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Abstract 
Inversion is a process to determine model parameters from data. In geophysics this process is very important 
because subsurface image is obtained from this process. There are many inversion algorithms that have been 
introduced and applied in geophysics problems; one of them is Levenberg-Marquardt (LM) algorithm. In this 
paper we will present one of LM algorithm application in one-dimensional magnetotelluric (MT) case. The LM 
algorithm used in this study is improved version of LM algorithm using singular value decomposition (SVD). 
The result from this algorithm is then compared with the algorithm without SVD in order to understand how 
much it has been improved. To simplify the comparison, simple synthetic model is used in this study. From this 
study, the new algorithm can improve the result of the original LM algorithm. In addition, SVD is allowing more 
parameter analysis to be done in its process. The algorithm created from this study is then used in our modeling 
program, called MAT1DMT. 
Keywords: inversion, Levenberg-Marquardt, magnetotelluric 
1. Introduction 
Subsurface imaging is the main focus in geophysical exploration. The image of earth surface below can be 
obtained by measuring various physical properties of the earth. One of the examples is by measuring earth’s 
electromagnetic properties in frequency domain. This method is called magnetotelluric method. Throughout the 
years, the development of magnetotelluric modeling and inversion algorithm has shown numerous successes. 
Although three-dimensional (3D) modeling and inversion algorithms are available, 1D modeling and inversion 
are still being performed, especially to obtain preliminary results before doing higher dimensional modeling. 
Before structure and lithology analysis can be made, data obtained from the field needs to go through modeling 
process. This process is called backward modeling or often called inversion process. Aside from the challenge to 
be able to create the inversion solution model that synchronized with the geology model, the inversion process 
using a computation of certain algorithm is still facing one major problem, which is the result stability issue. 
This problem arises because geophysical inverse problems are ill-posed problems where small changes in the 
data can cause large changes in the solution (Jupp & Vozoff, 1975). That is why understanding process and the 
development of geophysical inversion algorithm are important since the solution of inversion process will affect 
the quality of data interpretation.    
One of the common solutions that has been used in the geophysical inverse problems is the modification of 
linearized approach of the inversion problem. There have been many successful algorithms created to solve MT 
inversion problems, some of the examples are Levenberg-Marquardt algorithm (Marquardt 1963), which utilize 
damping parameter in its algorithm and Occam algorithm (Constable et al, 1987) which apply the smoothness 
constrain in the algorithm.   
In this paper we will present an application of LM algorithm in 1D MT case. In addition of the original algorithm 
results, we will also show the result from the modified algorithm using singular value decomposition (Jupp and 
Vozoff, 1975). The purpose of this study is to understand inversion result improvement of this modified 
algorithm compared to the original LM algorithm without SVD. To validate original and modified algorithm 
created in this study, result from established software will be used as comparison. The algorithm created from 
this study will be used in our own created program called MAT1DMT. The script that used in this study is 
available at appendix A. 
2. Methodology 
This section will briefly explain the basic theory of the algorithm and the test of the algorithms used in this study. 
The basic theory explained will be mainly focused on inversion theory, which consists of the basic theory and the 
explanation about the original LM algorithm and the modification of the algorithm. 
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2.1 Inversion 
MT forward modeling problems can generally be written with 

 d = g(m)                                             (1) 
With d is data, which can be apparent resistivity values (ߩ௔) or phase (Φ), and g (m) is the forward operator that 
relates model parameters (m) with its response. In 1D case, models can be defined the by the layer resistivity and 
thickness of the subsurface. Jupp and Vozoff (1975) suggested the value of a model in logarithmic to avoid a 
negative model value in the inversion result. 
Inversion process is essentially a matching process of the calculated model response with the observational data. 
The implementation of this matching process is performed automatically using mathematical and statistical 
algorithms. In general, the inversion solution which can be applied to non-linear cases, including MT, is the Gauss 
Newton solution. 

࢓  = ૙࢓ +  (2)                                       ࢓∆

࢓∆  = ሾࡶࢃࢀࡶሿିଵࢃࢀࡶ൫ࢊ −  ൯ (3)(૙࢓)݃

With m is the solution models,  Δm is the model parameters update, ࢓૙ is the initial model, and J is the 
Jacobian matrix (Jij) or models sensitivity matrix. 

