
http://esr.ccsenet.org Earth Science Research Vol. 8, No. 2; 2019

A Single-Domain Implementation of the Voigt/Complex Error
Function by Vectorized Interpolation

S. M. Abrarov1,2, B. M. Quine1,3, R. Siddiqui1,2,3, R. K. Jagpal2,3

1 Dept. Earth and Space Science and Engineering, York University, 4700 Keele St., M3J 1P3, Canada
2 Epic College of Technology, 5670 McAdam Rd., Mississauga, L4Z 1T2, Canada
3 Dept. Physics and Astronomy, York University, 4700 Keele St., Toronto, M3J 1P3, Canada

Correspondence: S. M. Abrarov, Dept. Earth and Space Science and Engineering, York University, 4700 Keele St., M3J
1P3, Canada.

Received: July 3, 2019 Accepted: August 3, 2019 Online Published: August 7, 2019

doi:10.5539/esr.v8n2p52 URL: https://doi.org/10.5539/esr.v8n2p52

Abstract

In this work we show how to perform a rapid computation of the Voigt/complex error over a single domain by vectorized
interpolation. This approach enables us to cover the entire set of the parameters x, y ∈ R required for the HITRAN-
based spectroscopic applications. The computational test reveals that within domains x ∈ [0, 15] ∩ y ∈

[
10−8, 15

]
and

x ∈ [0, 50000]∩y ≥ 10−8 our algorithmic implementation is faster in computation by factors of about 8 and 3, respectively,
as compared to the fastest known C/C++ code for the Voigt/complex error function. A rapid MATLAB code is presented.

Keywords: complex error function, Faddeeva function, Voigt function, interpolation

1. Introduction

The complex error function, also commonly known as the Faddeeva function, can be defined as (Faddeeva & Terent’ev,
1961; Armstrong 1967; Gautschi, 1970; Abramowitz & Stegun, 1972)

w (z) = e−z2

1 +
2i
√
π

z∫
0

et2
dt

 , (1)

where z = x + iy is the complex argument. The real part of the complex error function (1), known as the Voigt function,
can be represented as given by (Armstrong, 1967; Srivastava & Miller, 1987; Srivastava & Chen, 1992)

K (x, y) =
1
√
π

∞∫
0

e−t2/4e−yt cos (xt) dt (2a)

that is proportional to the Voigt profile describing the spectral broadening of atmospheric gas absorption or emission

gV (ν − ν0, αL, αD) =

√
ln 2/π
αD

K (x, y) ,

where ν is the frequency, ν0 is the frequency of the line center, αL and αD are the Lorentz and Doppler half widths at half
maximum (HWHM), respectively, and

x =
√

ln 2
ν − ν0

αD
, y =

√
ln 2

αL

αD
.

The imaginary part of the complex error function (1) has no specific name. Historically, it is denoted by L (x, y) and can
be written in form (Srivastava & Miller, 1987; Srivastava & Chen, 1992)

L (x, y) =
1
√
π

∞∫
0

e−t2/4e−yt sin (xt) dt. (2b)

None of the integrals above are analytically integrable in closed form. Therefore, these equations must be solved numer-
ically. There are two most important aspects that have to be taken into consideration for efficient algorithmic implemen-
tation of the integrals above in spectroscopic applications based on HITRAN database (Hill et al., 2016). Specifically, the

52

http://esr.ccsenet.org Earth Science Research Vol. 8, No. 2; 2019

latest versions of the HITRAN database provide spectroscopic data with 4 and more digits in floating format. In order to
exclude the truncation errors that inevitably occur in any line-by-line atmospheric modeling (Berk & Hawes 2017; Pliutau
& Roslyakov 2017; Siddiqui et el., 2015; Siddiqui et el. 2017, Jagpal et el., 2010; Quine & Abrarov, 2013), the algo-
rithmic implementation of the Voigt/complex error function should provide accuracy at least as close as possible to 10−6.
This accuracy requirement is particularly relevant for the set of input numbers {x, y ∈ R: |x| + y ≤ 15} while it is not so
much critical for the set {x, y ∈ R: |x| + y > 15} according to literature (Schreier, 2011; Schreier, 2018). Furthermore, the
algorithm should be rapid as it may deal with many millions of input numbers z in computation for the various radiative
transfer applications (Schreier, 2018; Grimm & Heng, 2015).

In order to satisfy these two criteria in computation of the integrals above, the complex plane is segmented into several
domains. For example, Humlı́ček proposed a rapid algorithm for computation of the Voigt function (2a) based on rational
functions by segmenting the complex plane into several domains such that each of them is computed by corresponding
rational approximation (Humlı́ček, 1982). Kuntz proposed some modifications and showed efficiency of the Humlı́ček
algorithm with 4 domains (Kuntz, 1997). The Humlı́ček’s algorithm is rapid and provides accuracy 10−4. Later, Wells
developed a FORTRAN code where he succeeded to improve accuracy by an order of the magnitude by making some
modifications to the original Humlı́ček’s algorithm (Wells, 1999). Another interesting variation of the Humlı́ček’s algo-
rithm with improved accuracy was presented by Imai et al., 2010.

It is very desirable to reduce wherever possible the number of the domains to accelerate an algorithm since each area
segmentation of the complex plane leads to run-time increase due to additional logical operations and subsequent sorting
of the input numbers x and y.

