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Abstract 

Relative contributions of common ingredients to heavy orographic rainfall associated with the passage of Hurricanes 

Hugo (1989) and Isabel (2003) over the Appalachian Mountains are examined using a numerical weather prediction 

model. It is found that the key ingredients for producing local heavy orographic rainfall were: high precipitation 

efficiency, strong low-level flow, strong orographically forced upward motion associated with strong low-level flow over 

relatively gentle upslope, concave geometry providing local areas of convergence, high moist flow upstream, a relatively 

large convective system associated with both tropical cyclones (TCs), and relatively slower movement. In addition, 

neither conditional instability nor potential (convective) instability is found to play essential roles in producing strong 

upward motion leading to heavy orographic TC rain. A modified Orographic Rain Index (ORI) is proposed as a predictor 

for heavy orographic TC precipitation, which includes the upstream incoming horizontal wind speed normal to the local 

orography, the steepness of the mountain, the relative humidity, the TC moving speed, and the horizontal scale of the TC. 

It is found that the ORI estimated in regions of local maximum rainfall by using fine-resolution numerically simulated 

results correlate well with rainfall rates for both hurricanes, indicating that it may serve as a predictor for heavy 

orographic TC rainfall. 

Keywords: orographic rain, hurricane, tropical cyclone (TC), common ingredients, orographic rain index (ORI) 

1. Introduction 

When a tropical cyclone (TC) passes over a mesoscale mountain, its cyclonic circulation may generate strong upward 

motion when it impinges on a mesoscale mountain, which tends to initiate or enhance heavy rainfall leading to flash 

flooding and debris flow. These flash flood and/or debris flow may cause fatality, property damage, and economic loss, 

such as those occurred when Hurricanes Camille (1969), Hugo (1989), Isabel (2003), and Ivan (2004) (e.g., Stewart 2005, 

Schwarz 1970, Hollifield and Lackey 1989, Roth 2005) among others, approached or passed over the southern and central 

Appalachian Mountains.  

The preexisting moist convection embedded in rainbands and eyewall of a TC tends to be enhanced by mountains and to 

produce heavy orographic rainfall (e.g., Smith 1979; Lin 2007; Houze 2012). The dynamics of orographic rain initiation 

and/or enhancement through mechanical (lifting/blocking) and thermal forcing is still not well understood, which requires 

further investigation. In particular, when the precipitation events are accompanied by a preexisting weather system, such 

as a TC. The strong and very moist low-level flow associated with strong TC vortex circulation provided at least two (i.e., 

strong low-level flow and high moisture) key common ingredients for producing heavy orographic rainfall, as proposed in 

Lin et al. (2001), which help induce and/enhance rainfall on the upslope of mountains during the passage of a TC (e.g., Wu 

et al. 2002, Witcraft et al. 2005, Huang and Lin 2014). In addition to these two common ingredients for heavy orographic 

rainfall, relative contributions from other common ingredients associated with TCs remain unclear, which deserve further 

investigation.  

For a two-dimensional mountain range, the precipitation is proportional to the moisture flux convergence accompanying 

orographic rain, which can be estimated if we assume that moisture convergence is mainly contributed from horizontal 

wind hitting upon the mountain slope (Alpert 1986). Based on Alpert’s approach and Doswell et al.’s (1996) ingredient 
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approach, Lin et al. (2001; denoted as Lin01) and Lin (2007) proposed that the upslope orographic precipitation can be 

estimated by the following:  

  𝑃 = ε (
𝜌𝑎

𝜌𝑤
) (𝑽𝐻 ∙ ∇ℎ + 𝑤𝑒𝑛𝑣)𝑞𝑣 (

𝐿𝑠

𝑐𝑠
) ,                               (1) 

where  is the precipitation efficiency, 𝜌𝑎 the air density, 𝜌𝑤 the liquid water density, 𝑽𝐻 the low-level horizontal wind 

velocity, h the mountain height function, 𝑤𝑒𝑛𝑣 the environmentally-forced upward motion, 𝑞𝑣 the lower-layer water 

vapor mixing ratio, and Ls and cs the horizontal scale and moving speed of the convective system in the direction of the 

system’s movement. Note that in Eq. (1), the upslope vertical motion is decomposed into orographically and 

environmentally induced upward motion. The orographically forced upward motion (𝑽𝐻 ∙ ∇ℎ) may be approximately 

estimated by the free-slip lower boundary condition for flow over the local terrain and the environmentally forced upward 

motion (wenv) can be estimated by synoptic flow, such as conditional instability, potential (convective) instability, 

low-level convergence, and upper-level divergence. In the present approach, we require both the orographically and 

environmentally forced vertical motion to be positive. The former implies that this ingredient approach only applies to 

upslope orographic rain.  

Note that the major differences of the current approach from Doswell et al. (1996) are that: (a) the vertical motion is 

decomposed linearly to orographically forced and environmentally forced, while in Doswell et al.’s approach there is no 

distinction of these two types of vertical motion, (b) the orographically forced vertical motion is explicitly represented by 

the lower-boundary condition approximately, (c) the vertical moisture flux in Dowsell et al., wq, is replaced by the vertical 

water vapor flux, wqv, thus the condensation of water vapor into water is taken into account by the conversion factor, 

a/w.  

Based on the above common ingredient approach, Lin01 proposed a two-dimensional Orographic Rain Index (ORI), 

𝑈(𝑑ℎ/𝑑𝑥)𝑞𝑣 , similar to that of Alpert (1986) except with the precipitation efficiency, precipitation duration, and 

conversion factor (a/w) from the condensation of water vapor to water were taken into consideration, and tested with 

several heavy orographic rain events. The results were compared reasonably well with observations. When a TC 

approaches a mesoscale mountain, the moist flow regime and orographic rain enhancement mechanisms may behave 

quite differently from those associated with midlatitude precipitating systems or non-TC precipitating systems in tropics. 