௜௝ܬ  = డ௚೔డ௠ೕ (4) 

2.2 Levenberg-Marquardt Algorithm 
Levenberg-Marquardt Algorithm is an algorithm that applies the minimization of model perturbation to the Gauss 
Newton solution. It can be done by minimizing the objective function F 

ܨ  = ൫ࢊ − ૙࢓)݃ + ൯(࢓∆ +  ห|∆݉|หଶ (5)ߣ 

The solution now becomes 

࢓∆  = ሾࡶࢃࢀࡶ + ࢊ൫ࢃࢀࡶሿିଵࡵߣ  −  ൯ (6)(૙࢓)݃

With the parameter λ is showing of the effect of model perturbation. Small λ value will make the equation (6) 
becomes equal to Gauss – Newton solution in equation (3). The parameter λ is initialized with a large initial 
value. If the solution after iteration has larger misfit than the previous iteration λ value is increased, otherwise it 
is reduced. To ensure the calculation stability the equation (6) is modified to equation (7). 

࢓∆  = ሾࡶࢃࢀࡶ + ࢊ)ࢃࢀࡶሿିଵ(ࡶࢃࢀࡶ)݃ܽ݅݀ߣ  −  (7) ((࢓)݃

Jupp and Vozoff (1975) are suggesting another solution to improve the stability of the results. This solution is 
obtained by modifying the algorithm using Singular Value Decomposition (Lanczos, 1958). Singular Value 
Decomposition (SVD) is a method to divide a M x N sized matrix into three arbitrary matrices that has the 
relation : 

 J = USVT (8) 

With U is M x N matrix which is eigenvector from data, V is N x N matrix eigenvector from parameter space, 
and S is N x N diagonal matrix which value is the square root from eigenvalue of J. 
In that study, Jupp and Vozoff (1975) defining the damping parameter in LM algorithm using a N x N diagonal 
matrix P that has component value defined in equation (9). 

 p୧ = ୩౟మౄ୩౟మౄା ஜమౄ ݅ = 1,2,3, … , ܰ (9) 

With ki is ratio between the diagonal values from S matrix (si) with its first value (s1), H is an integer which is 
defined H = 2 in the algorithm and ߤ is error level which is defined by the user and is determined with a high 
value and then decreased as the error of the solution model is reduced in every iteration, the determination of this 
value will be further explained in the discussion section. Using this damping matrix, the modified solution of LM 
algorithm using SVD is then become equation (9) 

ܕ∆  = ܌൫܂܃ା܁۾܄ − g(ܕ)൯ (10) 

With S+ is N x N diagonal matrix that has 1/si (i = 1,2,3, …, N) as its component values. 
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2.3 Scaling Factor 
In our inversion algorithm, we are adding one more extra parameter to the calculation which is called the scaling 
factor. The idea of the scaling factor parameter is to scale the solution model into a new model which has the 
same average calculated response as the observed data. The scale factor is a scalar value that is obtained by 
dividing the calculated apparent resistivity of the solution model in an iteration and then multiply the factor to 
the solution model which can be expressed mathematically as equation (11) and equation (12). 

 SF = ୟ୴ୣ୰ୟ୥ୣ ୡୟ୪ୡ୳୪ୟ୲ୣୢ ୟ୮୮ୟ୰ୣ୬୲ ୰ୣୱ୧ୱ୲୧୴୧୲୷ୟ୴ୣ୰ୟ୥ୣ ୭ୠୱୣ୰୴ୣୢ ୟ୮୮ୟ୰ୣ୬୲ ୰ୣୱ୧ୱ୲୧୴୧୲୷  (11) 

ܛܕ  = ∗ ܕ  SF (12) 