In our earlier publication (Abrarov et al., 2009) we have shown how to reduce the number of domains to 2 by interpolation.
In particular, we suggested two-domain scheme for rapid computation of the Voigt function that can be represented as

K (x, y) ≈


interpolation,

x2

272 +
y2

152 6 1

a1 + b1 x2

a2 + b2 x2 + x4 ,
x2

272 +
y2

152 > 1,
(3)

where (see Appendix in (Kuntz, 1997))

a1 = y/(2
√
π) + y3/

√
π ≈ 0.2820948y + 0.5641896y3

b1 = y/
√
π ≈ 0.5641896y

a2 = 0.25 + y2 + y4

b2 = −1 + 2y2

and
a1 + b1x2

a2 + b2x2 + x4 = Re
{

iz/
√
π

z2 − 1/2

}
.

Thus, the complex plane is segmented into two domains by an ellipse centered at the origin with semi-major and semi-
minor axises equal to 27 and 15, respectively (see inset in Fig. 2 from our paper (Abrarov et al., 2009)). Inside the
ellipse (computationally difficult internal domain) we apply interpolation while outside the ellipse (computationally simple
external domain) we apply a simple rational approximation of low order. This scheme shows high efficiency particularly
when x = {x1, x2, x3, . . .} is a vector and y is a scalar. In fact, vectorized x = {x1, x2, x3, . . .} and scalar y is a quite common
technique in radiative transfer applications (Lynas-Gray, 1993; Letchworth & Benner, 2007; Schreier & Kohlert, 2008).

Recently Schreier reported a two-domain scheme (see equation (12) in (Schreier, 2018))

w (z) = K (x, y) + iL (x, y) ≈


∑n−1

k=0 αkzk∑n
`=0 β`z`

, |x| + y ≤ 15

iz/
√
π

z2 − 1/2
, |x| + y > 15,

(4)

where n is assumed to be an even integer, αk and β` are the expansion coefficients that can be readily generated by
Computer Algebra System (CAS) supporting symbolic programming. It is suggested that n = 20 in the single quotient is
sufficient for line-by-line calculations in atmospheric modeling (Schreier, 2018).

In general, for arbitrary n (even or odd) representation of the Humlı́ček’s approximation as a single quotient can be made
by using notation d. . .e for the ceiling function as

w (z) ≈
1
2

n∑
k=1

(
γk + iθk

z − xk + iδ
−

γk − iθk

z + xk + iδ

)
=

∑2dn/2e−1
k=0 αkzk∑2dn/2e
`=0 β`z`

, (5)

53

http://esr.ccsenet.org Earth Science Research Vol. 8, No. 2; 2019

where

γk = −
1
π
ωkeδ

2
sin (2xkδ) ,

θk =
1
π
ωkeδ

2
cos (2xkδ) ,

xk are roots of the Hermite polynomial Hn (x) of degree n that can be defined by recurrence relations (Weisstein, 2019a)

Hn+1 = 2xHn (x) − 2nHn−1 (x) , H0 (x) = 1, H1 (x) = 2x,

δ is a fitting parameter that at n = 20 can be taken as 1.55 (Schreier, 2018) and

ωk =
2n−1n!

√
π

n2H2
n−1 (xk)

are weights of the Hermite polynomial Hn (x) of degree n (Weisstein, 2019b).

It is interesting to note that if integer n is even and roots are given in ascending order such that xk−1 < xk, then number of
the summation terms in the Humlı́ček’s approximation can be reduced by a factor of two (compare equations (27a) and
(26b) from (Berk & Hawes, 2017))

w (z) ≈
n/2∑
k=1

(
γk + iθk

z − xk + iδ
−

γk − iθk

z + xk + iδ

)
.

The single quotient reformulation shown in equations (4) and (5) is interesting. However, by performing computational
test we found empirically that deterioration of accuracy with decreasing y is especially inherent to the single quotient
reformulation of the Humlı́ček’s approximation (5) (deterioration of accuracy with decreasing y is a common problem
in computation of the Voigt/complex error function (Armstrong, 1967; Amamou et al., 2013; Abrarov & Quine, 2011)).
Although a multiple precision arithmetic may be used to resolve this problem, it needs a special package (see for ex-
ample (Tsarapkina, 2014)) that may affect computational speed and makes the MATLAB code inconvenient in practical
applications.

In plasma physics of rarefied gases or at low atmospheric pressure that takes place in stratosphere, mesosphere and
thermoshpere of the Earth, where the Doppler broadening considerably predominates over the Lorentz broadening, the
value of y dependent on the pressure and temperature may be relatively close to zero. This is particularly important as the
latest versions of the HITRAN supply parameters for high temperatures almost reaching 10000 K and there is a tendency
that it will be increased in future. Therefore, it would be very desirable to develop a rapid algorithm that can sustain the
required accuracy for input parameter y ≥ 10−8 (Schreier, 2018).

One of the possible ways to overcome these problems is to segment the complex plane as a narrow band along x-axis and
to use appropriate approximation for smaller Im [z] = y (see for example C/C++ code (Johnson, 2017)). However, this
decelerates computation as a result of additional segmentation.

Consider a complete version of the two-domain scheme (3) that includes both, the real and imaginary parts, as follows

w (z) = K (x, y) + iL (x, y) ≈


interpolation,

x2

272 +
y2

152 6 1

iz/
√
π

z2 − 1/2
,

x2

272 +
y2

152 > 1.
(6)

The run-time test we performed shows that for the set of input numbers {x, y ∈ R: |x| + y ≤ 15} this two-domain scheme
is faster in performance by a factor about 2 as compared to that of reported in (Schreier, 2018) (we used the MATLAB
codes built on approximations (4) and (6)). This is possible to achieve since interpolation utilizes a simple cubic spline
instead of a rational function of high order. Therefore, this fact strongly motivated us to develop further an algorithm
based on a vectorized interpolation for rapid computation of the Voigt/complex error function with accuracy that meets
the requirement for the HITRAN spectroscopic applications (Hill et al., 2016).

