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Abstract 

We present two new linear algorithms that perform unmixing in hyper-spectral images and then recognize their 
targets whose spectral signatures are given. The first algorithm is based on the ordered topology of spectral 
signatures. The second algorithm is based on a linear decomposition of each pixel's neighborhood. The sought 
after target can occupy sub- or above pixel. These algorithms combine ideas from algebra and probability theories 
as well as statistical data mining. Experimental results demonstrate their robustness. This paper is a 
complementary extension to Averbuch & Zheludev (2012).  

Keywords: hyper-spectral processing, target recognition, sub- and above pixel, unmixing, dimensionality 
reduction, diffusion maps 

1. Introduction 

1.1 Data Representation and Extraction of Spectral Information 

We assume that a hyper-spectral signature of a sought after material is given. In many applications according to 
Winter (1999), a fundamental processing task is to automatically identify pixels whose spectra coincide with the 
given spectral shape (signature). This problem raises the following issues: How the measured spectrum of a ground 
material is related to a given “pure” spectrum and how to compare between them to determine if they are the same? 
Spatial and spectral sampling produce a 3D data structure referred to as a data cube. A data cube can be visualized 
as a stack of images where each plane on the stack represents a single spectral channel (wavelength). The observed 
spectral radiance data, or the derived surface reflectance data, can be viewed as a scattering of points in a K
-dimensional Euclidean space K where K is the number of spectral bands (wavelengths). Each spectral band is 
assigned to one axis. All the axes are mutually orthogonal. Therefore, the spectrum of each pixel can be viewed as 
a vector  1 , , Kx x x   where its Cartesian coordinates ix  are either radiance or reflectance values at each 
spectral band. Since 0, 1, ,ix i K   ,  then the spectral vectors lie inside a positive cone in K . Changes in the 
illumination level can change the length of the spectral vector but not its, which is related to the shape of the 
spectrum. When targets are too small to be resolved spatially or when they are partially obscured or of an unknown 
shape, as shown in Winter (1999), then the detection has to rely on the available spectral information. 
Unfortunately, a perfect fixed spectrum for any given material does not exist.  

In agreement with Winter (1999), spectra of the same material are probably never identical even in laboratory 
experiments. This is due to variations in the material surface. The variability amount is even more profound in 
remote sensing applications because of the variations in atmospheric conditions, sensor noise, material 
composition, location, surrounding materials and other contributing factors. As a result, the measured spectra, 
which correspond to pixels with the same surface type, exhibit an inherent spectral variability that prevents the 
characterization of homogeneous surface materials by unique spectral signatures. 

Another significant complication arises from the interplay between the spatial resolution of the sensor and the 
spatial variability present in the observed ground scene. According to Winter (1999), a sensor integrates the 
radiance from all the materials within the ground surface that are “seen” by the sensor as a single image pixel. 
Therefore, depending on the spatial resolution of the sensor and the distribution of surface materials within each 
ground resolution cell, the result is a hyper-spectral data cube comprised of “pure” and “mixed” pixels, where a 
pure pixel contains a single surface material and a mixed pixel contains multiple (superposition of) materials. 
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A linear mixing model is the most widely used spectral mixing model. It assumes that the observed reflectance 
spectrum of a given pixel is generated by a linear combination of a small number of unique 

constituent known as endmembers. This model is defined with constraints in the following way (Harsanyi & 
Chang, 1994): 

1 1

, 1,
M M

k k k
k k

x a s w Sa w a
 

       additivity constraint, 0ka   positivity constraint          (1) 

where 1, , Ms s  are the M  endmember spectra that assumed to be linearly independent, 1, , Ma a  are the 
corresponding abundances (cover material fractions) and w is an additive-noise vector. 

1.2 Outline of the Algorithms to Identify Target with Known Spectra 

The new methods in this paper achieve targets identification with known spectra. Target identification in 
hyper-spectral has the following consecutive steps: 

1) Finding suspicious points: there are points whose spectra are different in any norm from the spectra of the 
points in its neighborhood. This is also called anomaly detection; 

2) Extracting from the suspicious points the spectra of the independent components (unmixing) where one of 
them is the target that its spectrum fits the given (sought after) spectrum. 

We assume that spectra of different materials are statistically dependent and the difference between them occurs 
from the behavior of the first and second derivatives in some sections in the spectrum. If they are statistically 
independent, then all the related work such as Maximum Likelihood (ML) and Geometrical (MVT, PPI and 
N-FINDR) work well. 

The experiments in this paper were performed on three real hyper-spectral datasets, which were measured as 
reflectance, titled: “desert”, “city” and “field” which were acquired by the Specim camera SPECIM camera (2006) 
located on a plane. Their properties with a display of one waveband per dataset are given in Figures 1-3. 

 

 

Figure 1. The dataset “desert” is a hyper-spectral image of a desert place taken from an airplane flying 10,000 feet 
above sea level. The resolution is 1.3 meter/pixel, 286 2640 pixels per waveband with 168 wavebands 
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Figure 2. The dataset “city” is a hyper-spectral image of a city taken from an airplane flying 10,000 feet above sea 
level. The resolution is 1.5 meter/pixel, 294 501 pixels per waveband with 28 wavebands 

 

 

Figure 3. The dataset “field” is a hyper-spectral image of a field taken from an airplane flying 9,500 feet above sea 
level. The resolution is 1.2 meter/pixel, 286 300 pixels per waveband with 50 wavebands 

 

The paper has the following structure: Section 2 describes the related work. The two algorithms, which are 
described in this paper, are compared with the performance of the orthogonal subspace projection (OSP) algorithm. 
Section 3 presents an algorithm that identifies the target's spectrum where the target occupies at least a whole pixel. 
This method assumes that the target's spectrum is distorted by atmospheric conditions and noised. Section 4 
presents an unmixing method that is based on neighborhood analysis of each pixel. This method can also be used 
for detecting a subpixel target. This algorithm contains two parts. In the first part, suspicious points are discovered. 
The algorithm is based on the properties of neighborhood morphology and on the properties of the Diffusion Maps 
(DM) algorithm Coifman & Lafon (2006). The second part unmixes the suspicious point. It is based on the 
application of DM to the linear span of the neighboring background spectra. The appendix describes the Diffusion 
Maps algorithm for dimensionality reduction. 