With ms is the scaled model and m is the solution model in an iteration. 
In the case of 1D MT, the observed apparent resistivity is greatly reflecting the earth subsurface resistivity model 
of the measurement point. Therefore, it is only natural to choose the solution resistivity model which has an 
average value that match the average observed apparent resistivity value and scaling factor is used to fulfill this 
condition. However, in order to explore more solutions, the scaling factor multiplication is not applied to every 
solution model in the inversion process; but instead, an extra constraint is added in regard of this matter. The 
constraint included in the algorithm is the phase fitting condition, which means that only solution model, where 
the calculated value is in a certain range of phase misfit, is getting multiplied by the scaling factor.  The phase 
fit criterion was chosen because phase data is reflecting the changes of resistivity in between layer boundaries of 
the earth layers. 
In this study, the phase misfit criterion value is set at minimum to make sure that the scaling process is only 
executed when the solution model has shown the correct pattern of resistivity. However, this value is increased 
when a certain number of error level increments do not produce the desired result. The purpose of this treatment 
is to fix the solution model so the desired result can be achieved, but this treatment may not be always give a 
good result since increased tolerance of phase misfit means that more model is scaled regardless of its resistivity 
pattern. 
2.4 Algorithm Test 
To simplify the validation in comparing the algorithms, we will show inversion using synthetic data. First example 
is an inversion form synthetic data obtained from forward modeling calculation of homogeneous layer earth and 
synthetic data obtained from forward modeling calculation of simple three layered earth. We will also use varying 
starting models to understand the effect of starting model on inversion result. In addition to that, we will display the 
quality of the result using variety number of error level parameter and our proposed determination of error level in 
our algorithm. 
The quality of the solution model is measured by the misfit value which is the root mean square (RMS) error value 
between the calculated and observed values of apparent resistivity and phase, that are normalized to the observed 
data values and then it will be presented in the percentage value.  
3. Results and Discussion 
In this study, we will present three examples that will show the quality of both inversion algorithms. The first 
example is an inversion from synthetic data produced from a homogenous layer with resistivity value of 200Ωm 
using both original and modified Levenberg Marquardt algorithm. The starting model used in this process is a 
homogenous layer with resistivity value of 100Ωm. The next example is an inversion case of 3 layered earth 
models with resistivities (ߩ) and thicknesses (݀) as follows: ߩଵ = 100 Ω݉ , ߩଶ = 1000 Ω݉, ߩଷ =  100 Ω݉, ݀ଵ = 1000 ݉, ݀ଶ = 2000 ݉. Starting model used for all inversion is 5 layered earth model with same resistivity 
value of 100 Ω݉. These two cases of inversion can be called as a good case, where the model results only show a 
small ambiguity effect in the model. Another example, which is shown on figure 3, is an example of a bad case, 
where a solution model with significant difference from the synthetic model can produce the almost similar 
responses as the synthetic model responses. The starting model used in the next example is 1000 Ωm. These 
examples can be seen on figure 1 to figure 3. 
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Figure 1. Inversion results from the original and modified Levenberg Marquardt algorithm using 100 Ωm 

homogenous resistivity layer as starting model. Part (a) shows the apparent resistivity curve, (b) shows the phase 
curve, and (c) shows the 1-D resistivity models obtained. Synthetic model is indicated by blue line and its 
responses are indicated by green dots for apparent resistivity and yellow triangle for phase. Models and 

responses obtained from inversion using the original algorithm are indicated by green line and the result of the 
modified algorithm is indicated by red line 

 
The inversion model results from both inversion algorithms, which are displayed on figure 1, are forming the 
same model as the synthetic model. These results are indicating that the iterations involved in the algorithm 
calculations are leading the starting model to a model solution that has the same apparent resistivity and phase 
response as the data, showing that the algorithm used is giving the desired result. 
As it can be seen on figure 2 that both algorithm inversions are producing a good result, where the both 
algorithms are providing a solution that has small error in response relatively to the data. In addition to that, the 
original LM algorithm is almost forming the exact synthetic model used in the forward modeling process, but the 
modified algorithm inversion model is not forming the exact synthetic model. However this may not be an issue, 
since the deviation from the true resistivity is not significant, where the layers may still be interpreted as the 
same lithology.  

 
Figure 2. Inversion results from the original and modified Levenberg Marquardt algorithm using 100 Ωm 

uniform resistivity layers as starting model. Part (a) shows the apparent resistivity curve, (b) shows the phase 
curve, and (c) shows the 1-D resistivity models obtained. Synthetic model is indicated by blue line and its 
responses are indicated by green dots for apparent resistivity and yellow triangle for phase. Models and 
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responses obtained from inversion using the original algorithm is indicated by green line and the result of the 
modified algorithm is indicated by red line 

 
Figure 3. Inversion results from the original and modified Levenberg Marquardt algorithm using 1000 Ωm 

uniform resistivity layers as starting model. Part (a) shows the apparent resistivity curve, (b) shows the phase 
curve, and (c) shows the 1-D resistivity models obtained. Synthetic model is indicated by blue line and its 
responses are indicated by green dots for apparent resistivity and yellow triangle for phase. Models and 

responses obtained from inversion using the original algorithm is indicated by green line and the result of the 
modified algorithm is indicated by red line 