For example, Huang and Lin (2014) found that the huge amount of rain associated with Typhoon Morakot (2009) during 

its passage over the Central Mountain Range (CMR) of Taiwan was mainly produced by typhoon’s slow movement, 

strong orographic lifting, and the confluence between the typhoon’s outer circulation and the southwesterly monsoonal 

current, instead of due to large convective available potential energy (CAPE), unlike that found in Supertyphoon Bilis 

(2000) over CMR (Witcraft et al. 2005). This result is consistent with several parallel studies (e.g., Lin et al. 2002, Chiao 

and Lin 2003, Hong et al. 2010, C.-Y. Lin et al. 2011, Wu et al. 2011, Chien and Kuo 2011, Yen et al. 2011). In order to 

examine the relative contributions of the common ingredients of the proposed ORI associated with the orographic TC rain, 

we select two hurricanes, Hugo (1989) and Isabel (2003), due to their similarity in impinging angle on the Appalachian 

Mountains and very different orographic rainfall. This allows us to isolate the study to better determine the common 

ingredients that caused heavy orographic rainfall. 

The rest of the paper is organized as follows. Section 2 describes the selection and synopsis of Hugo (1998) and Isabel 

(2003) for examining the key ingredients for heavy orographic rain. Section 3 provides a description of the Weather 

Research and Forecasting (WRF) model (Skamarock et al. 2008) and the experimental design for this study. Section 4 

discusses the estimation of the flow and orographic parameters based on the numerically-simulated results for examining 

the key ingredients and proposes a modified ORI for heavy precipitation in Sec. 5. Section 6 provides the summary and 

concluding remarks.  

2. Selection and Synopses of Two Tropical Cyclones Passing Over the Appalachians, Hugo (1989) and Isabel (2003) 

Based on the National Hurricane Center’s (NHC’s) six-hourly Atlantic hurricane best track data base (HURDAT), 

Harville (2009) classified the hurricane tracks over the Appalachians into four types (also briefly summarized in Rostom 

and Lin 2015): (a) Type A: approximately perpendicular to the mountains from east to west, (b) Type B: parallel to the 

mountain along the eastern side, (c) Type C: parallel to the mountain along the western side, and (d) Type D: similar to 

Type A, but from west to east. The above track types have been further divided into the following six subtypes (Liu et al. 

2016): A1, A2, and A3 with a right angle from east and AB1, AB2, AB3 with a track between A and B and Type D into 

two subtypes DC1, DC2 with a track between D and C. Hugo (1989) and Isabel (2003) were chosen for this study because 

both hurricanes belonged to Type AB2 (Liu et al. 2016) and impinged on the Appalachian Mountains at nearby locations 

from a similar angle, but produced significantly different rainfall amounts over the mountains, as revealed in the rainfall 

maps (WPC 2016). This makes it easier to compare the relative contribution from individual key ingredients for 

producing heavy orographic precipitation. 
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Hurricane Hugo (1989) was generated on September 9 off the coast of Africa, developed to a tropical depression the next 

day and then reached hurricane intensity on September 13. Hugo made landfall near Charleston on the South Carolina 

coast at 04 UTC 22 September (denoted as 9/22/04Z) and then moved northwestward at 12 m s-1. After landfall, Hugo’s 

eye passed the vicinity of Columbia at 9/22/08Z when it was weakening. By 9/22/12Z, Hugo passed the west side of 

Charlotte, North Carolina and was weakened to a tropical storm. Then, the storm continued moving northward while 

crossing the western Virginia, West Virginia, eastern Ohio and Pennsylvania by 9/23/00Z and transformed into an 

extratropical storm (Case and Mayfield 1990). Hugo was considered the most damaging hurricane that has affected the 

US since Camille (1969) and before 1992 (Powell et al. 1991).  

Isabel (2003) originated from a tropical wave on September 1 off the coast of Africa (Lawrence et al. 2005). Hurricane 

Isabel reached category 5 intensity on September 11 and made landfall at 9/18/17Z near Drum Inlet, North Carolina as a 

category 2 hurricane (N. Lin et al. 2010). Hurricane Isabel weakened quickly after landfall (Zhao and Jin 2008). On 

9/19/06Z, Isabel became a tropical storm and moved northwestward over North Carolina and Virginia to the northeast of 

West Virginia. On 9/19/12Z, it transitioned to an extratropical storm and moved over Ohio into Canada (N. Lin et al. 2010). 

Hurricane Isabel created about 3.6 billion dollars in damage (Lawrence et al. 2005) and caused 34 fatalities in North 

Carolina, Virginia and Maryland (Nolan et al. 2009). 

3. Model Description and Experimental Design 

The WRF model version 3.4 (Skamarock et al. 2008) is adopted for the numerical simulations. The WRF model is a 

three-dimensional, non-hydrostatic, fully compressible, numerical weather prediction model with terrain-following 

pressure (-p) coordinates. The governing equations of the WRF model are written in flux form with conserved mass 

and dry entropy. In this study, the Runge–Kutta third-order time scheme and the third and fifth-order advection schemes 

are chosen for the horizontal and vertical integrations, respectively. The simulations use three nested domains (Fig. 1), 

which contain 180x180, 361x361, and 721x721 grid points, respectively, for the outer, medium, and inner domains with 

9, 3, and 1 km horizontal grid resolutions. The vertical grids are stretched from the surface to the model top (50 mb) with 

48 levels. The open lateral boundary condition is adopted and the boundaries are kept far from the study area, as shown in 

Fig. 1.  

 

 

 

 

 

 

 

 

 

Figure 1. Domain configurations for (a) Hugo and (b) Isabel with three domains of 9, 3, and 1 km grid resolutions 

Both hurricane simulations are initialized by the ECMWF reanalysis data as following: (1) For Hurricane Hugo (1989): 

Cases H9 (9/19/12Z - 9/23/00Z), H3 (9/21/00Z - 9/23/00Z), and H1 (9/21/12Z - 9/23/00Z) are conducted with 9, 3, and 

1 km resolutions, respectively, and (2) For Hurricane Isabel (2003): Cases I9 (9/17/06Z - 9/20/00Z), I3 (9/17/12Z - 

9/20/00Z), and I1 (9/18/00Z - 9/20/00Z) are conducted with 9, 3, and 1 km resolutions, respectively. Table 1 

summarizes the abbreviations of these cases, along with other terminologies adopted in this study.  
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Table 1. Summary of Abbreviations 