2. Related Work 

Up-to-date overview on hyper-spectral unmixing is given in Bioucas-Dias & Plaza (2010; 2011). The challenges 
related to target detection, which is the main focus of this paper, are described in the survey papers Manolakis, 
Marden, & Shaw (2001), Manolakis & Shaw (2002). They provide tutorial review on state-of-the-art target 
detection algorithms for hyper-spectral imaging (HIS) applications. The main obstacles in having effective 
detection algorithms are the inherent variability target and background spectra. Adaptive algorithms are effective 
to solve some of these problems. The solution provided in this paper meets some of the challenges mentioned in 
Manolakis & Shaw (2002). 
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In the rest of this section, we divided the many existing algorithms into several groups. We wish to show some 
trends but do not attempt to cover the avalanche of related work on unmixing and target detection. 

Linear approach: Under the linear mixing model, where the number of endmembers and their spectral signatures 
are known, hyper-spectral unmixing is a linear problem, which can be addressed, for example, by the ML setup 
Settle (1996) and by the constrained least squares approach Chang (2003). These methods do not supply 
sufficiently accurate estimates and do not reflect the physical behavior. Distinction between different material's 
spectra is conditioned generally by the distinction in the behavior of the first and second derivatives and not by a 
trend. 

Independent component analysis (ICA) is an unsupervised source separation process that finds a linear 
decomposition of the observed data yielding statistically independent components Common (1994), Hyvarinen, 
Karhunen, & Oja (2001). It has been applied successfully to blind source separation, to feature extraction and to 
unsupervised recognition such as in Bayliss, Gualtieri, & Cromp (1997), where the endmember signatures are 
treated as sources and the mixing matrix is composed by the abundance fractions. Numerous works including 
Nascimento & Bioucas-Dias (2005) show that ICA cannot be used to unmix hyper-spectral data. 

Geometric approach: Assume a linear mixing scenario where each observed spectral vector is given by 

, ,r x n M a n a s       where r  is an L  vector ( L  is the number of bands), 1, , pM m m     is the 

mixing matrix ( im  denotes the i th endmember signature and p  is the number of endmembers present in the 

sensed area), s a  (   is a scale factor that models illumination variability due to a surface topography), 

1, ,
T

pa a a     is the abundance vector that contains the fractions of each endmember (T  denotes a transposed 

vector) and n  is the system's additive noise. Owing to physical constraints, abundance fractions are nonnegative 

and satisfy the so-called positivity constraint 1
1

p

kk
a


 . Each pixel can be viewed as a vector in a L

-dimensional Euclidean space, where each channel is assigned to one axis. Since the set 

 1
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       is also a 

simplex whose vertices correspond to endmembers. 

Several approaches Ifarraguerri & Chang (1999), Boardman (1993), Craig (1994) exploited this geometric feature 
of hyper-spectral mixtures. The minimum volume transform (MVT) algorithm Craig (1994) determines the 
simplex of a minimal volume that contains the data. The method presented in Bateson, Asner, & Wessman  
(2000) is also of MVT type, but by introducing the notion of bundles, it takes into account the endmember 
variability that is usually present in hyper-spectral mixtures. 

The MVT type approaches are complex from computational point of view. Usually, these algorithms first find the 
convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower 
computational complexity, some algorithms such as the pixel purity index (PPI) Boardman (1993) and the 
N-FINDR Winter (1999) still find the maximum volume simplex that contains the data cloud. They assume the 
presence of at least one pure pixel of each endmember in the data. This is a strong assumption that may not be true 
in general. In any case, these algorithms find the set of most of the pure pixels in the data. 

Extending subspace approach: A fast unmixing algorithm, termed vertex component analysis (VCA), is 
described in Nascimento & Bioucas-Dias (2005). The algorithm is unsupervised and utilizes two facts: 1) The 
endmembers are the vertices of a simplex; 2) The affine transformation of a simplex is also a simplex. It works 
with projected and unprojected data. As PPI and N-FINDR algorithms, VCA also assumes the presence of pure 
pixels in the data. The algorithm iteratively projects data onto a direction orthogonal to the subspace spanned by 
the endmembers already detected. The new endmember's signature corresponds to the extreme projection. The 
algorithm iterates until all the endmembers are exhausted. VCA performs much better than PPI and better than or 
comparable to N-FINDR. Yet, its computational complexity is between one and two orders of magnitude lower 
than N-FINDR.  

If the image is of size approximately 300 2000 pixels, then this method, which builds linear span in each step, is 
too computationally expensive. In addition, it relies on “pure” spectra which are not available all the time. 

Statistical methods: In the statistical framework, spectral unmixing is formulated as a statistical inference 
problem by adopting a Bayesian methodology where the inference engine is the posterior density of the random 
objects to be estimated as described for example in Dobigeon, Moussaoui, Coulon, Tourneret, & Hero (2009), 
Moussaoui, Carteretb, Briea, & Mohammad-Djafaric (2006), Arngren, Schmidt, & Larsen (2009). 
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2.1 Orthogonal Subspace Projection (OSP) 

The method of orthogonal subspace projection (OSP) for unmixing and target detection is described in Ahmad & 

Ul Haq (2011), Ahmad, Ul Haq, & Mushtaq (2011), Ren & Chang (2003). We will compare between our method 

and the method in Ahmad & Ul Haq (2011) that is currently considered to be very effective. According to the 

notation in Ahmad & Ul Haq (2011), we are given the dataset iX SA W   where S  is the set of pure 

signatures, A  is the corresponding abundance fractions and W  is a white noise matrix. According to the OSP 

method in Ahmad & Ul Haq (2011), the mixing matrix is found as    T T TA I U U U U U U    where ,U   

are a singular matrix and an eigenvalues-matrix, respectively, of the projection matrix to the subspace L  of the 

pure signatures and TU U  is the pseudo inverse of U . The creation of the subspace L is described in Ren, H., & 

Chang, C. I. (2003), pp. 1236.  