In this work we propose a new method of algorithmic implementation for rapid computation of the integrals (1), (2a)
and (2b) by vectorized interpolation that enables us to employ just a single domain. This approach provides both, the
rapid computation and accuracy that meets the requirement for the HITRAN spectroscopic applications. To the best of
our knowledge, this method of computation of the Voigt/complex error function is new and has never been reported in
scientific literature.

54

http://esr.ccsenet.org Earth Science Research Vol. 8, No. 2; 2019

2. Algorithmic Implementation

Computation of the Voigt function (1) by interpolation with help of the lookup table was first reported in the work
(Drummond & Steckner, 1985) (see also (Sparks, 1997)). However, the lookup table involved in this method requires two
dimensional interpolating grid-points that need extra memory and time to handle large-size data during computation to
obtain a reasonable accuracy. In contrast, the vectorized (one dimensional) approach, where the interpolating grid points
are computed dynamically at x = {x1, x2, x3, . . .} and given fixed value y (Abrarov et al., 2009) (rather than picked up
from the lookup table (Drummond & Steckner, 1985; Sparks, 1997)) is considerably advantageous in interpolation due to
significantly smaller quantity of the interpolating grid-points stored in computer memory.

Let us consider two-domain scheme shown by equation (6) more closely. We note that semi-major and semi-minor axises
may be chosen arbitrarily depending on algorithmic implementations (see for example (Poppe & Wijers 1990a; Poppe
& Wijers 1990b)). Since semi-major and semi-minor axises may be flexible in magnitude, we may suggest to increase
them to cover the entire set x, y ∈ R for the HITRAN applications such that we could exclude completely the rational
approximation of low order in equation (6) from the consideration.

Previously it was reported that the HITRAN spectroscopic database requires a domain 0 ≤ |x| < 40000 and 10−4 < y < 102

(Wells, 1999). Consequently, within the I-st quadrant a single domain should be large enough to cover rectangular area
40000 × 100. Furthermore, this area should be extended by factor of four if we want to include all 4 quadrants. However,
as it has been mentioned earlier the inclusion of the all small values y into consideration would be preferable for practical
applications to account for low pressure and high temperature of the HITRAN gases. In our approach, the single domain
represents an area |x| 6 50000 without a boundary for the parameter y since it is a scalar. Formally stating, this single
domain is inclosed by a reshaped ellipse in such a way that

x2

500002 + lim
n→∞

y2

n2 6 1.

In our work (Abrarov, et al., 2009) we noted that the interpolating grid-points may not be necessarily spaced equidistant-
ly. This provides a significant advantage since we can minimize the number of the interpolating grid-points by putting
them denser in more curved subintervals and sparser in more linear subintervals. Particularly, we separated interval
[−50000, 50000] along x-axis into subintervals as it is shown in the Table 1. Initially each subinterval contains a number
of the interpolating grid-points multiple to 100 accumulating 1600 interpolating grid-points in total (see command lines
below <function MF = mainF(x,y,opt)> in the MATLAB code shown in Appendix A). However, after exclusion of repeat-
ing values the total number of the interpolating grid-points decreases from 1600 to 197 + 398 + 4× 198 + 200 = 1587 (see
Table 1). This small quantity of the interpolating grid-points needs a very minor amount of computer memory. Therefore,
it can be easily handled by practically any modern computer. We cannot infer that such a distribution provides the smallest
number of the interpolating grid-points. Perhaps, this number of the interpolating grid-points can be reduced significantly
by further optimization.

Table 1. Number of interpolating grid-points (IGP) in subintervals

Subintervals Number of IGP
(−2.5, 2.5) 1 × 197 = 197
(−5.5,−2.5] ∪ [2.5, 5.5) 2 × 199 = 398
(−15,−5.5] ∪ [5.5, 15) 2 × 99 = 198
(−100,−15] ∪ [15, 100) 2 × 99 = 198
(−1000,−100] ∪ [100, 1000) 2 × 99 = 198
(−10000,−1000] ∪ [1000, 10000) 2 × 99 = 198
[−50000,−10000] ∪ [10000, 50000] 2 × 100 = 200

If hypothetically there could be some input values |x| greater than 50000, then it is very easy to extend the region along
x-axis if required. For example, it is sufficient to include only 300 additional interpolating grid-points to extend the range
for |x| up to 100000; it is not necessary to include many interpolating grid-points since the functions K (x, y) and L (x, y)
become nearly linear as |x| increases.

For proper interpolation the accuracy of the computation should be two orders of the magnitude better than 10−6. Gener-
ally, any highly accurate algorithm can be used to compute 1587 interpolating grid-points. We applied the highly accurate
MATLAB function fadsamp.m shown in our recent paper (Abrarov et al. 2018a) as a subroutine for this purpose (see
a brief description of this method in Appendix B). Alternatively, a MATLAB function file that is highly accurate and

55

http://esr.ccsenet.org Earth Science Research Vol. 8, No. 2; 2019

suitable for computation of the interpolating grid-points can be found in (Abrarov & Quine, 2011) (these two codes can
also be downloaded from the Matlab Central websites (Matlab Central file ID #: 66752) and (Matlab Central file ID
#: 47801), respectively). Highly accurate C/C++ implementation by Johnson (Johnson, 2017) with MEX plugins for
MATLAB (Matlab Central file ID #: 38787) can also be used for a subroutine that can be invoked from the MATLAB
environment to compute these 1587 interpolating grid-points.