Abbreviation Full Name Simulation Period 

H9 
WRF-simulated Hugo (1989) with 9 km 

resolution (D01 - outer domain) 
9/19/12Z - 9/23/00Z 

H3 
Same as H9 except with 3 km resolution 

(D02 - medium domain) 
9/21/00Z - 9/23/00Z 

H1 
Same as H9 except with 1 km resolution 

(D03 - inner domain) 
9/21/12Z - 9/23/00Z 

I9 
WRF-simulated Isabel (2003) with 9 km 

resolution (D01 - outer domain) 
9/17/06Z - 9/20/00Z 

I3 
Same as I9 except with 3 km resolution 

(D02 - medium domain) 
9/17/12Z - 9/20/00Z 

I1 
Same as I9 except with 1 km resolution 

(D03 - inner domain) 
9/18/00Z - 9/20/00Z 

ORI Orographic Rain Index NA 
MSLP Minimum sea level pressure NA 
NHC National Hurricane Center NA 

NLDAS 
North American Land Data Assimilation 

System 
NA 

TC Tropical Cyclone NA 
Vmax Maximum wind speed near surface NA 
WPC Weather Prediction Center NA 

WRF model Weather Research and Forecasting model NA 
9/22/04Z 04 UTC 22 September NA 

 

The physics parameterization schemes chosen for these simulations are: (a) cumulus parameterization: Kain–Fritsch 

convective scheme (Kain 2004), (b) microphysics parameterization: Thompson microphysics scheme (Thompson et al. 

2008), (c) planetary boundary layer (PBL) parameterization: YSU PBL scheme (Hong et al. 2006), (d) surface layer 

parameterization: revised WRF surface layer scheme (Jiménez et al. 2012), (e) land surface physics: Noah land surface 

model (Chen et al. 2001), (f) longwave radiation parameterization: RRTM scheme (Mlawer et al. 1997), and (f) shortwave 

radiation parameterization: New Goddard scheme (Mielikainen et al. 2012). Details of the above schemes can be found 

in the WRF user manual (Skamarock et al. 2008). The land use data is based on the USGS with (10’, 5’, 2’) resolution 

for domains 1, 2, and 3, respectively, where 1’ = 1 arc-minute = 1o/60 = (2R/360) (cos km, R = 6378 km is 

the Earth’s radius, and ≈ 37oN is the latitude for North Carolina. Thus, (10’, 5’, 2’) equal to (14.2 km, 7.1 km, 2.84 km) 

approximately for North Carolina. 

4. Verification of Numerically Simulated Results 

4.1 Track and Intensity 

 

 

 

 

 

 

 

 

 

 

Figure 2. The six-hourly tracks for Hurricane Hugo simulated by (a) H9: 9-km resolution (9/21/18Z - 9/23/00Z), (b) H3: 

same as (a) except with 3-km resolution (9/22/00Z - 9/22/18Z), and (c) H1: same as (a) except with 1-km resolution 

(9/22/06Z - 9/22/18Z); and for Hurricane Isabel simulated by (d) I9: 9-km resolution (9/18/12Z - 9/19/18Z), (e) I3: same 

as (d) except with 3-km resolution (9/18/12Z - 9/19/12Z), and (f) I1: same as (d) except with 1-km resolution (9/18/18Z - 

9/19/18Z). The observed hurricane track is based on NHC’s six-hourly Atlantic hurricane best track database (HURDAT) 

(blue) 



http://esr.ccsenet.org                Earth Science Research              Vol. 10, No. 1; 2021 

36 

 

In this subsection, the simulated track and intensity (e.g., minimum sea level pressure and maximum surface wind speed) 

for Hurricanes Hugo (1989) and Isabel (2003) are verified by observations and used to estimate some common ingredients 

for heavy orographic rain. The simulated Hugo’s tracks in H9 (9/21/18Z - 9/23/00Z), H3 (9/22/00Z - 9/22/18Z) and H1 

(9/22/06Z - 9/22/18Z) match the NHC best track reasonably well in all domains (Fig. 2).  

The simulated Hugo’s landfalls lagged behind that of observed slightly, however, it was less than 1 h with the farthest 

landfall location, which was approximately 60 km south of that observed for all domains (H9, H3, and H1). The simulated 

Hurricane Isabel’s tracks in I9 (9/18/12Z - 9/19/18Z), I3 (9/18/12Z - 9/19/12Z) and I1 (9/18/18Z - 9/19/18Z) match the 

best track reasonably well until it moved closer to the Appalachian Mountains. The simulated Isabel’s landfalls lagged 

behind that observed, however, they were less than 1 h with the farthest landfall location approximately 40 km south of 

that observed for all domains (I9, I3, and I1). The simulated Isabel near the mountain was about 100 km to the southwest 

of that observed, made a right turn and remained on the east side of the best track. In short, the simulated track errors for 

both Hugo and Isabel are small in all domains for both hurricanes. The simulated tracks are then used to estimate the 

moving speed (cs), which was 12.5 knots (~6.25 ms-1) for Hugo. It traveled at approximately 42% faster than that of Isabel 

at about 8.8 knots (~4.4 ms-1). These moving speeds will be used to estimate the ORI in Sec. 5. 

The simulated and observed Hugo’s minimum sea-level pressures (MSLPs) and maximum surface wind speeds (Vmax) are 

shown in Figs. 3a and 3b. Since our focus is on the vicinity of the mountain area, the comparison starts at 9/22/06Z for 

Hugo. The evolutions of the simulated MSLP and Vmax of Hugo match those observed closely. The simulated H1 landfall 

lagged 2 h of that observed (9/22/08Z) and Vmax (92 kts, where kts stands for knots) was slightly larger than that observed 

(85 kts) (Fig. 3a). The simulated Vmax (91 kts) of H3 was also larger than that observed, while the simulated Vmax (74 kts) 

of H9 was much smaller than that observed. At 9/22/12Z, when the simulated Hugo moved closer to the Appalachians, its 

Vmax of H1 weakened to 55 kts. The simulated Vmax’s of H1, H3, and H9 storms were 50, 45, and 44 kts, respectively. As 

expected, all simulated storms were weakened when they moved to the vicinity of the mountains, as also seen in the 

observation. The simulated storms continued to weaken while they crossed over the mountain peak to the lee (western) 

side, which were consistent with those observed. During the first 9 h after landfall (9/22/06Z – 9/22/15Z), the simulated 