We present the results from target detection by the application of the OSP method with a given target signature s
and compare them to our method. The targets in the scene are detected via the application of the OSP method on 

multipixels, which contain the dominant coefficient from the matrix A , corresponding to target signature s . 

2.2 Linear Classification for Threshold Optimization 

According to Cristianini & Shawe-Taylor (2000), a binary classification is frequently performed by using a 

real-valued function : nf X     in the following way: the input  1, ,
T

nx x x   is assigned to a positive 

class if   0,f x  otherwise, to a negative class. We consider the case where  f x  is a linear function of x  

with the parameters w  and b such that 

 
1

n

i i
i

f x w x b w x b


                                            (2) 

where  , nw b     are the parameters that control the function. The decision rule is given by   sgn .f x  w
is assumed to be the weight vector and b  is the threshold. 

Definition 2.1. (Cristianini & Shawe-Taylor, 2000)) A training set is a collection of training examples (data) 

      1 1, , , ,
l

l lS x y x y X Y                                     (3) 

where l  is the number of examples,  , 1,1nX Y   is the output domain. 

The Rosenblatt's Perceptron algorithm (Cristianini & Shawe-Taylor, 2000; Burges, 1998; pages 12 and 8, 
respectively) creates an hyperplane 0w x b     with respect to a training set S . It creates the best linear 
separation between positive and negative examples via minimization of measurement function of “margin” 
distribution  , .i i iy w x b       0i   that implies the correct classification for  , .i ix y   

The perceptron algorithm is guaranteed to converge only if the training data are linearly separable. A procedure 
that does not suffer from this limitation is the Linear Discriminant Analysis (LDA) via Fisher's discriminant 
functional Cristianini & Shawe-Taylor (2000). The aim is to find the hyperplane  ,w b  on which the projection 
of the data is maximally separated. The cost function (the Fisher's function) to be optimized is: 

1 1
2 2
1 1

m m
F

 








                                             (4) 

where im  and i  are the mean and the standard deviation, respectively, of the function output values 
 :i j jP w x b y i      for the two classes , 1, 1.iP i    

Definition 2.2. (Cristianini & Shawe-Taylor, 2000) The dataset S  from Equation 3 is linearly separable if the 
hyperplane 0,w x b      which is obtained via the LDA algorithm (Cristianini & Shawe-Taylor, 2000), 
correctly classifies the training data. It means that  , 0, 1, , .i i iy w x b i l         In this case, b is the 
separation threshold. If 0i  then the dataset is linearly inseparable. 

Definition 2.3. The vector nx  is isolated from the set  1, , n
kP p p    if the training set 

      1,1 , , 1 , , 1kS x p p    is linearly separable according to definition 2.2. In this case, the absolute value 
of b is the separation threshold.  
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Suppose that we have a set  1 , , nS x x   of n  samples. First, we want to partition the data into exactly two 
disjoint subsets 1S and 1S . Each subset represents a cluster. The solution is based on the K-means algorithm 
(Duda, Hart, & Stork, 2001). K-means maximizes the function  J e  where e is a partition. The value of  J e  
depends on how the samples are grouped into clusters and on the number of clusters (see Duda, Hart, & Stork, 
2001) 

   1
W BJ e tr S S                                             (5) 

where   
1 i

l T

W i ii x S
S x m x m

 
     is an “within-cluster scatter matrix” (Duda, Hart, & Stork, 2001), l  is 

the classes, iS  are the classes and im  are the center of each class. BS  is called “between-cluster scatter matrix” 

(Duda, Hart, & Stork, 2001), where   
1

l T

B i i ii
S n m m m m


   , in  is the cardinality of a class and m  is the 

center for all the dataset. 

Definition 2.4. Let  ,w b  be the best separation for the set  1 , , n
nS x x    via K-means and Fisher's 

discriminant analyzes Cristianini and Shawe-Taylor (2000), Burges (1998).  ,w b  is called the Fisher's 
separation and b the Fisher's threshold for the data .P  

When a dataset is separable? One criterion is when     1 1 1 1max , ,m m diam P diam P   where the notation in 
Equation 4 is used. diam is defined as    

2
max : , .

L
diam P x y x y P     

Another criterion is: 
Definition 2.5. (Duda, Hart, & Stork, 2001) A dataset is separable if from Equation 5    1 2J e J e  where 1e  
is the partition and the number of classes is 1 and 2e  is the best partition into two classes. If    1 2J e J e then 
the dataset is inseparable and Fisher's separation is incorrect.  

3. Method I: Weak Dependency Recognition (WDR) of Targets That Occupy One or More Pixels 

We assume that a target occupies one or more pixels. The process, which determines whether a given target's 
spectrum and the spectrum of the current pixel are dependent, is described next. 

Definition 3.1. Two discrete functions 1Y  and 2Y  are weakly dependent if there exists a permutation   of the 
coordinates that provides monotonic order for the values of 1( )Y  and 2( )Y . 

Let T  be a given target’s spectrum and P  is the pixel’s spectrum. We assume that the spectra of T  and P are 
discrete vectors. In general, we assume that T and P  are normalized and centralized. The following hypotheses 
are assumed: 

0H : T  and P are weakly dependent. 

1H : T  and P are not weakly dependent. 

3.1 Hypotheses Check 

We find an orthogonal transformation   that permutes the coordinates of T into a decreasing order. This 
permutation   is applied to P and T . We get that  1 1( ),P P T T    where 1T  is monotonic. If 0H  holds, 
which means that T and P are weakly dependent, then the values of 1P  are either monotonic decreasing or 
increasing and the first and second derivatives of 1P are close to zero - see Figure 4 (left). Otherwise, 1H holds and 

1P  has an oscillatory behavior - see Figure 4 (right). In addition, 1P  has a subset of coordinates whose first and 
second derivatives have an oscillatory behavior - see Figure 4 (right). 
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Figure 4. The x - and the y -axes are the wavebands and their reflectance values, respectively. The spectra are 
represented after the application of the permutation to the coordinates, which permutes T into a monotonic 

deceasing order. Left: Weak dependency between T and P , Right: No weak dependency between T and P  

 
If the permutation of the coordinates of P provides that their values are either decreasing or increasing 
monotonically, then the first and second derivatives of P have a minimal norm. This is another criterion for 
deciding who has weak dependency. 