It should be noted that this methodology can also be generalized further to other functions (including spectral line pro-
files). For example, our preliminary results demonstrate that this methodology is also applicable for rapid and quite accu-
rate computation of the Spectrally Integrated Voigt Function (SIVF) that enables us to perform line-by-line atmospheric
modeling at reduced spectral resolution (Quine & Abrarov, 2013).

3. Error Analysis and Run-Time Test

In order to perform error analysis define the relative errors for the real

∆Re =

∣∣∣∣∣Kref. (x, y) − K (x, y)
Kref.(x, y)

∣∣∣∣∣
and imaginary parts

∆Im =

∣∣∣∣∣Lref. (x, y) − L (x, y)
Lref.(x, y)

∣∣∣∣∣
of the complex error function (1), where Kref. (x, y) and Lref. (x, y) are the highly accurate reference values that can be
readily obtained by using the CAS.

Figure 1. Logarithms of relative error for the real a) and imaginary b) parts of the complex error function over the area
x ∈ [0, 15] ∩ y ∈

[
10−8, 10−2

]
computed by vectorized interpolation. Insets show the subareas with worst accuracies for

the real a) and imaginary b) parts

Figures 1a and 1b show the relative errors for the real and imaginary parts over the area x ∈ [0, 15] and y ∈
[
10−8, 10−2

]
computed by vectorized interpolation. The largest relative errors over this area for the real and imaginary parts are
1.0589 × 10−6 and 7.236 × 10−8, respectively. Thus, our algorithm satisfies the accuracy criterion 10−6 for the required
range y ≥ 10−8. In comparison, the computational test we perform reveals that approximation (4) sustains the required
accuracy only at y ≥ 10−6.

Figures 2a and 2b show the relative errors for the real and imaginary parts over the area x ∈ [0, 15] and y ∈
[
10−2, 15

]
.

The largest relative errors over this area for the real and imaginary parts are 2.7766×10−7 and 7.0619×10−8, respectively.

Thus, from Figs. 1a, 1b and 2a, 2b we can conclude that our algorithm satisfies accuracy requirement for the HITRAN-
based applications and effectively resolves the problem that is inherent to the single quotient shown in equations (4) and
(5) as well as many other approximations (Armstrong, 1967; Amamou et al., 2013).

In order to obtain most objective results for the run-time test we used an independently written code for the Voigt/complex
error function. Specifically, the run-time test has been performed by comparing our MATLAB code shown in Appendix
A with C/C++ implementation that was developed by Johnson (Johnson, 2017; Matlab Central file ID #: 38787). This
implementation is known to be the fastest C/C++ program. It represents a modified Algorithm 680 (Poppe & Wijers
1990a; Poppe & Wijers, 1990b) with inclusion of the Salzer’s approximations (Abrarov & Quine, 2018b) (see also (Salzer,
1951)). As the computation complexity prevails at smaller values of the parameter y, we imply that it is close to zero, say

56

http://esr.ccsenet.org Earth Science Research Vol. 8, No. 2; 2019

y = 10−5. The detailed description of how to run the programs and perform the time execution test is shown in Appendix
C.

The run-time test shows that for 10 million input values within the most important area such that {x, y ∈ R: |x + iy| ≤ 15},
the MATLAB code is almost 8 times faster than the C/C++ implementation while for the entire domain that is required
for the HITRAN spectroscopic applications the MATLAB code is faster than the C/C++ implementation by a factor about
3.

Figure 2. Logarithms of relative error for the real a) and imaginary b) parts of the complex error function over the area
x ∈ [0, 15] ∩ y ∈

[
10−2, 15

]
computed by vectorized interpolation

The MATLAB is one of the fastest scientific languages in computation. However, it is generally slower than C/C++.
The more rapid computation has been achieved because of two main reasons. The function Faddeeva.cc is unnecessarily
complicated as it utilizes a large number of domains that due to multiple logical operations and sorting of the input
numbers x and y decelerate computation. Furthermore, our approach de facto performs 1587 actual computations only as
the remaining is just an interpolation. By choosing different options for interpolation, we found experimentally that the
MATLAB built-in method ’spline’ provides the best performance. All these results can be readily confirmed by running
the codes provided in Appendices A and C.

4. Conclusion

We propose a new single-domain vectorized interpolation method for rapid computation of the Voigt/complex error func-
tion (1) that enables us to achieve required accuracy for the HITRAN-based spectroscopic applications. The computational
test we performed reveals that within intervals x ∈ [0, 15] ∩ y ∈

[
10−8, 15

]
and x ∈ [0, 50000] ∩ y ≥ 10−8 our algorithmic

implementation is faster in computation by factors of about 8 and 3, respectively, as compared to the fastest known C/C++

code for the Voigt/complex error function.

Acknowledgments

This work is supported by National Research Council Canada, Thoth Technology Inc., York University, Epic College of
Technology and Epic Climate Green (ECG) Inc. The authors wish to thank principal developer of the MODTRAN Dr.
Alexander Berk for constructive discussions.

References

Abramowitz, M., & Stegun, I. A. (1972). Error function and Fresnel integrals. Handbook of mathematical functions with
formulas, graphs, and mathematical tables. 9th ed. New York 1972, 297-309.

