analyzed coming 
from six main categories in the proposed computer-aided diagnosis (CAD) system: Histogram (statistical class), 
Absolute gradient (statistical class), Run-length matrix (statistical class), Co-occurrence matrix (statistical class), 
Auto-Regressive (AR) model (model class) and Wavelets (transform class) (Castellano, Bonilha, Li, & Cendes, 
2004; Materka, 2004). 

2. Materials and Methods 
Fifty patients (22 male and 28 females), aged 34.7 ± 6.1 (mean age ± standard deviation) with a clinically 
definite MS and Fifty healthy subjects (24 males and 26 females) aged 37.5 ± 7.6 were recruited in the normal 
control group.  

T2-weighted MR images of the patient and healthy subjects were acquired from a 1.5-T scanner (Philips Achieva; 
Philips Medical Systems, Best, The Netherlands) using a turbo spin echo sequence [TR=2000 ms, TE=100 ms, 
number of excitation (NEX)=3, matrix=512*512, field of view (FOV)=24cm, slice thickness=5 mm and inter 
slice gap=0.5 mm]. 

All MRI-detectable MS lesions were identified and placed with the help of an expert MS neurologist and 
confirmed by a radiologist. Five criteria were used to select the region of interest (ROI): 

 One ROI was selected for each lesion/patient 

 ROIs of NWMs, NAWMs and MS lesions were similar in shape and size 

 ROIs of NWMs were selected from healthy subjects in the same location as those of MS lesions from 
MS patients 

 NAWMs were selected that were adjacent to a MS lesion 

 Only lesions size larger than of 100 pixels were used 

One MR image/patient was input in MaZda software (version 4.6; The Technical University of Lodz, Institute of 
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Electronics) for TA. More than 150 ROIs (50 MS lesions, 50 NWM, 50 NAWM) were selected for 
discrimination and classification. Up to 270 texture features extracted based on Histogram , Absolute gradient 
(spatial variation of grey-level values), Run-length matrix (counts of pixel runs with the specified gray-scale 
value and length in a given direction), Co-occurrence matrix (information about the distribution of pairs of pixels 
separated by given distance and direction), Auto-regressive model (description of correlation between 
neighbouring pixels) and Wavelets (decomposition image frequency at different scales) (Castellano et al., 2004; 
Materka, 2004).  

Not all 270 texture features (parameters) were suitable or effective for use differentiating MS lesions, NAWMs 
and NWMs. Two reduction algorithms (Fisher and lowest probability of classification error and average 
correlation coefficients (POE+ACC)) were employed to reduce the parameters to the best 10 texture features 
showing the best discrimination between MS lesions, NAWMs and NWMs (Mucciardi & Gose, 1971).  

Fisher algorithm selected up to ten features, with the highest being a ratio of between-class variance (D) to 
within-class variance (V). A POE+ACC algorithm produced set up ten features with minimization probability of 
classification error (POE) and average correlation coefficients (ACC) between features. In brief, the POE+ACC 
algorithm introduces ten features with high discriminatory potential and a least correlation with features that are 
already selected. 

Each feature reduction method was applied equally the MS lesions, NAWMs and NWMs to find the best 10 
texture features. The fused Fisher and POE+ACC (FFPA) texture features were compared to the separate Fisher 
and POE+ACC features to evaluate which method provides better accuracy for classification. Before analysis the 
features were standardized as follows” x୧ᇱ ൌ x୧ െ μ୧σ୧  

where x୧ and x୧ᇱ are feature values before and after standardization, respectively, μ୧ is the mean and σ୧ is the 
standard deviation of the ith feature. These features were analysed using both standard and nonstandard states. 

Principle component analysis (PCA) and linear discriminant analysis (LDA) were used to investigate the features 
and transform the data to lower-dimensional spaces (Fukunaga, 1990; Webb, 2003). The K-NN (K=1) classifier 
was used for features resulting from PCA and LDA (Anderson & Rosenfeld, 1993). Classification was carried 
for MS lesions versus NWM, MS lesions versus NAWM, and NWM versus NAWM. Receiver operating 
characteristic (ROC) curve analysis was employed to compare the discrimination performance of the TA 
methods using the area under the ROC curve (A୸) (Van Erkel & Pattynama, 1998). In addition, six objectives 
that indices sensitivity (SEN), specificity (SPC), overall accuracy (ACC), positive predictive value (PPV) and 
negative predictive value (NPV)are also applied to assess the performance of the proposed methods. ROC 
analysis was performed with the SPSS software (SPSS Inc., Chicago, USA). Figure 1 shows the steps of CAD 
processing. 
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Table 2. Summary of best ten POE+ACC features with lowest values 