Let  1, , .n
nx x x    The norm is defined as  max i ix x


 .  

Definition 3.2. Let  be an orthogonal transformation that permutes the coordinates of T into a decreasing 

order. Denote the second derivative of a vector X  by 2X . Define the mapping : n     such that 

    
2

.x X


   

Let  1 , ,X X be a dataset of spectra from all the pixels in the scene. Denote  i iY X  . The dataset 
 1, ,Y Y can be classified as: 

1) The set  1, ,Y Y  is separable according to definition2.5. 

2) The set  1, ,Y Y  is inseparable according to definition 2.5. 

In the first case,  ,w b is the best separation for the set  1, ,S Y Y
   according to definition 2.4 and b is 

the Fisher's threshold for this separation. Then, the set  : ii Y b  is the set of targets. In the other case, there are 
no targets in the scene. 

The flow of the WDR algorithm is given in Figure 5. 
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Figure 5. The flow of the WDR algorithm 

 

3.2 Experimental Results 

Figures 6-8 display the results after the application of the algorithm in section 3.1 to the “desert” image (Figure 1). 
The yellow lines mark the neighborhood of the detected targets. 

 

 

Figure 6. Left: One wavelength part from the original “desert” image (Figure 1). Right: The white points mark the 
detected targets. The intensity of each pixel in the right side corresponds to the value  X where X the 

spectrum in the current pixel 
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Figure 7. Left: One wavelength part from the original “desert” image (Figure 1). Right: The white points mark the 
detected targets. The intensity of each pixel in the right side corresponds to the value  X where X is the 

spectrum in the current pixel 

 

 

Figure 8. Left: One wavelength part from the original “desert” image (Figure 1). Right: The white points mark the 
detected targets. The intensity of each pixel in the right side corresponds to the value  X  where X is the 

spectrum in the current pixel 

 

The desert image contains documented targets. The detection of the suspicious points in Figures 6-8 match exactly 
the known targets. 

The point 1P in Figure 8 is the pattern of the known target's material. Its spectrum is displayed in Figure 4 as a plot 
of the “target”. Other spectra plots, which were detected by the WDR algorithm in the scenes of Figures 6-8, are 
classified as “spectra of suspicious points”. 



www.ccsen

 

Figure 9. C

The above

3.2.1 Com

In this sect
false alarm

 

Figure 10
white po

Figure 1

 

et.org/esr 

Comparison be
the 

e results were c

mparison betwe

tion, we compa
m generated by

0. Left: Portion
oints mark the 

11. The detecte
wavelength

etween the targ
y -axes are th

compared next

een WDR and O

are between th
y the OSP algo

n of one wavel
detected targe

ed targets by th
h from the “de

Earth S

get's spectrum a
he wavebands a

t with the OSP

OSP Algorithm

he performance
rithm is shown

ength (multipi
ets by the OSP 

“fa

he OSP algorit
esert” image. O

Science Research

209 

and the suspic
and their reflec

 

P algorithm. 

ms 

e of WDR and 
n. 

ixel) from the 
algorithm Ah

alse-alarm” 

 

thm Ahmad & 
OSP generates 

h

ious points’ sp
ctance values, 

OSP (Ahmad &

original “deser
mad & Ul Haq

 

Ul Haq (2011
false-alarm wh

 

pectra in Figure
respectively 

& Ul Haq, 201

 

rt” image (Fig
q (2011). The R

) are marked o
here WDR doe

Vol. 1, No. 2; 

es 6-8. The x

11) algorithms

ure 1). Right: 
Red circle mar

on portion of o
es not 

 2012 

- and 

. The 

The 
rks 

one 



www.ccsen

 

Figure 12 

 

Figure 12

Figure 13
white p

Figure 14
white poin

et.org/esr 

shows the RO

2. The “ROC-c

3. Left: Portion
points mark th

corresp

4. Left: Portion
nts mark the de

C-curves whil

curve” for scen
method. 

n of one wavel
he detected targ
onds to the va

n of one wavel
etected targets

Earth S

le comparing tw

ne in Figure 11
The green lin

ength (multipi
gets by the WD
alue  X  w

ength (multipi
s by the OSP al

“fa

Science Research

210 

wo methods fo

1. The red line 
e corresponds 

 

ixel) from the 
DR algorithm. 
where X is the

 

ixel) from the 
lgorithm Ahm
alse-alarm” 

 

h

or continuously

corresponds to
to WDR meth

original “deser
The intensity 

e spectrum in t

original “deser
mad & Ul Haq (

y varying the t

 

o OSP Ahmad
hod 

rt” image (Fig
of each pixel i
the current pix

 

rt” image (Fig
(2011). The Re

Vol. 1, No. 2; 

threshold. 

d & Ul Haq (20

 

ure 1). Right: 
in the right sid

xel 

ure 1). Right: 
ed circle mark

 2012 

011) 

The 
de 

The 
s the 



www.ccsen

 

Figure 1

Figure 16

4. Method

In this sect
Zhao, Alth
projection
an orthogo
morpholog

The UNSP
For ease o
-neighborh
Figure 17. 

