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Abstract 

Wave barriers are placed actively and passively in the ground to reduce the transmission of vibration produced 
by industry, traffic, train, etc. They include open trenches, in-filled trenches and sheet piles, etc. In most recent 
studies, the researchers have worked on parameters such as depth, width, length of trenches and also, the 
distance between the source of vibration and trench in cohesive soils. Most researches are evaluation on 
screening induced by shallow foundation. In this study the passive isolation has been investigated with the help 
of open trenches screening against the vibration produced by deep foundations in sandy soils, and the effect of 
trench angle and radius have been studied. Moreover, the reasons for amplitude increasing before open trenches 
have been evaluated. Three dimensional finite element analyses (FEM) with ANSYS software are used to 
achieve an exact parametric study on passive screening. The assumed strains are less than 10-3so the bilinear 
Elasto-Plastic behavior has been utilized. 

Keywords: passive isolation, Rayleigh wave, pile foundation, ANSYS program, open trench, trench radius and 
trench angle 

1. Introduction 

It is obvious that vibration occurred by machines, structures, and dynamic systems is destructive; Firstly, 
because of their inculcating stresses and vibrations which can cause failure or fatigue on nearby structures and, 
Secondly because of the aggravating effect of vibration on the performance of vibration producer. So isolating 
structures against vibration created by traffic jam, machine foundations, explosion and earthquake has become 
an undeniable subject in engineering science. 

Wave barrier is one of the solutions for this problem. Installing wave barriers near the sensitive structures is 
called passive isolation. Regarding to the literature of vibrations (Barkan, 1962) conducted an open trench screen 
to isolate a building against vibrations created by vehicle traffic and reported that screening is not a workable 
system for mitigating vibrations. In addition, he mentioned that open trench dimensions are related to the 
wavelength of the surface motion. 

Woods (1967-1970) investigated the screening performance of trench’s different parameters by conducting a 

series of field tests in active and passive isolation. Woods used rectangular open trenches for his research and 

also defined amplitude Reduction ratio (Arr). Furthermore, his research concluded that the thickness of the 

passive open trenches has an unimportant effect on their workability. In addition, Woods reported that effective 

trenches have a depth between to  times of the Rayleigh wavelength. 

Wass (1972) presented that amplitude is reduced by screening when the frequency is high. Aboudi (1973) 
worked on the ground surface response of wave barriers affected by time-dependent loading in an elastic 
half-space with the help of finite difference method (FDM). Woods et al. (1974) evaluated the screening 
efficiency of hollow cylindrical piles as a passive system in a half-space model. 

Haupt (1977) and G. Segol et al. (1978) investigated the effect of shape and trench dimension on amplitude 
reduction by the help of finite element method (FEM). Liao and Sangrey (1978) examined the effect of piles as a 
wave barrier against Raleigh waves with high wavelength. They announced that in the case of impractical 
trenches, piles are the best choice for reducing the wave amplitude. In addition, Fuykui and Matsumoto (1980) 
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considered the open trench efficiency on reduction of Rayleigh, P, SV and SH waves amplitude by using a 
two-dimensional method through finite difference method (FDM). 

May and Bolt (1982) contemplated on the utilization of open trenches against compression and shear waves 
under the assumption of plane strain condition. Beskos et al. (1985-1991) worked on a complete series of 
numerical models which contains in-filled and open trenches isolation in continuously homogeneous and 
non-homogenous soils under the assumption of plane strain condition and by using boundary element method 
(BEM). They reported that if the depth of soil layer be less than 2.5 times that of Raleigh wavelength, the depth 
of trench must be at least2 times that of layer thickness. 

Ahmad and Al-Hussaini (1991-2000) examined the effectiveness of active and passive isolation of circular open 
trenches. Besides, they investigated the effect of depth, width and location of the trenches by the usage of BEM 
method. Yeh et al. (1997) assessed the efficiency of open and in-filled trenches on reducing the vibration 
induced by train movement. This research showed that using trench barriers against vibration with low frequency 
is useless. 