Abrarov, S. M., Quine, B. M., & Jagpal, R. K. (2009). A simple interpolating algorithm for the rapid and accurate
calculation of the Voigt function. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(6-7), 376-383.
https://doi.org/10.1016/j.jqsrt.2009.01.003

Abrarov, S. M., & Quine, B. M. (2011). Efficient algorithmic implementation of the Voigt/complex error function based
on exponential series approximation. Applied Mathematics and Computation, 218(5), 1894-1902.
https://doi.org/10.1016/j.amc.2011.06.072

Abrarov, S. M., & Quine, B. M. (2015a). Sampling by incomplete cosine expansion of the sinc function: Application to
the Voigt/complex error function. Applied Mathematics and Computation, 258, 425-435.
https://doi.org/10.1016/j.amc.2015.01.072

57

https://doi.org/10.1016/j.jqsrt.2009.01.003
https://doi.org/10.1016/j.amc.2011.06.072
https://doi.org/10.1016/j.amc.2015.01.072

http://esr.ccsenet.org Earth Science Research Vol. 8, No. 2; 2019

Abrarov, S. M., & Quine, B. M. (2015b). A rational approximation for efficient computation of the Voigt function in
quantitative spectroscopy. Journal of Mathematics Research, 7(2), 163-174. https://doi.org/10.5539/jmr.v7n2p163

Abrarov, S. M., Quine, B. M., & Jagpal, R. K. (2018a). A sampling-based approximation of the complex error function
and its implementation without poles. Applied Numerical Mathematics, 129, 181-191.
https://doi.org/10.1016/j.apnum.2018.03.009

Abrarov, S. M., & Quine, B. M. (2018b). A rational approximation of the Dawson’s integral for efficient computation of
the complex error function. Applied Mathematics and Computation, 321, 526-543.
https://doi.org/10.1016/j.amc.2017.10.032

Amamou, H., Ferhat, B., & Bois, A. (2013). Calculation of the Voigt Function in the region of very small values of the
parameter a where the calculation is notoriously difficult. American Journal of Analytical Chemistry, 4(12), 725-731.
https://doi.org/10.4236/ajac.2013.412087

Armstrong, B. H. (1967). Spectrum line profiles: The Voigt function. Journal of Quantitative Spectroscopy and Radiative
Transfer, 7(1), 61-88. https://doi.org/10.1016/0022-4073(67)90057-X

Berk, A., & Hawes, F. (2017). Validation of MODTRAN®6 and its line-by-line algorithm. Journal of Quantitative Spec-
troscopy and Radiative Transfer, 203, 542-556. https://doi.org/10.1016/j.jqsrt.2017.03.004

Drummond, J. R., & Steckner, M. (1985). Voigt-function evaluation using a two-dimensional interpolation scheme.
Journal of Quantitative Spectroscopy and Radiative Transfer, 34(6), 517-521. https://doi.org/10.1016/0022-
4073(85)90145-1

Faddeyeva, V. N., & Terent’ev, N. M. (1961). Tables of the probability integral w (z) = e−z2
(
1 + 2i

√
π

∫ z
0 et2

dt
)

for complex

argument. Pergamon Press, Oxford, 1961.

Gautschi, W. (1970). Efficient computation of the complex error function. SIAM Journal of Numerical Analysis, 7(1),
187-198. https://doi.org/10.1137/0707012

Gearhart, W. B., & Shultz, H. S. (1990). The function sin x
x . The College Mathematics Journal, 21(2), 90-99.

http://dx.doi.org/10.1080/07468342.1990.11973290

Grimm, S. L., & Heng, K. (2015). HELIOS-K: An ultrafast, open-source opacity calculator for radiative transfer. The
Astrophysical Journal, 808(182). https://doi.org/10.1088/0004-637X/808/2/182

Hill, C., Gordon, I. E., Kochanov, R. V., Barrett, L., Wilzewski, J. S., & Rothman, L. S. (2016). HITRANonline: An online
interface and the flexible representation of spectroscopic data in the HITRAN database. Journal of Quantitative
Spectroscopy and Radiative Transfer, 177, 4-14. https://doi.org/10.1016/j.jqsrt.2015.12.012

Humlı́ček, J. (1982). Optimized computation of the Voigt and complex probability functions. Journal of Quantitative
Spectroscopy and Radiative Transfer, 27(4), 437-444. https://doi.org/10.1016/0022-4073(82)90078-4

Imai, K., Suzuki, M., & Takahashi, C. (2010). Evaluation of Voigt algorithms for the ISS/JEM/SMILES L2 data processing
system. Advances in Space Research, 45(5), 669-675. https://doi.org/10.1016/j.asr.2009.11.005

Jagpal, R. K., Quine, B. M., Chesser, H., Abrarov, S., & Lee, R. (2010). Calibration and in-orbit performance of the Argus
1000 spectrometer - the Canadian pollution monitor. Journal of Applied Remote Sensing, 4(1), 049501.
https://doi.org/10.1117/1.3302405

Johnson, S. G. (2017). Faddeeva package. Retreived from http://ab-initio.mit.edu/wiki/index.php/Faddeeva Package

Kuntz, M. (1997). A new implementation of the Humlicek algorithm for calculation of the Voigt profile function. Journal
of Quantitative Spectroscopy and Radiative Transfer, 51(6), 819-824. https://doi.org/10.1016/S0022-4073(96)00162-
8

Letchworth, K. L., & Benner, D. C. (2007). Rapid and accurate calculation of the Voigt function. Journal of Quantitative
Spectroscopy and Radiative Transfer, 107(1), 173-192. https://doi.org/10.1016/j.jqsrt.2007.01.052

Lynas-Gray, A. E. (1993). VOIGTL – a fast subroutine for Voigt function evaluation on vector processors. Computer
Physics Communications, 75(1-2), 135-142. https://doi.org/10.1016/0010-4655(93)90171-8