 

et.org/esr 

15. The detecte
wavelen

6. The “ROC-c

d II: Unmixing

tion, we provid
house, & Pan
. They project 
onal compleme
gical structure 

P algorithm int
of notation, a s
hood of the pix

Fig

ed targets by th
ngth from the “

curve” for scen
method. 

g by Examini

de an algorithm
n (1998), Hars

the data into l
ent of the back
of the pixel's n

troduces the pa
square of m 
xel X , denote

gure 17. The m

Earth S

he OSP Ahmad
“desert” image

ne in Figure 15
The green lin

ing the Neighb

m that detects 
sanyi & Chan
linear subspace
kground of eac
neighborhood.

arameter m  w
12 1m  pixels

ed by  m X

m -neighborho

Science Research

211 

d & Ul Haq (2
e. OSP produce

 

5. The red line 
e corresponds 

 

borhood of a S

subpixel targe
ng, (1994). Bu
e of the known
ch pixel. The 
. This yields be

which is the nei
s on each side 
 , where 1m is 

ood of the pixe

 

h

 
2011) algorithm
es more false-a

corresponds to
to WDR meth

Suspicious Po

ets. The idea of
ut in contrast t
n targets. Our m
local model of
etter anomaly 

ighborhood's s
with a center 
the radius of t

 

el X denoted b

m are marked o
alarm than WD

 

o OSP Ahmad
hod 

oint (UNSP) 

f the algorithm
to them, we co
mapping proje
f the backgrou
(suspicious po

size that we use
at the pixel X

this neighborh

by  m X  

Vol. 1, No. 2; 

on portion of o
DR 

d & Ul Haq (20

m is close to Ch
onstruct a diff
ects the dataset
und is based on
oint) detection.

e in the proces
X  is called th
ood as display

 2012 

one 

011) 

hang, 
ferent 
t into 
n the 
. 

ssing. 
he m
yed in 



www.ccsen

 

A connect
means that
the next pi

 

Figure 

 

Consider t
correlation
different m

 

 

To reduce 
of the spec

We assum
componen

The UNSP
suspicious

4.1 The Mo

The follow

0H : Y  is

1H : Y  is

Hypothese
column j

1m is the o

 

et.org/esr 

ted component
t there exists a
ixel is adjacent

18. The morph

the spectra fro
n between the
materials. 

the correlation
ctrum of the pi

me that the pixe
nt that occupies

P algorithm ha
s point (unmixi

Morphology-Fil

wing hypothese

s a suspicious p

 not a suspicio

es check: The
 is denoted by
f the neighbor

t is a set of pix
a path between
t to it either ho

hological struc

m different m
ese spectra in 

Figu

n between spec
ixel X  by d

els, which con
s less than half

s two steps: D
ing). 

lter: Detection 

es are assumed

point. 

ous point. 

e indices of 
y , , 1,ijp i j  
rhood’s radius.

Earth S

xels in which 
n two pixels. Th
orizontally or v

cture of the nei

materials which
real situation

ure 19. Spectra 

ctra, we use th
 X  and it is c

ntain a target (
f of the m -nei

etection of sus

of Suspicious 

d: 

 m Y  are con
, m  - see Fig

. 

Science Research

212 

any two pixel
he path is a seq
vertically as w

ighborhood is 

h are present in
s. For exampl

of three differ

e first derivativ
called the d ‐sp

(as a subpixel 
ighborhood of 

spicious points

Points via Nei

nstructed in the
gure 20. For ex

h

s are connecte
quence of pixe

we see in Figure

 

represented by

n a hyper-spec
le, Figure 19 

rent materials

ve of the spect
pectrum of the

or as a whole
f some pixel. T

s and extractio

ighborhood M

e following wa
xample, the cen

ed to each othe
els such that fo
e 18. 

y three connec

ctral image. Us
displays the 

 

tra. We denote
e pixel X . 

e pixel), repres
T is the given t

n of the target

Morphology 

ay. A pixel loc
ntral pixel is Y

Vol. 1, No. 2; 

er. This conne
or each of its p

ted componen

sually there is 
spectra from 

e the first deriv

sent one conne
target’s spectru

t spectrum from

cated in row i

1 11, 1m mY p    w

 2012 

ction 
pixels 

nts 

high 
three 

vative 

ected 
um. 

m the 

 and 
where 



www.ccsenet.org/esr Earth Science Research Vol. 1, No. 2; 2012 

213 
 

 

Figure 20. The indices of a pixel 

 

Denote by  
, 1, ,ij i j m

S p



  the set of multipixels (multipixel means all the wavelengths that belong to this pixel) 

in the current neighborhood. Consider the mapping : S   such that       ,ij ijp corr d p d Y   where 

    ,ijcorr d p d Y  is the correlation coefficient between the vectors  ijd p  and  d Y . Denote 

      
, 1, ,

ˆ 1,1ij
i j m

S S p


     


. 

The set Ŝ can be in one of two cases: 

1) Ŝ is inseparable according to definition 2.5. This means that the pixels, which are correlated with the target, 
are inseparable from the other pixels; 

2) Ŝ is separable according to definition 2.5. This means that the pixels, which are correlated with the target, are 
separated from the other pixels. 

If we are in case 1, then Y is not a suspicious point. If we are in case 2, assume that  is the first cluster closest to 
1. According to definition 2.4,  ,w b  provides the best separation. It separates the set  from the other points 
where b is the Fisher's threshold for this separation. Then,   can be represented as 

     : ,ij ijp corr d p d Y b   . 

If the set  represents two or more connected components, then Y is also not a suspicious point. If Y   then  
Y  is also not a suspicious point. Therefore, 1H holds. In other words, if Y  is a suspicious point, then   is a set 
of pixels that intersects with the target and this set of correlated points is concentrated around the central point Y . 
Here and below, we assume that a correlated point is a pixel whose d -spectrum and  d Y  are correlated with the 
correlated coefficient that is greater than Fisher's threshold b . 

Let 1N  be the neighborhood  2m Y . 1N  is called the internal square. Let  2 1\mN Y N  . 2N  is called 
the external square. They are visualized in Figure 21. 

 

 
Figure 21.  1N is the internal square and 2N is the external square 

 

Assume that   is the set of all pixels ijp , which are bounded by the external square with correlation coefficients 
    ,ijcorr d p d Y , which are associated with the current neighborhood that are less than the Fisher's threshold 

b . Each pixel in   is treated as a vector (multipixel) where its entries are spread all over the wavelengths. The d
-spectra of this vector is denoted by sv  where s is one of the  , .i j  The set of all these vectors is denoted by 
V . This is the set of all the d -spectra that belong to  . If s  then  1 , sV v v  . 