MSLPs of H1, H3, and H9 storms were 972, 972, and 970 mb, respectively, which were all higher (i.e., weaker) than those 

observed (Fig. 3b). At 9/22/12Z, the MSLPs simulated by H9, H3, and H1 are 977, 977, and 971 mb, respectively, which 

were in close agreement with observed MSLP (975 mb). During the period of 9/22/18Z - 9/23/00Z, the simulated MSLPs 

were very close to those observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Observed and simulated (a) maximum surface wind speed (Vmax; in knots) and (b) minimum sea level pressure 

(MSLP; in mb) by H9 (9 km), H3 (3 km), and H1 (1 km) simulations for Hugo. Panels (c) and (d) are the same as (a) and 

(b), respectively, but for Isabel (I9, I3, and I1). The observed Vmax and MSLP were based on NHC’s six-hourly Atlantic 

hurricane best track database (HURDAT) 

The simulated and observed MSLPs and Vmax for Isabel are shown in Figs. 3c and 3d. The comparison starts at 9/18/18Z 

when the Isabel made landfall. The simulated Vmax’s of I9, I3, and I1 at 9/18/18Z (about 1 h after landfall) were 72, 76, and 

81 kts, respectively, which were all smaller than that observed (85 kts) (Fig. 3c). Starting at 9/19/00Z, the simulated Vmax’s 

of Isabel were smaller, but very close to those observed. Similar to the simulations of Hugo, the simulated MSLPs of 

Isabel were higher (i.e., weaker) than those observed in the first 10 h, but were close to those observed within ~11 mb right 

after landfall and then within ~6 mb afterwards (Fig. 3d). 
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In summary, the simulated tracks and intensities of Hugo and Isabel compared reasonably well with observations, which, 

in turn, produced rainfall patterns and accumulated precipitation comparable to those observed.  

4.2 Reflectivity and Accumulated Precipitation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. (a) H3 simulated reflectivity at 9/22/04Z/1989, (b) radar imagery at landfall for Hugo (courtesy of NOAA 

and Peter Dodge), (c) I3 simulated reflectivity at 9/18/18Z/2003 and (d) radar composite reflectivity at landfall for 

Isabel 

Figure 4 shows the H3 (I3) simulated (i.e. simulations with 3-km resolution) reflectivity and rainfall pattern of Hugo 

(Isabel) compared reasonably well with the observed radar reflectivity composite at landfall around 9/22/04Z/1989 

(9/18/18Z/2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. (a) The H3 simulated accumulated precipitation for Hugo (1989) from 9/21/00Z – 9/23/00Z (in inches), (b) 

WPC observed accumulated precipitation (in inches) from 9/21/00Z – 9/24/00Z, (c) same as (a) except in mm, and (d) 

accumulated precipitation (in mm) from 9/21/00Z – 9/23/00Z by NLDAS. Note that 1, 3, 5, 7, 10, and 10.28 inches 

approximately equal to 25.4, 76.2, 127.0, 177.8, 254.0, and 261.1 mm, respectively 

The H3-simulated accumulated precipitation is shown in Fig. 5a (in inches) and Fig. 5c (in mm), which can be compared 

with those observed by the Weather Prediction Center (WPC) (Fig. 5b; in inches) and the North American Land Data 

Assimilation System (NLDAS) (Fig. 5d; in mm). Note that the NLDAS (LDAS 2015) was constructed with 

quality-controlled, and temporally and spatially consistent, land-surface model datasets from the best available 

observations and reanalyses to support modeling activities. The simulated accumulated precipitation was from 9/21/00Z - 

9/23/00Z, while the NLDAS observed accumulated precipitation was extended farther to 9/24/00Z. However, the 

accumulated precipitation over the Appalachians after 9/23/00Z was negligible when compared to the total accumulated 

precipitation because by then the storm has already moved to the northern part of Pennsylvania. The observed 

accumulated precipitation revealed two maximum areas (Fig. 5b). The first maximum of accumulated precipitation area 
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was in the southeastern part of South Carolina right after the Hugo made the landfall, while it still had strong surface 

winds up to 42 kts with about 178 mm of rain. The second maximum of accumulated precipitation area with ~254 mm can 

be found in northern North Carolina and southern Virginia, along the eastern slope of the Appalachian Mountains. The 

NLDAS data shows the same rainfall pattern as that observed, except that it underestimated the amount of rainfall to be 

~120 mm (Fig. 5d). The H3 simulated rainfall pattern and maximum location compared well with those observed by WPC 

and the NLDAS data. Its quantitative precipitation forecast is closer to the observations, compared to the NLDAS data, 

which significantly underestimated the rainfall.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. (a) The I3 simulated accumulated precipitation for Isabel (2003) from 9/17/12Z – 9/20/00Z (inch), (b) WPC 

observed accumulated precipitation (in inches) from 9/17/00Z – 9/21/00Z, (c) same as (a) except inmm, and (d) 

accumulated precipitation (in mm) from 9/17/12Z – 9/20/00Z by the NLDAS. Note that 1, 3, 5, 7, 10, 15, 20, and 20.20 

inches approximately equal to 25.4, 76.2, 127.0, 177.8, 254.0, 381.0, 508.0, and 513.1 mm, respectively 

Figure 6 is similar to Fig. 5 except for Isabel (2003). The simulated I3 accumulated precipitation (Figs. 6a – in inches, and 

6c – in mm) and the NLDAS data were from 9/17/12Z - 9/20/00Z (Fig. 6d), while the WPC observation lasted until 

9/21/00Z (Fig. 6b). For Hugo, the inclusion of an additional day does not show significant precipitation affecting the 

Appalachians because the storm has already moved out of the Appalachian Mountain area and reached New York State by 

9/20/00Z. Observed accumulated precipitation associated with Isabel’s eye and rain bands was about 127 mm (Fig. 6b). 

The I3-simulated maximum rainfall area is confined along the mountain slope of western Virginia with ~ 254 mm, 

indicating the rain enhancement by the mountains. Note that a rainfall amount of 508 mm was observed at one location in 

Upper Shenandoah, Virginia. The NLDAS data (Fig. 6c) shows the same rainfall pattern as that observed, but had a 

maximum rainfall of 200 mm and missed one spot where there was about 508 mm. The I3-simulated rainfall pattern and 

maximum rainfall location compared well with both observations and NLDAS data. On the other hand, the I3 quantitative 

rainfall forecast missed the location in Upper Shenandoah with 508 mm. This discrepancy appears to be partially related 

to the relatively sparse rain gauges (e.g., see Fig. 3 of Hart and Evans 2001), but the rest of the mountain slope with 254 

mm of rain was close to that observed and the NLDAS data. 