 
From the result shown in figure 3, it can be seen that the inversion process is producing various results using 
different starting model. Unlike the results produced from inversion using 100 Ωm uniform layers, the result 
from original algorithm has a significant difference, where a part of the solution model is becoming a very 
resistive layer. This ‘bad’ result is caused by the instability in inversion process, where a small change in data 
leads to large change in the solutions (Jupp and Vozoff, 1975). However, this problem is solved in the inversion 
result using modified algorithm with SVD. It can be seen in figure 3 that the model result from inversion using 
the modified algorithm is showing a consistent pattern of resistivity compared to the result before, when 100 Ωm 
uniform layers is used as starting model. Therefore, it can be said that the modified LM algorithm using SVD 
can produce a more stable results than the original LM algorithm, regardless of the starting model used. 
Even though the modified algorithm has been able to create the solution that has less dependency to its starting 
model, the stability problem still persists. One of the causes is the determination error level parameter in the 
inversion process. Figure 4 is illustrating the effect of various fixed error level values used in the inversion 
process of the synthetic data shown at Figure 3 with various starting model. 
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Figure 4. The misfit value of the inversion at the convergence condition. Blue, red, green, and magenta dotted 

line are indicating the results from 200 Ωm, 10 Ωm, 100 Ωm, and 1000 Ωm starting model. Each dot in the line 
is representing 0.01 interval of error level value 