In order to derive the d -spectrum of some material in the central pixel, the background around the central pixel 
has to be removed. For that, we construct an orthogonal projection  , which projects all the d -spectra onto the 
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orthocomplement of the linear span where the background of the d -spectra is located. If the d -spectrum of the 
central pixel  d Y  does not belong to this linear span, then this projection extracts an orthogonal component of 
 d Y  which does not mix with the background of the d -spectrum. For example, if   1 2d Y d d   where 1d

belongs to the linear span generated by the background of the d -spectrum and 2d  belongs to the 
orthocomplement of this span. Then, after projection we obtain     2d Y d  which does not correlate with 
the background of the d -spectrum. Hence, the background influence is removed by this projection. 

Now, we formalize the above. Assume the matrix E  is associated with the vectors 1, , sv v where 
 , i jE i j v v    . Assume that eT  is the Fisher's threshold, which separates between the big and small absolute 

values of the eigenvalues of the matrix E . In some cases, eT can separate between zero and nonzero eigenvalues. 
The eigenvectors associated with the eigenvalues, which are smaller than eT , generate the eigensubspace, which is 
the orthocomplement of the linear span of the principal directions of the set V . Denote this orthocomplement by 
C . 

Throughout this paper, we assume that in our model the spectrum of any pixel X consists of three components: 

1) The spectrum of the material M is different from its background; 

2) The spectrum of the background was generated from a linear combination of spectra of pixels from the X
-neighborhood; 

3) Random noise is present. 

The same model is true for the d-spectra  ' '
1 , , sP M L v v N    where  'P d Y ,  'M  is the d

-spectrum of the material  , 0,1M    is the portion of the material M in Y , N  is a random noise and 
 1 , sL v v  is a linear combination of the vectors 1, sv v . 

If the correlated points concentrate around Y , then these points consist of the same material as Y . If the 
uncorrelated points do not contain this material then they belong to the background. Consider the orthogonal 
projection operator  . This operator projects vectors onto the orthocomplement C . The vector   1, , sL v v   
is approximated to be a zero vector. Thus, this orthogonal projection removes from the d -spectrum of  d Y  the 
influence of the background. 

Let 'T  be the given d -spectrum of the target. If the correlation coefficient of  'P  and  'T  is greater 
than the correlation coefficient of 'P  and 'T , then Y  is a suspicious point, M is the target, ' 'T M  and 0H

 
holds. 

4.2 Detection of Outliers within a Single Testing Cube 

In section 4.1, we presented how to detect suspicious points. There is another way to do it. An alternative detection 
method uses dimensionality reduction by the application of the Diffusion Maps (DM) algorithm Coifman & Lafon 
(2006) and a nearest-neighbor scheme. The DM is a non-linear algorithm for dimensionality reduction. 

Assume, we are given a data cube D of size X Y Z  where X  and Y  are the spatial dimensions and Z  is the 
wavebands. We define a small testing cube d of size , ,v h Z v X h Y     which is included in the 
hyper-spectral data cube D. 

4.2.1 Dimensionality Reduction by DM Application 

Assume that a sliding testing cube d, pointed by the arrows in Figure 22, is moving by ironing each time a different 
fragment in the data cube D described in Figure 2. Section 4.3 describes in details how the testing cube d moves. 
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Figure 22. An urban scene of size 294 501 (from the “city” in Figure 2) with different locations of the sliding 
testing cube d. The arrows point to these locations 

 

The sliding testing cube d contains N vh   multipixels each of which comprises Z  wavebands. Typically, v  
and h are in the range 30-50, Z  is in the range 30-100, 290Y  . Thus, each of the N data points is a vector 

, 1, , ,im i N   of length Z . We arrange these data points into a matrix M of size N Z . 

The next step applies the DM (see the appendix for its description) algorithm to the matrix M. It reduces the 
dimensionality of the data vectors by embedding them into the main eigenvectors of the covariance matrix of the 
data M. This projection reveals the geometrical structure of the data and facilitates a search for singular (abnormal) 
data points. The data matrix M of size N Z  is mapped onto the eigenvectors of the matrix P of size 

,N R R Z  . Typically, R is in the range 3-5, which is determined by the magnitudes of the corresponding 
eigenvalues. R  is the number of essential eigenvalues of the covariance matrix and it is determined as explained 
in Coifman & Lafon (2006). Figure 23 displays the embedding on three major eigenvectors of the data from four 
positions of the sliding testing cube. These are the embeddings onto three major eigenvectors of the covariance 
matrices. 
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Figure 23. Embedding of the data from different positions of the sliding testing cube on the image in Figure 2 onto 
three major eigenvectors of the diffusion matrix 

 

We observe that the overwhelming majority of the embedded data points form a dense cloud while a few outliers 
present. It can be a single point, which lies far away from the rest of points or, more frequently, there exists a small 
group of points, which are located close to each other but far away from the majority of the cloud. This reflects the 
situation when an optional target can occupy the area of size from one to several pixels (or even a subpixel). These 
single or grouped outliers are detected as explained in the next section on outliers detection.  

4.2.2 Detection of Grouped Outliers 

Assume we are looking for groups of outliers that consist of no more than K members. It is done by the following 
steps:  

1) For each row , 1, , ,ir i N   of the DM matrix P (see Appendix), calculate its Euclidean distances 
,i j i jd r r   to all other rows and sort them in ascending order , ,i j i jd s . Thus, 

,1 ,2 , 1,1 , ,2 , , 1 ,i i i Ni i j i i j i N i js d s d s d
      . 

2) Form the matrix  , , 1, , , 1, , 1,i jS s i N j N     of the sorted distances and the matrix 
 , , 1, , , 1, , 1,i kJ j i N k N     of the corresponding indices. 