Kattis et al. (1999) examined the isolation of open trenches, in-filled trenches and pile barriers against the 
vibration produced by machinery foundations. Moreover, Shirvasta et al. (2002) explored the efficiency of open 
and in-filled trenches for screening Rayleigh waves by using 3D FE model. 

Shen-Haw and Hung-Ta (2004) worked on the open and in-filled trenches as barriers for vibrations occurred by 
train movement. The results show that the adjacent building foundations have an important effect on vibration 
reduction. 

Adam and Estroff (2005) deliberated the efficiency of open and in-filled trenches in reducing the six-storey 
building vibrations due to passing trains by using a two-dimensional FEM analysis. The results show that these 
barriers could reduce 80 percent of the vibrations. Also, they reported that open trenches are more effective in 
vibration reduction than in-filled trenches. El Nagger and Chehab (2005) conducted a numerical research using 
two-dimensional model to evaluate the screening effectiveness of open and in-filled trenches on reducing the 
pulse-induced waves of shallow foundations resting on an elastic half-space. 

Celebi et al. (2006) with the help of finite element method (FEM) showed that using an open trench has an 
important effect on reduction of vibration amplitudes induced by passing trains. In addition, they presented two 
mathematical models and numerical techniques for solving problems related to wave propagation. Gaoet al. 
(2006) inspected the effect of pile barriers designed in rows as a passive screening by a three-dimensional model. 
The results show that piles with small diameter act like open trenches in reducing vibrations. Furthermore, they 
show that the distances between piles in a row are more important than the distances between rows of piles. 
Karlstorm and Bostrom (2007) investigated the opus of open trenches on reduction of wave amplitude induced 
by trains. They located these trenches in the both side of a railway and reported that these trenches could 
noticeably reduce the vibration amplitude especially at frequencies in the range of 2-8 Hertz. 

Tsai et al. (2007) worked on active isolation provided by pile barriers against vibration induced by shallow 
foundations under vertical loading. They investigated the effect of pile dimensions, pile distances, pile materials 
and screening location. They reported that steel pipe is generally better than other solid piles, and a concrete 
hollow pile barrier can be ineffective because of its stiffness. 

Jesmani et al. (2008) studied the effect of geometrical properties of an open trench intended for active isolation 
of deep foundations resting on a homogenous half-space cohesive soil by using a three-dimensional finite 
element method (FEM). In addition, Jesmani et al. (2011) conducted a research to evaluate the effect of 
geometrical properties of an open trench intended for passive isolation of deep foundation in sandy soils. 
Moreover, in this research the effect of soil properties and loading time has been investigated by using 
two-dimensional model in finite element method (FEM). 

From the above review, most researches have focused on in-filled and open trenches as an active barrier against 
vibrations induced by shallow foundations. In addition, the effect of geometrical properties of trenches has been 
investigated such as depth, width, location, etc. 

In this study, the ground passive isolation of deep foundations have been studied by open trenches in sandy soils 
and also the effect of two important parameters; trench radius and trench angle, have been evaluated. 

2. Propagation and Attenuation Characteristics of Deep Foundation 

The form of wave propagation is different in shallow foundations and deep foundations. Attewell and Farmer 
(1973) worked on wave propagation of deep pile foundations. Their results are depicted in Figure 1. The waves 
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The foundation is assumed to be restrained against horizontal movement and the soil is under assumption of 
being isotropic and homogenous with linear soil behavior for low deformation. 

 

Table 2. Static properties of the sandy soil 

Static 

Properties 

Young’s 

Modulus 

Poisson’s 

Ratio 

Specific 

Weight 

Density Material 

Damping 

Soil Mechanical 

Parameters 

        

Soil 
 

- 
  

- 
 

Degree 

(1) 50 000 0.35 19 1936.80 5% 10 40 

 

Table 3. Dynamic properties of the sandy soil 

Dynamic 

Properties 

 

Shear modulus 

 

Shear wave velocity

K 

.