Note that in Figs. 5 and 6, the H3 and I3 simulated accumulated precipitation, instead of the H1 and I1 (1-km resolution) 

simulated results, were used for comparison because the domains of H1 and I1 were too small to represent the total 

accumulated precipitation along the entire storm track from landfall till their passages over the Appalachians. In order to 

demonstrate the quantitative precipitation forecast capability of the 1-km resolution simulations, the H1 and I1 simulated 

results are shown in Fig. 7, which resulted maximum accumulated precipitation of ~203 mm and 254 mm, respectively, 

over the mountainous area. These results were almost identical to those simulated by the 3-km resolution runs (H3 and I3) 

(Figs. 5 and 6). The 1-km resolution runs (H1 and I1) provided extremely detailed rainfall distribution with local rainfall 

maxima strongly affected by local mountain peaks and valleys. This helps us choose local areas for testing the ORI to be 

proposed in Sec. 5. 

5. Common Ingredients and a Modified Orographic Rain Index (ORI) for Heavy Orographic Rainfall Associated 

With Hugo (1989) and Isabel (2003) 

Based on the ingredient argument (Doswell et al 1996), Lin01 and Lin (2007) proposed that heavy orographic 

precipitation is controlled by Eq. (1), which, in turn, requires significant contributions from any combination of the 

following common ingredients: (1) a high precipitation efficiency of the incoming airstream (), (2) a strong low-level 
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flow (𝑉𝐻), (3) a steep mountain slope (large h), (4) a strong orographic lifting over the upslope (large 𝑉𝐻 ∙ ∇ℎ), (5) a 

strong synoptically forced upward motion (large wenv; e.g., low-level convergence or upper-level divergence), (6) an 

unstable airstream upstream (e.g., conditional or potential instability), (7) a very moist, upstream flow (large qv or RH), (8) 

a large convective system (Ls), and (9) a slow movement of the convective system (cs). These common ingredients will be 

examined using the orographic and flow parameters simulated of two selected hurricanes, Hugo (1989) and Isabel (2003), 

to help select some key common ingredients for constructing the ORI for predicting heavy orographic TC rain, which will 

be proposed in Sec. 5.2.  

 

 

 

 

 

 

 

 

Figure 7. (a) H1 (Hugo 1-km resolution) simulated maximum accumulated rainfall in each of the 6 areas with localized 

maximum rainfall over the upslope of the Appalachians from 9/22/06Z – 9/22/18Z/1989, and (b) Same as (a) except for I1 

(Isabel 1-km resolution) simulation from 9/18/18Z – 9/19/18Z/2003 

 

Figure 7a shows the H1 (Hugo 1-km resolution) simulated maximum accumulated rainfall in each of the six areas over the 

upslope of the Appalachians with localized maximum rainfall from 9/22/06Z – 9/22/18Z/1989, while Fig. 7b shows the 

maximum accumulated rainfall as those in Fig. 7a except for I1 (Isabel 1-km resolution) simulation from 9/18/18Z – 

9/19/18Z/2003. Isabel has produced a maximum rainfall of ~250 mm, which is 25% more than that of Hugo. This 

difference will also be explained by examining the key ingredients for heavy orographic rainfall.  

5.1 Comparison of the Commo Ingredients Between Hugo (1989) and Isabel (2003) 

 

 

 

 

 

 

 

 

 

Figure 8. Simulated vertically integrated total water mixing ratio (water vapor, cloud water, cloud ice, rain, snow and 

graupel) (in mm) at, (a) 9/22/09Z by H1 for Hugo (1989) and at (b) 9/18/22Z by I1 for Isabel (2003). Topography 

contoured in black 

The first ingredient to be examined is whether the incoming flow contains a large precipitation efficiency (large ), 
which is defined as the ratio of total precipitation to the total available moisture of a precipitating system (e.g., Lin 

2007). The estimated precipitation efficiencies of Hugo and Isabel were 72 % and 97%, respectively, which are 

estimated by dividing the averaged total precipitation (Fig. 7) by the averaged total water mixing ratio (Fig. 8) over the 

six areas with local maximum rainfall as shown in Fig. 7, based on H1 and I1 simulations, respectively. These 

precipitation efficiencies are considered large.  

The second ingredient to be examined is a large low-level flow (𝑉𝐻). These strong low-level flow were associated with 

strong tangential wind of the TC vortex, which were the key in generating strong orographic lifting (large w or woro 

more specifically), as implied by Eq. (1) since woro ≈  𝑉𝐻 ∙ ∇ℎ, where VH is the horizontal wind speed upstream of the 

mountain. In fact, for a three-dimensional flow over a mountain, woro ≈  𝑉𝐻 ∙ ∇ℎ ≈ 𝑉𝑛𝜕ℎ/𝜕𝑛. In other words, the 

orographic lifting of the incoming flow was contributed by the wind component normal to the local mountain range. 
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Figure 9. The H1 and I1 simulated 10-m total horizontal wind fields normal to the local mountain range (Vn) at (a) 

9/22/12Z for Hugo (1989) and (b) 9/19/06Z for Isabel (2003). The topography contours are 600, 800, 1000, and 1200 

m 

 

Figure 9 shows the H1 and I1 simulated 10-m total wind fields normal to the local mountain range (Vn) were 24 ms-1 at 

9/22/12Z for Hugo (1989) and 18 ms-1 at 9/19/06Z for Isabel (2003), which were strong. This may lead to heavy 

orographic rain when Hurricanes Hugo or Isabel was moving toward the Appalachians.  

The third ingredient to be examined is a steep terrain (large 𝛻ℎ), which may be estimated by using the mountain slope 

represented in the 1-km grid resolution (H1 and I1). The six areas of localized maximum rainfall for both Hugo and Isabel 

are shown in Fig. 7. The slope is estimated to reach an average slope of ~0.03 (0.6 km/20 km), which was gentle, but was 

still steep enough to lift the incoming flow for producing heavy precipitation upstream because the incoming wind flow 

(𝑉𝑛) is strong.  