58

https://doi.org/10.5539/jmr.v7n2p163
https://doi.org/10.1016/j.apnum.2018.03.009
https://doi.org/10.1016/j.amc.2017.10.032
https://doi.org/10.4236/ajac.2013.412087
https://doi.org/10.1016/0022-4073(67)90057-X
https://doi.org/10.1016/j.jqsrt.2017.03.004
https://doi.org/10.1016/0022-4073(85)90145-1
https://doi.org/10.1016/0022-4073(85)90145-1
https://doi.org/10.1137/0707012
http://dx.doi.org/10.1080/07468342.1990.11973290
https://doi.org/10.1088/0004-637X/808/2/182
https://doi.org/10.1016/j.jqsrt.2015.12.012
https://doi.org/10.1016/0022-4073(82)90078-4
https://doi.org/10.1016/j.asr.2009.11.005
https://doi.org/10.1117/1.3302405
http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package
https://doi.org/10.1016/S0022-4073(96)00162-8
https://doi.org/10.1016/S0022-4073(96)00162-8
https://doi.org/10.1016/j.jqsrt.2007.01.052
https://doi.org/10.1016/0010-4655(93)90171-8

http://esr.ccsenet.org Earth Science Research Vol. 8, No. 2; 2019

Matlab Central, file ID #: 47801. Retrieved from https://www.mathworks.com/matlabcentral/fileexchange/47801-the-
voigt-complex-error-function-second-version

Matlab Central, file ID #: 66752. Retrieved from https://www.mathworks.com/matlabcentral/fileexchange/66752-a-
sampling-based-algorithm-for-the-voigt-complex-error-function

Matlab Central, file ID #: 38787. Retrieved from https://www.mathworks.com/matlabcentral/fileexchange/38787-
faddeeva-package-complex-error-functions

Pliutau D., & Roslyakov, K. (2017). Bytran -| - spectral calculations for portable devices using the HITRAN database.
Earth Science Informatics, 10(3), 395-404. https://doi.org/10.1007/s12145-017-0288-4

Poppe, G. P. M., & Wijers, C. M. J. (1990). More efficient computation of the complex error function. ACM Transactions
on Mathematical Software (TOMS), 16(1), 38-46. https://doi.org/10.1145/77626.77629

Poppe, G. P. M., & Wijers, C. M. J. (1990). Algorithm 680: evaluation of the complex error function. ACM Transactions
on Mathematical Software (TOMS), 16(1), 47. https://doi.org/10.1145/77626.77630

Quine B. M., & Abrarov, S. M. (2013). Application of the spectrally integrated Voigt function to line-by-line radiative
transfer modelling. Journal of Quantative Spectroscopy and Radiative Transfer, 127, 37-48.
https://dx.doi.org/10.1016/j.jqsrt.2013.04.020

Salzer, H. E. (1951). Formulas for calculating the error function of a complex variable. Mathematical Tables and Other
Aids to Computation 5(34), 67-70. https://doi.org/10.2307/2002163

Schreier, F., & Kohlert, D. (2008). Optimized implementations of rational approximations – a case study on the Voigt and
complex error function. Computer Physics Communications, 179(7), 457-465.
https://doi.org/10.1016/j.cpc.2008.04.012

Schreier, F. (2011). Optimized implementations of rational approximations for the Voigt and complex error function.
Journal of Quantative Spectroscopy and Radiative Transfer, 112(6), 1010-1025.
https://doi.org/10.1016/j.jqsrt.2010.12.010

Schreier, F. (2018). The Voigt and complex error function: Humlı́ček’s rational approximation generalized. Monthly
Notices of The Royal Astronomical Society, 479, 3068-3075. https://doi.org/10.1093/mnras/sty1680

Siddiqui, R., Jagpal, R., Salem N. A., & Quine, B. M. (2015). Classification of cloud scenes by Argus spectral data. Inter-
national Journal of Space Science and Engineering, 3(4), 295-311. https://doi.org/10.1504/IJSPACESE.2015.075911

Siddiqui, R., Jagpal, R., & Quine, B. M. (2017). Short wave upwelling radiative flux (SWupRF) within near infrared (NIR)
wavelength bands of O2, H2O, CO2, and CH4 by Argus 1000 along with GENSPECT line by line radiative transfer
model. Canadian Journal of Remote Sensing, 43(4), 330-344. https://doi.org/10.1080/07038992.2017.1346467

Sparks, L. (1997). Efficient line-by-line calculation of absorption coefficients to high numerical accuracy. Journal of
Quantitative Spectroscopy and Radiative Transfer, 57(5), 631-650. https://doi.org/10.1016/S0022-4073(96)00154-9

Srivastava, H. M., & Miller, E. A. (1987). A unified presentation of the Voigt functions. Astrophysics and Space Science,
135(1), 111-118. https://doi.org/10.1007/bf00644466

Srivastava, H. M., & Chen, M. P. (1992). Some unified presentations of the Voigt functions. Astrophysics and Space
Science, 192(1), 63-74. https://doi.org/10.1007/BF00653260

Tsarapkina, D., & Jeffrey, D. J. (2014). Exploring rounding errors in Matlab using extended precision. Procedia Computer
Science, 29, 1423-1432. https://doi.org/10.1016/j.procs.2014.05.129

Wells, R. J. (1999). Rapid approximation to the Voigt/Faddeeva function and its derivatives. Journal of Quantitative
Spectroscopy and Radiative Transfer, 62(1), 29-48. https://doi.org/10.1016/S0022-4073(97)00231-8

Weisstein, E. W. (2019a). Hermite polynomial. Retrieved from http://mathworld.wolfram.com/HermitePolynomial.html