3) For each row , 1, , ,ir i N  determine its K nearest neighbors. For this, take the first K  columns 
 ,1, ,, , 1, , ,i i Kj j i N   of the index matrix J. The corresponding distances are presented in the first K  
columns  ,1 ,, , 1, , ,i i Ks s i N   of the matrix S. Thus, we have the nearest neighbor index KJ and the 
distances matrices KS where both are of size N K . First, the simplest case 2K  , which means that we 
are looking for groups of outliers consisting of no more than two points, is handled. 

4) Assume that 2 ,2max i is   is achieved by 2i i . It means that the distance to the second in order for the 
nearest neighbor of the 2i -th data point 2i

p is the largest among the distances to their second nearest 
neighbors of all the data points. Restore the coordinates 2x  and 2y  of the data point 2i

p  (multipixel 2i
m ) 

in the data cube D. Store the point  2 2 2,P x y . 

5) Find ,1max i is . Two alternatives are possible: 

a) 2P  is an isolated outlier. It takes place when the maximum 1 ,1max i is  is achieved by 2i i . It means 
that the distances from the point 2P  to its first two nearest neighbors is greater than the respective 
distances of all the other points. 

b) However, it may happen that some point lies close to 2P  while all the others are far apart. It can be 
interpreted as a pairwise outlier. An indicator of this situation is the fact that the maximum 

1 ,1max i is   is achieved by 1 2i i i  . In this case, we add the point  1 1 1,P x y  closest to the point 
 2 2 2,P x y  and regard  1 2,P P  as a pairwise outlier. The index of the point  1 1 1,P x y  is 

21 ,1ii j .  

6) While looking for grouped outliers that may contain up to 2K   members, we find Ki i , such that 
,maxK i i Ks   is achieved by Ki i . Restore the coordinates Kx  and Ky  of the data point Ki

p  
(multipixel 

Ki
m ) in the data cube D. Store the point  ,K K KP X Y . 

7) Find the maximal values in the first 1K  columns ,max , 1, , 1,k i i ks k K     of the distance matrix S. 
The following alternatives are possible: 
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a) KP  is an isolated outlier. It takes place when all the maxima ' 1, , 1,k k K    are achieved Ki i . It 
means that the distances from the point KP  to its first nearest neighbors are greater than the respective 
distances for all the other points. 

b) Grouped outliers arrive when all the maxima , 2, , 1k k K   , except 1  are achieved by Ki i . In 
this case, we add the point  1 1 1,P x y that is the closest to the point  2 2 2,P x y and regard  1 2,P P  as a 
pairwise outlier. The index of the point  1 1 1,P x y is 

21 ,1ii j . 

c) If the maxima in the columns , 1, , 1, 1,k k L K L      are achieved by Ki i , while L is 
achieved by some other Ki i , then we have grouped outliers. These outliers  1, , ,L KP P P consist of 
the point KP  and of the L  points closest to KP . The indices of the points  1 , , LP P  are 

1 ,1, , 1 ,K Ki i Li j i j  , respectively. 

We emphasize that, once the upper limit K is given, the number 1L of group members is determined 
automatically depending on the data within the sliding testing cube d. Figure 24 illustrates the grouped detected 
outliers in the 3-dimensional space of eigenvectors of the data from four positions of the sliding testing cube. 

 

    

    
Figure 24. Detection of grouped outliers in data from different positions of the sliding testing cube embedded in the 

diffusion space 

 

4.3 Detection of Singular Points within the Whole Data Cube 

In the section on outliers detection, we described how to find a group of data points (multipixels) within one sliding 

testing cube, whose geometry differs from the geometry of the majority of the data points. Let  1

1 1 1
1 , ,

L
P P    

be the list of such data points in the sliding testing cube 1d  of size v h Z   located in the upper left corner of the 

sliding data cube D as illustrated by the arrow in Figure 22. The next testing cube 2d  is obtained by a right shift by 

/ 4h  of 1d . Let  2

2 2 2
1 , ,

L
P P    be the list of outliers in the cube 2d . Append the list 2  to 1 . Because 

of the vast overlap between the cubes 2d and 1d , some outliers data points can be common for the lists 2 and 
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1 . In the united list, these points gain the weight 2. The next right shift produces the sliding testing cube 3d  

outliers list 3 s appended to the combined list 1 2  . Again, the common gain weights. We proceed with the 

right shifts till the right edge of the data cube D. Then, the sliding testing cube slides down by / 4v   and starts 

 -shifts to the left and so on. As a result, we get a combined list 
1

R i   of outliers, where R is the number of 

jumps of the testing cube d within the sliding data cube D. Figure 22 illustrates a route of the cube d on the data 

cube D. 

It is important that each point iP  in the list  is supplied with the weight iw , which can range from 1 to more 
than 40. The weight iw  can serve as a singularity measure for the point iP . A large weight iw  reflects the fact 
that the point iP  is singular for a big number of overlaps between sliding testing cubes. Thus, it can be regarded as 
a strong singular point in the sliding data cube D and vice versa. Figure 25 illustrates the distribution of the 
weighted singular points around the data cube UD of size 500 294  64 from the urban scene displayed in 
Figure 22 whose source is Figure 2. 

 

    
Figure 25. Distribution of the weighted singular points around the data cube UD . Left: All the singular points. 

Right: Singular points whose weights exceed 12 

 

4.3.1 Examples of Detected Singular Points 

We applied the above algorithm to find singular points in different data cubes. The following figures display a few 
singular points detected in the data cube UD .  

 

    

Figure 26. A group of singular points centered around the point  329,85P . Left: Vicinity of the point P. Right: 
Multipixel spectra at the point  399,85P  and the surrounding points. The weight of the data point P is 19 
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Figure 27. A strong singular point  352,90P . Left: Vicinity of the point P. Right: Multipixel spectra of the point 

 352,90P  and the surrounding points. The weight of the data point P is 32 

 

    
Figure 28. A strong singular point  117,182P . Left: Vicinity of the point P. Right: Multipixel spectra at the point 

 117,182P and the surrounding points. The weight of the data point P is 32 

 

By comparing between Figures 28 and 27 we observe that spectra of singular multipixels located at points 
 117,182P and  352,90P are similar to each other. Supposedly, they correspond to the same material. A 

different singular multipixel is displayed in Figure 29. 