 

Rayleigh wave velocity 

Soil 
  

- 
 

(1) 33 333 131 0.936 123 

 

Table 4. Geometric properties of the trench and deep foundation 

Explanation Value Unit 

Trench Depth(H) 20 m 

Pile Length(D) 10 m 

Trench Angle () 90,120,150,180 ° 

Trench Width(w) 1  m 

Trench Radius (R) 15,20,25  m 

Trench Location(L) R,2R,3R ---- 

 

 

Figure 2. Problem definition – Section of passive isolation by open trench  
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Figure 10. Comparative diagram 

 

8. Results and Discussion 

8.1 The Evaluation of Amplitude Increasing before Trench 

As it can be seen in Figures 11 through 13, near the trench there is a dramatic increase in Arr. This result is 
caused by the following reasons: 

1) When waves approach to an open trench which has an impedance coefficient equal to zero, they will be 
reflected with the same amplitude. This will emphasize the wave concentration near trench. 

2) Excavating and removing the material from an open trench in actual situation causes a free movement for 
unrestrained trench edges because of its low stiffness. In conclusion, the wave amplitude near the trench 
edges increases in comparison with a model without open trench (Arr>1) (Jesmani et al., 2011). 

In addition, as it can be seen in the Figures11 through 13, by increasing the trench angle, Arr increases. This 
issue is the result of increasing free nodes because of increase in trench dimension which increments the quantity 
of reflected waves. 

 

 

Figure 11. Amplitude Increasing before Trench (D=10m, H=20m, R=15m, Loading frequency=2Hz) 
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Figure 12. Amplitude Increasing before Trench (D=10m, H=20m, R=20m, Loading frequency=2Hz) 

 

 

Figure 13. Amplitude Increasing before Trench (D=10m, H=20m, R=25m, Loading frequency=2Hz) 

 
8.2 The Effect of Open Trench Angle 

The effect of trench angle on Aarr is demonstrated in Figures14 through 16 for L= R, 2R and 3R middle 
distances. Generally, increasing the trench angle leads a decrease in Aarr. It also observed that the reduction rate 
in every curve decreases from the trench angle bigger than  = 150°. Thus  = 150° is highly recommended for 
the optimal open trench angles.Theequations that have been presented near curves (because of the low 
coefficient of ) approximately show a linear behavior between Aarr and trench angle. In addition, it is 
noticeable that increasing the trench angle has the most effect on the rate reduction of studied points in the 
distance of 2R from the vertex of the trench. However, this fact is in its lower value in the distance of R. 
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Figure 14. The Effect of Trench Angle (D=10m, H=20m, R=15m, Loading frequency=2Hz) 

 

 

Figure 15. The Effect of Trench Angle (D=10m, H=20m, R=20m, Loading frequency=2Hz) 

 

 

Figure 16. The Effect of Trench Angle (D=10m, H=20m, R=25m, Loading frequency=2Hz 
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increasing has been omitted. It can also be inferred that by increasing the trench radius, longer length of wave 
path will be protected. 

 

 

Figure 17. The Effect of Trench Radius (D=10m, H=20m,  =90° , Loading frequency=2Hz) 

 

 

Figure 18. The Effect of Trench Radius (D=10m, H=20m,  =120°, Loading frequency=2Hz) 

 

 

Figure 19. The Effect of Trench Radius (D=10m, H=20m,  =150°, Loading frequency=2Hz) 
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Figure 20. The Effect of Trench Radius (D=10m, H=20m,  =180°, Loading frequency=2Hz) 

 

9. Conclusions 

A three-dimensional finite element analysis of a vibration of deep foundation has been taken in this research to 
evaluate the effects of passive isolation on the reduction of wave amplitude and the following conclusions can be 
extracted. 

 Increasing the trench radius has a direct effect on the protected area. Hence, by increasing the trench radius 
a bigger area will be protected. 

 By keeping the trench angle unchangeable, increasing in trench radius doesn’t have a significant effect on 
wave amplitude reduction. Therefore, it is better to investigate the interaction of trench radius and angle 
simultaneously and put the responsibility of wave reduction to the height and geometric properties of trench 
related to the trench length. 

 Generally, increase in trench angle cause a decrease in average amplitude reduction ratio (Aarr). 
 Trench angle =150° is highly recommended for the optimal open trench angles. 
 The behavior of wave amplitude reduction versus the increase of trench angle is approximately linear. 
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