Feature rank Feature Feature Group POE+ACC coefficient value 

1 WavEnHL_s-1 Wavelet 0.2998 

2 Perc.90% Histogram 0.3017 

3 Teta1 Autoregressive model 0.3053 

4 WavEnLH_s-1 Wavelet 0.414 

5 Teta4 Autoregressive model 0.4269 

6 S(2,-2)SumAverg Co-occurrence matrix 0.5622 

7 135dr_RLNonUni Run-length matrix 0.5719 

8 S(2,0)SumAverg Co-occurrence matrix 0.5757 

9 Teta3 Autoregressive model 0.5928 

10 Perc.99% Histogram 0.6 

 

Table 3. Summary of performance for different groups and Fisher feature reduction method 

Correct 
classification 

ࢠ࡭  
value NPV(%) PPV(%) ACC(%) SPC(%) SEN(%) 

Method of 
feature 
analysis 

Group 

98% (98/100) 0.989 98 98 98 98 98 NS.PCA 

MS vs. NWM 
100% (100/100) 1 100 100 100 100 100 S.PCA 

100% (100/100) 1 100 100 100 100 100 NS.LDA 

100% (100/100) 1 100 100 100 100 100 S.LDA 

81% (81/100) 0.891 88.23 89.9 89 90 88 NS.PCA 

MS vs. NAWM 
96% (96/100) 0.962 96 96 96 96 96 S.PCA 

100% (100/100) 1 100 100 100 100 100 NS. LDA 

100% (100/100) 1 100 100 100 100 100 S.LDA 

59% (59/100) 0.587 58.82 59.18 59 60 58 NS.PCA 

NWM vs. NAWM 
98% (98/100) 0.976 96.15 100 98 100 96 S.PCA 

99% (99/100) 0.994 98.04 100 99 100 98 NS.LDA 

99% (99/100) 0.994 98.04 100 99 100 98 S.LDA 

SEN = sensitivity; SPC = specificity; ACC = accuracy; PPV = positive predictive value; NPV = negative 
predictive value; A୸= area under ROC curve. 
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Table 4. Summary of performance for different groups and POE+ACC feature reduction method 

Correct 
classification 

ܢۯ  
value 

NPV(%) PPV(%) ACC(%) SPC(%) SEN(%) Method of 
feature analysis 

Group 

100% (100/100) 1 100 100 100 100 100 NS.PCA 

MS vs. 
NWM 

100% (100/100) 1 100 100 100 100 100 S.PCA 

100% (100/100) 1 100 100 100 100 100 NS.LDA 

100% (100/100) 1 100 100 100 100 100 S.LDA 

97% (97/100) 0.978 96.08 97.96 97 98 96 NS.PCA 

MS vs. 
NAWM 

97% (97/100) .982 100 94.33 97 94 100 S.PCA 

96% (96/100) 0.967 96 96 96 96 96 NS.LDA 

96% (96/100) 0.967 96 96 96 96 96 S.LDA 

95% (95/100) 0.951 92.45 97.87 95 98 92 NS.PCA 

NWM vs. 
NAWM 

99% (99/100) .995 100 98.04 99 98 100 S.PCA 

98% (98/100) 0.99 98 98 98 98 98 NS.LDA 

98% (98/100) 0.99 98 98 98 98 98 S.LDA 

SEN = sensitivity; SPC = specificity; ACC = accuracy; PPV = positive predictive value; NPV = negative 
predictive value; A୸= area under ROC curve. 

 

Table 5. Summary of performance for different groups and fusion Fisher and POE+ACC (FFPA) feature 
reduction method 

Correct 
classification 

ܢۯ  
value 

NPV(%) PPV(%) ACC(%) SPC(%) SEN(%) Method of 
feature analysis 

Group 

98% (98/100) 0.989 98 98 98 98 98 NS.PCA 

MS vs. 
NWM 

100% (100/100) 1 100 100 100 100 100 S.PCA 

100% (100/100) 1 100 100 100 100 100 NS.LDA 

100% (100/100) 1 100 100 100 100 100 S.LDA 

89% (89/100) 0.891 88.23 89.8 89 90 88 NS.PCA 

MS vs. 
NAWM 

95% (95/100) 0.971 95.92 94.12 95 94 96 S.PCA 

100% (100/100) 1 100 100 100 100 100 NS.LDA 

100% (100/100) 1 100 100 100 100 100 S.LDA 

59% (59/100) 0.587 50.85 49.15 59 60 58 NS.PCA 

NWM vs. 
NAWM 

99% (99/100) 0.994 98.04 100 99 100 98 S.PCA 

100% (100/100) 1 100 100 100 100 100 NS.LDA 

100% (100/100) 1 100 100 100 100 100 S.LDA 

SEN = sensitivity; SPC = specificity; ACC = accuracy; PPV = positive predictive value; NPV = negative 
predictive value; A୸= area under ROC curve. 
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