 

 

 

 

 

 

 

 

 

Figure 10. The H1 and I1 simulated orographically forced vertical motion (woro, color bar in m s-1) at 10 m above the 

mountain surface (contours, in m s-1) at (a) 9/22/13Z for Hugo (1989) and (b) 9/19/07Z for Isabel (2003). Topography is 

shaded (in m) 

In fact, the second and third ingredients can be examined together by the fourth ingredient, woro ≈  𝑉𝐻 ∙ ∇ℎ ≈ 𝑉𝑛𝜕ℎ/𝜕𝑛, 

where 𝑉𝑛 is the component of the incoming flow normal to the local topography. Using H1 and I1 simulated 𝑉𝑛 and 

𝜕ℎ/𝜕𝑛, the woro are calculated as shown in Figs. 10a and 10b at 9/22/13Z and Isabel (2003) at 9/19/07Z, respectively. A 

significant portion of the orographic lifting were higher than 0.5 m s-1, which were strong.  

The fifth ingredient to be examined is the environmentally forced upward motion (wenv), which together with woro make 

up the total vertical motion w (or wtotal), assuming a linear superposition. The wenv is often associated with instabilities, 

such as conditional or potential instability, and/or large-scale forcing, such as low-level convergence and upper-level 

divergence. Figure 11 shows H1 and I1 simulated wtotal for Hugo (1989) at 9/22/13Z and for Isabel (2003) at 9/19/07Z, 

respectively. A comparison of Figs. 9 and 10 shows that the areas of wtotal and woro match very well, which implies that 

wtotal was dominated by woro.  
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Figure 11. The H1 and I1 simulated total vertical motion (wtotal, in m s-1) at 10 m above the Mountain surface (contours, 

in m s-1) at (a) 9/22/13Z for Hugo (1989) and (b) 9/19/07Z for Isabel (2003). Topography is shaded (in m) 

The sixth ingredient to be examined is the existence of instabilities in the airstream upstream. The H1 and I1 simulated 

surface-850 mb CAPE distributions for Hugo and Isabel, respectively, are shown in Fig. 12 

 

 

 

 

 

 

 

 

 

Figure 12. The surface-850mb CAPE distribution for (a) Hugo (1989) at 9/22/08Z and (b) Isabel (2003) at 9/18/23Z as 

simulated by H1 and I1, respectively. Topography contours are 600, 800, 1000, and 1200m 

 

 

 

 

 

 

 

 

 

Figure 13. The surface - 850mb 𝜕𝜃𝑒/𝜕𝑧 distribution for (a) Hugo (1989) at 9/22/09Z as simulated by H1 and (b) Isabel 

(2003) at 9/19/01Z as simulated by I1. Note that all 𝜕𝜃/𝜕𝑧 > 0 

For both hurricanes, the CAPE values were smaller than 500 J kg-1 after landfall except near the eye, which also 

decreased to less than 500 J kg-1 within an hour. These CAPE values are considered small, which were caused by the 

strong vertical mixing associated with strong, deep convection embedded in the hurricanes. Unlike the midlatitude 

thunderstorm, this implies that conditional instability played an insignificant role in the formation of heavy orographic 

rainfall associated with Hugo and Isabel. The existence of potential instability is examined by checking ∂e/∂z < 0 in 

the surface-850mb layer using the simulated H1 and I1 equivalent potential temperature fields at 9/22/09Z and 

9/19/01Z, respectively. The results indicate no negative values, as shown in Fig. 13. Therefore, the potential instability 

plays no significant role in the formation of heavy orographic rainfall associated with Hugo and Isabel.  

A high moisture upstream is the seventh ingredient for producing heavy orographic rainfall, which remains to be 

examined. Either the water vapor mixing ratio (qv) or the relative humidity (RH) upstream of the mountain may be 

used to represent the moisture content (Lin01; Lin et al. 2002). Near the maximum rainfall areas on the Appalachians, 
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the averaged water vapor mixing ratio (qv) values were 17 g/kg and 14 g/kg for Hugo and Isabel, respectively, which 

are considered relatively high moisture. The averaged RH values are 86% and 80% for Hugo and Isabel, respectively, 

were high during the passages of Hugo and Isabel over the Appalachian Mountains (Fig. 14).  

 

 

 

 

 

 

 

 

Figure 14. The relative humidity (RH; in %) fields simulated for, (a) Hugo (1989) by H1  

at 9/22/09Z and (b) Isabel (2003) by I1 at 9/19/03Z. Topography contoured in black 

 

The eighth ingredient to be examined is the large size of convection system (Ls), which is characterized by the TC size in 

the current situation. Based on the simulated reflectivity and observed radar imagery (Fig. 4), both Hugo and Isabel had a 

large convective system with an Ls of about 150 km. The ninth ingredient to be examined is the moving speed of the 

convective system (cs). The hurricane’s moving speed is estimated by dividing the distance by the time the storm took to 

travel over the area. Hugo traveled at approximately 12.5 knots (~6.25 ms-1), about 42% faster than Isabel’s approximate 

moving speed of 8.8 knots (~4.4 ms-1), which caused the smaller amounts of rainfall produced by Hugo compared to that 

produced by Isabel.  

Based on the above analysis, we conclude that six of the nine ingredients make significant contributions from both 

hurricanes: high precipitation efficiency of the incoming airstream, low-level flow, strong orographic lifting, high 

moisture flow, large convective system, and slow movement of the hurricane. These key ingredients are largely responsible 

for the heavy rainfall produced in both cases with weak or no conditional or potential instabilities available. This finding 

is similar to that found for Typhoon Morakot (2009) over Taiwan’s Central Mountain Range, where a huge amount of rain 

was caused by its slow movement, strong terrain lifting, the confluence between the typhoon’s outer circulation and the 

southwesterly monsoonal current (e.g., Huang and Lin 2014; Hong et al., 2010; C.-Y. Lin et al. 2011; Chien and Kuo, 

2011; Wu et al., 2011; Yen et al., 2011), rather than due to a large CAPE, like that found in Supertyphoon Bilis (2000) over 

CMR (Witcraft et al., 2005). Hugo had a slightly higher moisture and a stronger low-level jet, but moved much faster and 

had lower precipitation efficiency, and therefore produces 25% less total rainfall, compared to Isabel.  