Weisstein, E. W. (2019b). Hermite–Gauss quadrature. Retrieved from http://mathworld.wolfram.com/Hermite-
GaussQuadrature.html

Weisstein, E. W. (2019c). Sinc function. Retrieved from http://mathworld.wolfram.com/SincFunction.html

59

https://www.mathworks.com/matlabcentral/fileexchange/47801-the-voigt-complex-error-function-second-version
https://www.mathworks.com/matlabcentral/fileexchange/66752-a-sampling-based-algorithm-for-the-voigt-complex-error-function
https://www.mathworks.com/matlabcentral/fileexchange/38787-faddeeva-package-complex-error-functions
https://doi.org/10.1007/s12145-017-0288-4
https://doi.org/10.1145/77626.77629
https://doi.org/10.1145/77626.77630
https://dx.doi.org/10.1016/j.jqsrt.2013.04.020
https://doi.org/10.2307/2002163
https://doi.org/10.1016/j.cpc.2008.04.012
https://doi.org/10.1016/j.jqsrt.2010.12.010
https://doi.org/10.1093/mnras/sty1680
https://doi.org/10.1504/IJSPACESE.2015.075911
https://doi.org/10.1080/07038992.2017.1346467
https://doi.org/10.1016/S0022-4073(96)00154-9
https://doi.org/10.1007/bf00644466
https://doi.org/10.1007/BF00653260
https://doi.org/10.1016/j.procs.2014.05.129
https://doi.org/10.1016/S0022-4073(97)00231-8
http://mathworld.wolfram.com/HermitePolynomial.html
http://mathworld.wolfram.com/Hermite-GaussQuadrature.html
http://mathworld.wolfram.com/Hermite-GaussQuadrature.html
http://mathworld.wolfram.com/SincFunction.html

http://esr.ccsenet.org Earth Science Research Vol. 8, No. 2; 2019

Appendix A

function vecFF = vecfadf(x,y,opt)

% This function file computes the Voigt/complex error function, also known

% as the Faddeeva function, providing rapid computation at required

% accuracy for the HITRAN-based radiative transfer application.

%

% SYNOPSIS:

% x - row or column vector

% y - scalar

% opt - option for the real and imaginary parts

%

% The code is written by Sanjar M. Abrarov, Brendan M. Quine, Rehan

% Siddiqui and Rajinder K. Jagpal, York University, Canada, May 2019.

bound = 5*1e4; % default bound to cover the HITRAN domain

num = 1e2; % common number for grid-points in interpolation

if max(size(y)) ˜= 1

disp('Parameter y must be a scalar!')
return

elseif ˜isvector(x)

disp('Parameter x is not a vector!')
end

if max(abs(x)) > bound || abs(y) < 1e-8

disp('x or y is beyond HITRAN range! Computation is terminated.')
return

end

if nargin == 2

opt = 3;

disp('Default value opt = 3 is assigned.')
end

if opt ˜= 1 && opt ˜= 2 && opt ˜= 3

disp(['Wrong parameter opt = ',num2str(opt),'! Use either 1, 2 or 3.'])
return

end

if y >= 0

vecFF = mainF(x,y,opt); % upper half-plane

else

vecFF = mainF(x,-y,opt); % lower half-plane

vecFF = conj(2*exp(-(x + 1i*y).ˆ2) - vecFF);

end

function MF = mainF(x,y,opt)

% Forming non-equidistantly spaced interpolating grid-points (IGP)

IGP = linspace(0,2.5,num);

IGP = [IGP,linspace(2.5,5.5,100 + num)]; % 100 more grid-points

IGP = [IGP,linspace(5.5,15,num)];

IGP = [IGP,linspace(15,100,num)];

IGP = [IGP,linspace(100,1000,num)];

IGP = [IGP,linspace(1000,10000,num)];

IGP = [IGP,linspace(10000,bound,num)];

IGP = [-(flip(IGP)),IGP];

IGP = unique(IGP); % exclude repeated values

MF = interp1(IGP,fadsamp(IGP + 1i*y),x,'spline'); % call ...
% external function <fadfsamp.m>. This MATAB function file is ...

% provided in paper [Abrarov, Quine & Jagpal, Appl. Num. Math., ...

% 129 (2018) 181-191].

% URL: https://doi.org/10.1016/j.apnum.2018.03.009

switch opt

case 1

MF = real(MF);

case 2

60

http://esr.ccsenet.org Earth Science Research Vol. 8, No. 2; 2019

MF = imag(MF);

end

end

end

Appendix B

In our publications (Quine & Abrarov, 2013; Abrarov & Quine 2015a) we have introduced the following product-to-sum
identity

k∏
m=1

cos
(t
2m

)
=

1
2k−1

2k−1∑
m=1

cos
(

m − 1/2
2k−1 t

)
, ∀k ≥ 1

and since (Gearhart & Shultz, 1990; Weisstein, 2019c)

sinc (t) =

∞∏
m=1

cos
(t
2m

)
from this product-to-sum identity it immediately follows that the sinc function can be expanded as a sum of cosines

sinc (t) = lim
k→∞

1
k

k∑
m=1

cos
(

m − 1/2
k

t
)

or

sinc (t) ≈
1
k

k∑
m=1

cos
(

m − 1/2
k

t
)
, k >> 1. (A.1)

Using a new method of sampling based on incomplete cosine expansion of the sinc function (A.1) we can obtain (Abrarov
& Quine, 2015a) (see also (Abrarov & Quine, 2015b) and cited literature in context therein)

w (z) ≈Ω (z + iς/2)

⇒Ω (z) ,
M∑

m=1

Am + Bmz
C2

m − z2 ,
(A.2)

where N = 23, M = 23, h = 0.25, ς = 2.75 and the expansion coefficients

Am =

√
π (m − 1/2)

2M2h

N∑
n=−N

eς
2/4−n2h2

sin
(
π (m − 1/2) (nh + ς/2)

Mh

)
,

Bm = −
i

M
√
π

N∑
n=−N

eς
2/4−n2h2

cos
(
π (m − 1/2) (nh + ς/2)

Mh

)
and

Cm =
π (m − 1/2)

2Mh
.