 
As it can be seen on the Figure 4, the misfit has a tendency to significantly increased as the error level value is 
increased, especially when the value is above 0.15 (15% error value) and the minimum value of misfit is located 
there. However, there is also a lower limit of error level value when the inversion is not giving the desired result 
and instead in the case with starting model of 10 Ωm (red dotted line in the figure), the misfit value is increased 
at rhe lowest value of error level.Therefore the suggested determination of error value by Jupp and Vozoff (1975), 
which is determined to be a high value and then lowered if the misfit were reduced or increased if the misfit were 
increased, has been the right decision because it will ensure the right error level value, which is not too high or 
too low. In addition to that, we suggest that the initial value of error level to be in the range of 0.10 – 0.20 
because it is ensuring that the error level value not become too low or too high. Another inversion scheme 
available is to use various fixed error level value for the entire inversion and take the result with smallest misfit 
value as the solution model like the result illustrated on the Figure 4, although this scheme may not be 
recommended because it will consume more computation time.  
4. Conclusion 
Based on all results discussed in the previous section, it can be concluded that the original Levenberg Marquardt 
inversion result has a high dependence on starting model used in inversion. In some cases, this algorithm can 
produces good results, but in other cases it can also produces bad results, which can lead to misinterpretation due 
to instability that may happen in the inversion process. However, this problem can be solved by the modified 
algorithm using SVD. This algorithm is providing a more consistent results than the original ones, which is can 
be said that it is more reliable to be used in the inversion process. In addition to improve the result further we 
suggest the determination of error level initial value in the inversion to be in the range of 0.10 to 0.20 and if the 
inversion still does not give the desired result, a change of starting model may be required as its response can be 
too far from the solution model and the inversion solution is stuck on the local optima of the misfit. Also the use 
of multiple error level values in one inversion program can become one of the inversion scheme alternatives to 
see which error level value is giving the best result.  
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APPENDIX  A. Algorithm’s Script 
% Forward Modelling MT 
function [apparentResistivity, phase] = fmodl(resistivities, thicknesses,frequency) 
mu = 4*pi*1E-7; %Magnetic Permeability (H/m)   
w = 2 * pi * frequency; %Angular Frequency (Radians); 
n=length(resistivities); %number of layers 
Cs = zeros(1,n); 
for i = 1 : n 
    conductivities(i) = 1/resistivities(i); 
end 
%Calculating basement transfer function 
Cn = 1/(sqrt(sqrt(-1)*w*mu*conductivities(n)));  
Cs(n) = Cn;  
if n > 1 
%Calculating transfer function for the upper layer         
for j = n-1:-1:1 
    conductivity = conductivities(j); 
    thickness = thicknesses(j); 
%calculating k 
    k = sqrt(sqrt(-1)*w*mu*conductivities(j)); 
%Calculating the next layer transfer function 
    atas = k*Cs(j+1)+ tanh(k*thickness); 
    bawah = 1 + k*Cs(j+1)*tanh(k*thickness); 
    Cs(j) = atas/(k*bawah); 
end 
end 
% Pick the impedance value of the top layer 
Z = sqrt(-1)*w*mu*Cs(1); 
absZ = abs(Z) ; 
apparentResistivity = (absZ * absZ)/(mu * w); 
phase = rad2deg(atan2(imag(Z),real(Z))); 
% Original Marquardt inversion algorithm  
function [marq_f] = marquardtinv(handles) 
%Input : 
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% - Handles = handles that contain data and starting model 
%Output : 
% marq_f = inversion output 
%initializing arbitrary parameter and get starting model 
selesai = 100; 
damping_oke = 0; 
damping = 1000; 
bubar = 0; 
[m0,d_inv] = ambilmodelinv2(handles); 
n_layers = length(m0); 
frekuensi = handles.data(:,1); 
app_resistivity = handles.data(:,2)'; 
fasa = handles.data(:,3)'; 
%% inversion section 
for iterasi = 1 : 31 
if selesai <= 1 %inversion break condition 
break 
end 
%creating jacobian matrix using finite difference 
J = zeros(length(frekuensi),length(m0)); 
for i = 1 : length(frekuensi) 
    [app_inv1(i),fasa_inv1(i)] = ForwardModel(m0,d_inv,frekuensi(i)); 
end 
misfit = 100*sqrt(mean((([app_resistivity fasa] - ... 
                [app_inv1 fasa_inv1])./[app_resistivity fasa]).^2)); 
%creating jacobian matrix with model perturbation 1% 
h = 1/100; 
m1 = m0 + m0*h; 
m2 = m0 - m0*h; 
m3 = m0; 
for i = 1 : length(m0) 
    m3(i) = m1(i); 
for j = 1 : length(frekuensi) 
    [app_inv2(j),fasa_inv2(j)] = ForwardModel(m3,d_inv,frekuensi(j)); 
end 
    m3 = m0; 
m3(i) = m2(i); 
for j = 1 : length(frekuensi) 
    [app_inv3(j),fasa_inv3(j)] = ForwardModel(m3,d_inv,frekuensi(j)); 
end 
    m3 = m0; 
J(:,i) = ([app_inv2']-[app_inv3'])/(2*m0(i)*h); 