5.2 Application of a Modified Orographic Rain Index (ORI) for Heavy Orographic TC Rain 

As discussed in the Introduction, since heavy orographic rain enhancement during the passage of TCs over a mesoscale 

mountain may be determined by different combinations of common ingredients, we modify Lin01’s ORI as  

 𝑂𝑅𝐼 = (𝑉𝑛
𝜕ℎ

𝜕𝑛
) (

𝐿𝑠

𝑐𝑠
) (𝑅𝐻)                                   (2) 

In the above equation, Vn ∂h/∂n ≈ 𝑤𝑜𝑟𝑜, where Vn is the wind speed in the direction normal to the local mountain range (n), 

RH is the relative humidity of the incoming airflow, and 𝐿𝑠/𝑐𝑠 is the duration of the precipitation system passing over a 

fixed location on mountain surface. The 𝑉𝑛 is calculated at a location where the precipitating system is in the vicinity of 

the mountain. Since the precipitation efficiency is relatively high in the vicinity of a tropical cyclone, it is assumed as 

unity in the ORI. Figure 15a shows the H3 (Hugo with 3-km resolution) simulated 10-m 𝑉𝑛 wind field at 9/22/12Z, while 

Fig. 15b shows that simulated by I3 (Isabel with 3-km resolution) at 9/19/06Z.  
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Figure 15. The H1 and I1 simulated 10-m horizontal wind normal to the mountain range (Vn; ms-1) 

at (a) 9/22/12Z for Hugo (1989) and (b) 9/19/06Z for Isabel (2003). Topography is  

contoured at 600, 800, 1000, and 1200 m 

 

The use of 𝑉𝑛 field is to differentiate the areas where the wind blows perpendicular to the local mountain range from 

that blows parallel to it. In other words, the strength of orographic lifting is sensitive to the impinging angle, which 

reaches the maximum when the impinging angle is 90o. That is why the normal component of the wind is chosen for 

calculating the ORI. The maximum mountain steepness 𝑑ℎ/𝑑𝑛 is estimated at each local location. The storm moving 

speeds (𝑐𝑠 ) were estimated earlier in Sec. 5.1 as 12.5 knots (~6.25 ms-1) and 8.8 knots (~4.4 ms-1) for Hugo and Isabel, 

respectively. Approximately, Hugo traveled at about 42% faster than Isabel, and Ls was estimated by the averaged 

diameter of the tropical cyclone based on the numerically simulated radar reflectivity field. 

To test the ORI, six regions, which were based on the local maximum rainfall as shown in Fig. 7, were chosen for each 

hurricane. For each region, the H1 and I1 simulated hourly rainfall rate (R), normal wind speed (Vn), RH, Ls, and cs are 

estimated. Figures 16a and 16b show the ORI versus the observed hourly rainfall rate for Hugo and Isabel, respectively. 

All 12 regions in both Hugo and Isabel indicate that there was a strong correlation between the ORI and rainfall rate. 

Note that one should pay attention to the overall, longer-term ORI evolution, instead of short-term variation (e.g., one 

or two hours) because there was a possibility that a dry spell might exist in a short period (e.g., 1 h) during a heavy rain 

episode. For example, in Region 1 at 9/22/11Z and Region 3 at 9/22/12Z during Hugo’s passage, and in Region 3 at 

9/19/08Z during Isabel’s passage, there was no rain between the heavy rain episodes, but the ORI did not show a 

dramatic decrease. The reason that the ORI did not correspond very well to the sudden drops in rainfall rate during 

these short time periods is explained by the fact that the microphysical processes at these local locations were not 

reflected immediately in the estimation of ORI.  

All the ORI evolutions in the 12 regions of both hurricanes shared the same characteristics, i.e., the ORI evolution 

increased smoothly until it reached a maximum near the time of maximum rainfall rate. If there were several maxima 

occurred in a certain rainy period, then after reaching one maximum, it then decreased smoothly back to a minimum at 

the end of the rainy period. Thus, the ORI should be considered for the entire rainy period, instead of just for one 

specific rainy episode since it might lead to incorrect predictions. In the current study, the parameters contributing to 

the ORI, such as Ls and cs, were fixed for each storm and the slope was fixed for the location, leaving the ORI to be 

controlled by only two parameters, Vn and RH, at each location. Results show that overall the ORI did correlate with Vn 

and RH very well, although it was more sensitive to Vn and less sensitive to RH. Since fine resolution operational 

forecasts are still unavailable, we extended our study to derive the ORI with output from the coarser resolution (9 km) 

runs, such as that shown in Fig. 17. Figure 17 was the same as Fig. 16 except with two differences: (1) all inputs were 

taken from H9 and I9, and (2) the simulated three hourly precipitation in both cases showed early signs of maximum 

rain so we started our ORI dates accordingly, which were 9/21/12Z - 9/22/18Z and 9/18/21Z - 9/19/21Z for Hugo and 

Isabel, respectively. The three-hourly output of the 9-km resolution run made the ORI variation more rapid. For 

example, the Vn might vary from 3 m s-1 in one output to 30 m s-1 in the next. Overall, we find that the ORI estimated 

from finer resolution model results still remained and the ORI may serve as an indicator for rainfall associated with 

tropical cyclones passing over mesoscale mountains. 
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Figure 16. Estimated evolutions of the modified ORI (in red) for Hugo (1989) and Isabel (2003) in Regions 1-6, based 

on H1 and I1 simulated hourly rainfall rate (R), magnitude Vn , and RH from both hurricanes versus observed hourly 

rainfall rate (mm/h, in yellow) for Hugo (right) and Isabel (left). The period is 9/22/07Z  

– 18Z for Hugo and 9/19/01Z – 12Z for Isabel when the TC moves close to the local rainfall maximum  

region. The symbol “Indexi” in the figure panels denotes the ORI for local rainfall maximum region i 

 

6. Summary and Concluding Remarks 

In this study, the common ingredients for heavy orographic precipitation proposed by Lin01 and Lin (2007) are 

examined for orographic rainfall associated with the passage of Hurricanes Hugo (1989) and Isabel (2003) over the 

Appalachian Mountains. Hugo and Isabel were selected due to their similar impinging angles on the Appalachians and 

very different total rainfall. The WRF model was then used to simulate these two storms. The simulated tracks, wind 

and reflectivity fields and rainfall amounts and pattern compared reasonably well with observations. Quantitatively, the 

model-simulated maximum total rainfall (200 mm) of Hugo was close to the observation (250 mm), while the 

model-simulated maximum total rainfall (250 mm) of Isabel was only about half of that observed (500 mm). Note that 

the observed 500 mm maximum total rainfall occurred only in a very limited area, while the model-simulated average 

rainfall (250 mm) over the mountain slope compared reasonably well with that observed. The forecast error of the 

maximum total rainfall was attributed to the right turn of Isabel’s simulated track. 