 

    
Figure 29. A singular point  242, 202P . Left: Vicinity of the point P. Right: Multipixel spectra at the point 

 242, 202P and the surrounding points. The weight of the data point P is 32 
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4.4 Extraction of the Target's Spectrum from a Suspicious Point 

Let Y be a suspicious point and let T  be the given target's spectrum. What portion of the target is contained in 
Y ? 

We consider a simplified version of Equation 1 via the definition of a simple mixing model that describes the 

relation between a target and its background. Assume P  is a pixel of mixed spectrum (a spectrum that contains 

background influence and the target) and T is the given target's spectrum. Consider three spectra: an average 

background spectrum 1

M

k kk
B a B


  , a mixed pixel spectrum (spectrum of a suspicious point) P and the target's 

spectrum T . They are related by the following model 

   
1

1 1
M

k k
k

P tB t T t c B t T


                                        (6) 

which is a modified version of Eq. 1, where 1a t  and  1 , , 0,1s T t t   . , 1, , ,kB k M  was taken from 
the neighborhood pixel. Therefore, all of them are close to each other and have a similar feature. 

We are given the target's spectrum T and the mixed pixel spectrum P . Our goal is to estimate t  denoted by t̂ , 
which will satisfy Equation 6 provided that B and T  have some independent features. Once t̂ is found, the 
estimate of the unknown background spectrum B , denoted by B̂ , is calculated by    ˆ ˆ ˆ/ 1B P tT t   . 
Estimating the parameter t in Equation 6 is called linear unmixing. 

In Step 2 from Section 4.1, we calculated the following: V is the d -spectra set, which is uncorrelated with  d Y  

pixels from the m -neighborhood of Y  and  , is the projection operator onto the orthocomplement of the linear 

span of V . Let      2 2,P d Y T d T   , then '
2 2P t T N   where 't  is an unknown parameter, N is a 

random noise that is independent of 2T . The parameter  ' 0,1t   is estimated as the maximum of the 

independency between the two d spectra 2T  and '
2 2P t T . 

The fact that two vectors 1X  and 2X  are independent is equivalent to     1 2, 0corr X X    for any 

analytical function   (Hyvarinen, Karhunen, & Oja, 2001). An analytical function can be represented by a 

Taylor expansion of its argument's degrees. Then, the condition     1 2, 0corr X X   equals to 

    1 2, 0
n n

corr X X  for any positive integer n where n  denotes a power. In our algorithm, we limit our self 

to 1, 2,3, 4n  . From the independency criterion between the two vectors 1X and 2X we can have 

                2 2 3 3 4 4

1 2 1 2 1 2 1 2, , , ,f corr X X corr X X corr X X corr X X              (7) 

which equals to zero in case 1X and 2X are independent. If 't  is estimated, then 'P t T B  where P is the 
spectrum of the suspicious point and B is a mix of the background's spectrum from the neighborhood that is 
affected by noise. 

The flow of the UNSP algorithm is given in Figure 30. 
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Figure 30. The flow of the UNSP algorithm 

 

4.5 Experimental Results 

In this section, we consider two scenes “field” (Figure 3) and “city” (Figure 2) that contain the subpixel's targets. 
As a first step, we find all the suspicious points via the application of anomaly detection process (section 4.2). The 
next step checks the anomaly by the “morphological-filter” which was described in section 4.1. If the pixel is 
passed via the application of the “morphological-filter” then the target is present in it. 

Figures 31 and 32 present the outputs from the application of the “morphological-filter” algorithm to two different 
hyper-spectral scenarios. 

 

 

Figure 31. Left: The source image (Figure 2). Right: The white points are the suspicious points in the 
neighborhood of diameter 10m   
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Figure 42. The “ROC-curve” for scene in Figure 41. The red line corresponds to OSP Ahmad, & Ul Haq (2011) 
method. The green line corresponds to the WDR method 

 
5. Conclusions 

We presented two algorithms for linear unmixing. The WDR algorithm detects well targets that occupy at least one 
pixel but fails to detect sub-pixel targets. The UNSP algorithm detects well sub-pixels targets but it is 
computational expensive due to the need to search for the spectral decomposition in each pixel's neighborhood by 
sliding the “morphology-filer”. In the future, we plan to add to these algorithms a classification method with 
machine learning methodologies. 
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Appendix: Diffusion Maps 

Diffusion Maps (DM) Coifman, R. R., &. Lafon, S. (2006) analyzes a dataset M  by exploring the geometry of 

the manifold M  from which it is sampled. It is based on defining an isotropic kernel n nK   whose elements 
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are defined by  , , ,
x y

k x y e x y M



  ,   is a meta-parameter of the algorithm. This kernel represents the 

affinities between data points in the manifold. The kernel can be viewed as a construction of a weighted graph over 

the dataset M . The data points in M  are the vertices and the weights of the edges are defined by the kernel K . 

The degree of each data point (i.e., vertex) x M  in this graph is    ,
y M

q x k x y


 . Normalization of the 

kernel by this degree produces an n n  row stochastic transition matrix P  whose elements are 

   , , / ( ), , ,p x y k x y q x x y M   which defines a Markov process (i.e., a diffusion process) over the data points 

in M . A symmetric conjugate P of the transition operator P defines the diffusion affinities between data points 

by  

   
   

   
 

, 1
, , , ,

k x y
p x y q x p x y x y M

q x q y q y
   . 

DM embeds the manifold into an Euclidean space whose dimensionality is usually significantly lower than the 

original dimensionality. This embedding is a result from the spectral analysis of the diffusion affinity kernel P . 

The eigenvalues 0 11      of P and their corresponding eigenvectors 0 1, ,   are used to construct the 

desired map, which embeds each data point x M into the data point     
0i i i

x x


 


   for a sufficiently small 

 , which is the dimension of the embedded space.   depends on the decay of the spectrum P . 

 


