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Abstract 
Seismic full waveform inversion seeks to make use of the full information based on full wave field modeling to 
extract quantitative information from seismograms. Its serious nonlinearity and high dependence on initial 
velocity model often results in unsatisfactory inversion results in paleo-karsts carbonate reservoir characterized 
by strong heterogeneity. The paper presents an improved strategy of multi-scale inversion to establish velocity 
field model of waveform tomography. the forward wave equation algorithm was derived in frequency domain, 
and then the Matrix formalism for the iterative inverse methods is derived by gradient methods to speed up 
calculation and to avoid convergence to local minimum value. After massive amount of frequencies tests, the 
appropriate bandwidth are extracted, and the velocity field calculated at low frequency is used as the input of the 
high frequency. After the iteration, the accurate velocity field is inverted. Finally, frequency domain wave 
equation full waveform inversion in mathematical and physical models is conducted in order to verify the 
inverse program. The method of selecting the inverse frequencies is proved to be effective. 
Keywords: seismic wave field modeling, paleo-karsts heterogeneous reservoir, waveform inversion, 
wave-number cover, velocity model 
1. Introduction 
Seismic waves bring to the surface information gathered on the physical properties of the earth. Seismic full 
waveform inversion seeks to make use of the full information based on full wave-field modeling to extract 
quantitative information from seismograms (Dessa et al. 2007; Operto et al. 2009). Lailly (1983) and Tarantola 
(1984) recast the migration imaging principle of Claerbout (1976) as a local optimization problem in Born 
approximation, the aim of which is least squares minimization of the misfit between recorded and modeled data. 
They show that the gradient of the misfit function along which the perturbation model is searched can be built by 
cross-correlating the incident wave-field emitted from the source and the back propagated residual wave-fields 
(Thierry et al. 1999; Brenders et al. 2007). The perturbation model obtained after the first iteration of the local 
optimization looks like a migrated image obtained by reverse-time migration (Sirgue et al. 2009). One difference 
is that the seismic wave-field recorded at the receiver is back propagated in reverse time-migration, whereas the 
data misfit is back propagated in the waveform inversion (Robertson et al. 2007; Vigh et al. 2008). When added 
to the initial velocity, the velocity perturbations lead to an updated velocity model, which is used as a starting 
model for the next iteration of minimizing the misfit function. After the iteration, the accurate velocity field is 
inverted. The key factors that influence Wave equation inversion results are effective and efficient forward 
modeling (Sirgue et al. 2008), the gradient (Sheng et al. 2006) and Hessian matrix (BenHadjAli et al. 2008) 
calculation algorithm.  
Carbonate reservoir is widely developed in China Tarim basin, where a large number of oil fields are discovered 
in the paleo-karsts Ordovician limestone reservoir (Peng et al. 2008; Sun et al. 2011). The storage spaces for the 
carbonate reservoir in this area are mostly secondary dissolution caves and characterized by strong heterogeneity 
(Zhang et al. 2008; Zeng et al. 2011; Yang et al. 2012). How to accurately image these dissolved caves plays a 



esr.ccsenet.org Earth Science Research Vol. 6, No. 1; 2017 

56 
 

key role in exploiting the reservoir and reserve estimation (Zhang et al. 2011; Tang et al. 2012). Due to low 
signal to noise ratio, the accuracy of velocity model used in pre-stack migration is very important. Considering 
the question mentioned above, seismic full waveform inversion is introduced seeks to make use of the 
information based on full wave field modeling to extract quantitative information from seismograms. The paper 
presents an improved strategy of multi-scale inversion to establish accuracy depth migration velocity field as an 
initial input model of waveform tomography, so that decrease the serious nonlinearity. The velocity field 
calculated at low frequency is used as the input of the high frequency, the accurate velocity field is inverted after 
the iteration. In the application of the frequency domain waveform inversion approach, we use seismic data from 
mathematic model and a caved physical model which is supplied by CNPC (China National Petroleum 
Corporation) key laboratory. several critical processes that contribute to the success of the method were tested 
here like, the matching of amplitudes between real and synthetic data, the selection of sequence of frequencies in 
the inversion, and the relationship between inversion velocity model and wave number reconstruction. 
2. Waveform inversion method 
The correction of full waveform inversion relies on the accuracy of its forward modeling wave equation. It can 
get good result only when forward modeling is approximate with actual process of wave propagate. The forward 
wave equation is derived in frequency domain. The pressure is computed using a staggered-grid, explicit 
finite-difference method. The Matrix formalism for the iterative inverse methods is derived which include 
gradient and Gauss Newton methods to speed up calculation and to avoid convergence to local minimum value. 
After massive amount of frequencies tests, the appropriate bandwidth are extracted, and the velocity field 
calculated at low frequency is used as the input of the high frequency. After the iteration, the accurate velocity 
field is inverted. Here we deal with a 2D acoustic wave equation written in the frequency domain as, 

21 1 1 1( ( , , )) ( ( , , )) ( , , ) ( , , )
( , ) ( , ) ( , )

p x z p x z p x z g x z
x x z x z x z z K x z

ωω ω ω ω
ρ ρ

∂ ∂+ + = −
∂ ∂ ∂ ∂

         (1) 

where ρ is the density, K  the complex bulk modulus, ω  the frequency, p the pressure field and g is the 
source. 
In the frequency domain, the wave equation can be compactly written as 

B(X, )P(X, ) (X, )Gω ω ω=                                 (2) 

where B is the so called impedance matrix. Solving equation (2) can be performed through LU factorization of B 
(Virieux et al. 2009). 

We define the misfit vector (m)obs cald d dδ = −  by the difference at the receiver positions between the recorded 

seismic data obsd  and the modeled one (m)cald . The misfit vector ( )C m  referred to as the misfit function. 

We use the least square norm which is easier to manipulate from a mathematical point of view is given by 

2 †1 1(m)
2 2

C d d dδ δ δ= =                                   (3) 

where † denotes the complex conjugate, m the model parameters. 
The gradient of the misfit function in equation (3) with respect to slowness perturbation is computed by the 
zero-lag correlation between the forward-propagated wavefields and the back-projected wavefield residuals, 

1BP
m

t
t

t
tC B dδ− ∂∇ = ℜ  ∂ 

                                   (4) 

The velocity model is iteratively updated along the conjugate directions defined by 

1k k k k kX X H fα+ = − ∇                                  (5) 

where iterations max1,2,...,k k= , kα  is the step length, which is computed by a line search that ensures 

sufficient decrease of kf , and kH  is an approximation of the inverse of the Hessian (Brossier et al. 2009). At 

each iteration, one forward propagation and one back projection are needed for computing the gradient direction. 
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multi-scale inversion by selecting the inverse frequencies is proven to be effective for the strong heterogeneity 
reservoir, suggested by the application of mathematic and physical model data. 
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