The wind and precipitation fields associated with Hugo and Isabel were simulated by the WRF model with 1-km fine 

resolution (H1 and I1) to examine the relative contributions of each individual ingredients in producing heavy 

orographic rainfall through detailed comparisons. It is found that both hurricanes provided, in average, over six regions 

of local maximum rainfall, including high precipitation efficiencies (72 % for Hugo and 97% for Isabel), strong 

low-level flow (24 ms-1 for Hugo and 18 ms-1 for Isabel), strong orographically forced upward motion associated with 

strong low-level flow over relatively gentle upslope with an averaged steepness of 0.03 (0.6 km/20 km) (0.72 m s-1 for 

Hugo and 0.54 m s-1 for Isabel), concave geometry at several local areas with maximum rainfall (e.g., Regions 1, 5, and 

6 for Hugo and Regions 1 and 2 for Isabel) providing a local area of convergence, high moist flow upstream (averaged 

RH of 86% for Hugo and 80% for Isabel), a relatively large convective system associated with both hurricanes 

(averaged size of 150 km for both storms), and relatively slower movement of the storms (~6.25 ms-1 for Hugo and 

~4.4 ms-1 for Isabel). In short, the key ingredients responsible for producing local heavy orographic rainfall for both 

storms are: high precipitation efficiency, strong low-level flow, strong orographically forced upward motion associated 

with strong low-level flow over relatively gentle upslope, concave geometry providing local areas of convergence, high 

moist flow upstream, a relatively large convective system associated with both hurricanes, and relatively slower 
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movement of the storms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Estimated evolutions of the modified ORI (in red) for Hugo (1989) and Isabel (2003) in Regions 1-6, based  

on H9 and I9 simulated magnitude Vn, and RH from both hurricanes versus three hourly rainfall rate (mm/3h, in  

yellow) for Hugo (right) and Isabel (left). The period is 9/21/12Z – 9/22/18Z for Hugo and 9/18/21Z –  

9/19/21Z for Isabel when the TC moves close to the local rainfall maximum region. The symbol  

“Indexi” in the figure panels denotes the ORI for local rainfall maximum region i 

 

Based on H1 and I1 (with 1-km resolution) simulated wind fields, it was found that the estimated orographically 

induced upward motion (woro) was very close to the total upward motion (wtotal), indicating that the upward motion is 

dominated by orographic lifting. In addition, we found that the surface-850 mb averaged CAPE is relatively small (< 

500 J kg-1) for both Hugo and Isabel and there is a lack of negative 𝜕𝜃𝑒/𝜕𝑧, indicating that there was a lack of 

conditional and potential instabilities, respectively. Compared to Isabel, Hugo had a slightly higher relative humidity 

and a stronger low-level flow, but moved much faster and had lower precipitation efficiency, thus produced 25% less 

total rainfall. In other words, there was a lack of conditional and potential (convective) instabilities. 

The two-dimensional orographic rain index (ORI) proposed in Lin01 was modified to a new form: ORI = (𝑉𝑛𝜕ℎ/
𝜕𝑛)(𝑅𝐻)(𝐿𝑠/𝑐𝑠), where 𝑉𝑛 is the upstream horizontal wind speed normal to the local mountain range and the key 

contributor to orographic lifting. The maximum mountain slope 𝑑ℎ/𝑑𝑛 is estimated at each local location, the storm 

moving speed (𝑐𝑠 ) is estimated by the distance divided by time after landfalling, and Ls is approximated by the 

averaged diameter of the tropical cyclone based on the numerically simulated radar reflectivity. To test this modified 

ORI, six local regions based on local rainfall maximum were chosen for each hurricane. The evolutions of ORI 

estimated for each local region was correlated with the rainfall rate for both storms in a general trend. Thus, the 

modified ORI may serve as a predictor for heavy orographic TC rain. 

Before a fine resolution operational forecasting and accurate quantitative precipitation forecast are available, the ORI 

may still serve as a reliable predictor for heavy orographic TC rain using available observations, numerically simulated 

flow fields, and local topography data. To avoid rapid variations in time and space, the analyses of several common 

ingredients, may be made more quantitatively by taking areal and time averaging. Note that the qv in the original 

formulation of ORI in L01 is substituted by RH in order to avoid normalizing the qv. In fact, in the current study we 

found that both of them work reasonably well. However, due to the sensitivity of RH to temperature, one may consider 

using qv, instead of RH. To make the proposed ORI more applicable, it needs to be examined and improved with more 

cases statistically, such as previously documented cases studies (e.g., Lin et al. 2002, Chiao and Lin 2003, Witcraft et al. 

2005, Huang and Lin 2014), as well as with idealized simulations so that the key ingredients can be varied and tested 

systematically and rigorously. In addition, the inclusion of CAPE and negative 𝜕𝜃𝑒/𝜕𝑧 should be considered in 
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calculating the ORI, especially for non-tropical cyclone heavy orographic rainfall, although they need to be normalized 

to avoid biasing the index due to potentially large values. This inclusion would allow a broader application of the 

proposed ORI. To add sensitivity of the mountain geometry to ORI, such as favorable concave region, studies of Jiang 

(2006) and Watson and Lane (2012) may be considered.  

Note that the total accumulated precipitation was underpredicted by the simulated Hurricane Isabel rainfall, which 

appeared to related to the error caused by the track prediction. It was not as good as the track prediction by the Hugo 

simulations. Thus, in order to make more accurate orographic rain prediction, it is essential to keep improving track 

prediction of TCs.  
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