   J2(:,i) = (fasa_inv2' - fasa_inv3')/(2*m0(i)*h); 
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end 
J = [J;J2]; 
selesai = misfit; 
if iterasi == 1 % iteration 1 = starting model 
    app_invs = app_inv1; 
    fasa_invs = fasa_inv1; 
else 
while damping_oke == 0 
hlm = svd_inv(J'*J + damping*diag(diag(J'*J)))*J'*... 
        ([app_resistivity';fasa'] - [app_inv1';fasa_inv1']); 
%update parameter 
    m = m0 + hlm; 
for i = 1 : length(frekuensi) 
[app_invs(i),fasa_invs(i)] = ForwardModel(m,d_inv,frekuensi(i)); 
end 
    misfit2 = 100*sqrt(mean((([app_resistivity fasa] - ... 
        [app_invs fasa_invs])./[app_resistivity fasa]).^2)); 
%checking if the misfit reduced 
if misfit2 < misfit 
         damping_oke = 1; %accept model and damping parameter 
damping = damping/2; %reducing damping parameter 
        m0 = abs(m); 
        misfit = misfit2; 
        selesai = misfit; 
else 
        damping = damping*2; %increasing damping parameter 
        bubar = bubar + 1; 
if bubar >= 30 
break 
            bubar = 9999; 
end 
 end 
end 
 end 
if bubar >= 1000 
break 
else 
damping_oke = 0; 
%saving result 
marq_f(iterasi) = struct('rhoapp',app_invs,'fasa',fasa_invs,'model',... 
            m0,'d',d_inv,'misfit',selesai,'J',J); 
end 
end 
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% Modified Marquardt Inversion using SVD 
function [marq_f] = marquardtinv_svd(handles) 
%Input : 
% - Handles = handles contain data and starting model 
%Output : 
% marq_f = inversion output 
%initializing arbitrary parameter and get starting model 
selesai = 100; 
damping_oke = 0; 
damping = 1000; 
bubar = 0; 
[m0,d_inv] = ambilmodelinv2(handles); 
n_layers = length(m0); 
m0 = [log10(m0);log10(d_inv)]; 
frekuensi = handles.data(:,1); 
app_resistivity = handles.data(:,2)'; 
fasa = handles.data(:,3)'; 
%% Inversion section 
for i = 1 : length(frekuensi) 
 [app_inv1(i),fasa_inv1(i)] = ForwardModel(10.^m0(1:n_layers)... 
        ,10.^m0(n_layers:length(m0)),frekuensi(i)); 
end 
misfit = 100*sqrt(mean((([app_resistivity fasa] - ... 
                [app_inv1 fasa_inv1])./[app_resistivity fasa]).^2)); 
for iterasi = 1 : 30 
if selesai <= 1 
break 
end 
%creating jacobian matrix using finite difference 
J = zeros(length(frekuensi),length(m0)); 
%creating jacobian matrix with perturbation model 1% 
h = 1/100; 
m1 = m0 + abs(m0*h); 
m2 = m0 - abs(m0*h); 
m3 = m0; 
for i = 1 : length(m0) 
    m3(i) = m1(i); 
for j = 1 : length(frekuensi) 
    [app_inv2(j),fasa_inv2(j)] = ForwardModel(10.^m3(1:n_layers)... 
        ,10.^m3(n_layers+1:length(m0)),frekuensi(j)); 
end 
    m3 = m0; 
m3(i) = m2(i); 
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%     m3(i) = m0(i); 
for j = 1 : length(frekuensi) 
    [app_inv3(j),fasa_inv3(j)] = ForwardModel(10.^m3(1:n_layers)... 
        ,10.^m3(n_layers+1:length(m0)),frekuensi(j)); 
end 
    m3 = m0; 
   J(:,i) = (log10(app_inv2')-log10(app_inv3'))/(2*m0(i)*h); 
   J2(:,i) = (fasa_inv2' - fasa_inv3')/(2*m0(i)*h); 
end 
J = [J;J2]; 
%% SVD 
%iteration 1 = starting model (for analysis) 
if iterasi > 1 
E =([log10(app_resistivity) fasa] - [log10(app_inv1) fasa_inv1]); 
err_level = 0.1;  
[J_M J_N] = size(J); 
if J_M >= J_N 
[Ju,Js,Jv] = svd(J,0); 
else 
    [Jv,Js,Ju] = svd(J,'econ'); 
end 
Jsd = diag(Js); 
% make k = si/s1 dan S+ = 1/si 
for i = 1 : length(Jsd) 
if Jsd(i) == 0 
    Splus(i) = 0; 
else 
    Splus(i) = 1/Jsd(i); 
end 
    J_k(i) = Jsd(i)/Jsd(1); 
end 
Splus = diag(Splus); 
%creating damping matrix 
for i = 1 : J_N 
if J_k(i) >= err_level^2 
    T(i) = J_k(i)^(4)/(J_k(i)^(4)+err_level^4); 
else 
        T(i) = 0; 
end 
end 
T = diag(T); 
Bplus = Jv*T*Splus*Ju'; 
if J_M >= J_N 
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dm = Bplus*E'; 
else 
    dm = Bplus'*E; 
end 
m0 = m0 + dm; 
%calculate update 
for i = 1 : length(frekuensi) 
    [app_inv1(i),fasa_inv1(i)] = ForwardModel(10.^m0(1:n_layers)... 
        ,10.^m0(n_layers+1:length(m0)),frekuensi(i)); 
%calculate ratio between calculated and observed apparent resistivity 
    SF = app_resistivity/app_inv1; 
end 
phsmis1 = 100*sqrt(mean((([fasa] - [fasa_inv1])./[fasa]).^2)); 
% scaled misfit 
for i = 1 : length(frekuensi) 
    [app_inv999(i),fasa_inv999(i)] = ForwardModel(10.^m0(1:n_layers)*SF... 
        ,10.^m0(n_layers+1:length(m0)),frekuensi(i)); 
end 
misfit = 100*sqrt(mean((([app_resistivity fasa] - ... 
                [app_inv1 fasa_inv1])./[app_resistivity fasa]).^2)); 
misfit999 = 100*sqrt(mean((([app_resistivity fasa] - ... 
                [app_inv999 fasa_inv999])./[app_resistivity fasa]).^2)); 
%calibrate apparent resistivity when the phase is fit 
if phsmis1 < 50 
    m0(1:n_layers) = log10(10.^m0(1:n_layers)*SF); 
    app_inv1 = app_inv999; 
    fasa_inv1 = fasa_inv999; 
    misfit = misfit999; 
    d_inv = 10.^m0(n_layers+1:length(m0)); 
end 
end 
selesai = misfit; 
clear T 
clear Splus 
%saving result 
marq_f(iterasi) = struct('rhoapp',app_inv1,'fasa',fasa_inv1,'model',... 
            10.^m0(1:n_layers),'d',d_inv,'misfit',selesai,'J',J); 
end 
end 
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