Similar to the Humlı́ček’s approximation (5), the series expansion (A.2) also deteriorates in accuracy with decreasing y.
We have shown how to overcome this problem by transformation of equation (A.2) into following form

w (z) ≈ e−z2
+ z

M+2∑
m=1

κm − λmz2

µm − νmz2 + z4 , (A.3)

where

κm = Bm

C2
m −

(
ς2

2

)2 + iAmς = Bm

(π (m − 1/2)
2Mh

)2

−

(
ς

2

)2
 + iAmς,

λm = Bm,

µm = C4
m +

C2
mς

2

2
+
ς4

16
=

(π (m − 1/2)
2Mh

)2

+

(
ς

2

)2
2

61

http://esr.ccsenet.org Earth Science Research Vol. 8, No. 2; 2019

and

νm = 2C2
m −

ς2

2
= 2

(
π (m − 1/2)

2Mh

)2

−
ς

2

2
.

The third equation that is used in the function file fadsamp.m is the Laplace continued fraction (Abramowitz & Stegun,
1972; Gautschi, 1970; Poppe & Wijers 1990a) given by

w (z) ≈

(
i/
√
π
)

z − 1/2
z− 1

z− 3/2
z− 2

z− 5/2
z− 3

z− 7/2
z− 4

z− 9/2
z− 5

z− 11/2
z

, (A.4)

Equations (A.2) and (A.3) cover the domains

{x, y ∈ R: |x + iy| ≤ 8} \ {y < 0.05 |x|}

and
{x, y ∈ R: |x + iy| ≤ 8} ∩ {y < 0.05 |x|} ,

respectively, while equation (A.3) covers the domain {x, y ∈ R: |x + iy| > 8} (see Fig. 1 in (Abrarov et al., 2018a)). This
three-domain scheme excludes all poles in computation and provides largest relative error ∼ 10−13 only.

Appendix C

The C/C++ function file Faddeeva.cc and its header Faddeeva.hh can be downloaded from the website [20]. To run the
program the following lines can be added to the end of the Faddeeva.cc function file

/**

These command lines can be added at the end of the source

file 'Faddeeva.cc'.
*/

#ifdef __cplusplus

include <cstdio>

include <cstdlib>

include <iostream>

include <iomanip>

#else

include <stdio.h>

#endif

/**

The function fRand(minNum, maxNum) generates a random number

within the range from 'minNum' to 'maxNum'.
*/

double fRand(double minNum, double maxNum){

double fMin = minNum, fMax = maxNum;

double f = (double)rand() / RAND_MAX;

return fMin + f * (fMax - fMin);

};

int main(void){

double(epsVal) = 1E-6; // epsilon value for accuracy

for(int k = 0; k < 1e7; k++){ // execute the computation ...

// 10 million times with random numbers 0 < x < 15 and positive y << 1.

FADDEEVA(w)(C(fRand(0,15),1E-5),epsVal);

};

return 0;

};

62

http://esr.ccsenet.org Earth Science Research Vol. 8, No. 2; 2019

As we can see from the body of the function <int main(void)>, this program computes 10 million random digits of x at
fixed value of y = 10−5. The epsilon value that determines accuracy of computation is taken to be 10−6. The execution
time on a typical laptop computer (we used Intel(R) Core(TM) i3-7020U CPU @ 2.30GHz, 8GB RAM) takes about 14
seconds.

It is interesting to note that with <double(espVal) = 1E-12;> the executions time increases to 17 seconds. As a subse-
quent step, at <double(espVal) = 0;> we should expect the highest accuracy and, therefore, the longest execution time.
Instead, however, the program becomes significantly faster and it takes about 8.5 seconds to compute all 10 million digits.
This unexpected behavior of the C/C++ implementation suggests that the program, most likely, does not guarantee the
prescribed accuracy for all input numbers x and y at <double(espVal) = 0;>. Therefore, we did not take this option as a
reference.

The following is the MATLAB code that also computes 10 million random numbers x ∈ [0, 15] at fixed y = 10−5. The
execution time is about 1.8 seconds only. As we can see, the MATLAB code based on interpolation is almost 8 times
faster than the C/C++ implementation.

% **

x = 15*rand(1e7,1); % this generates 10 million random numbers ...

% in the interval 0 < x < 15

y = 1e-5; % y is a scalar

tic;vecfadf(x,y,3);toc % this shows the run-time

% **

In order to compare the execution times for the interval x ∈ [0, 50000], we can simply replace the command lines above
in the C/C++ and MATLAB codes as

FADDEEVA(w)(C(fRand(0,50000),1E-5),epsVal);

and

x = 50000*rand(1e7,1); % this generates 10 million random numbers ...

% in the interval 0 < x < 50000

respectively. The execution times for the C/C++ and MATLAB implementations for this case become about 3 and about
1 seconds, respectively. Therefore, the MATLAB code is nearly 3 times faster.

Execution times can be decreased by more than an order of the magnitude on a more powerful computer of the latest
generation. However, we should anticipate that these ratios 8 and 3 will remain same.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

63

	Introduction
	Algorithmic Implementation
	Error Analysis and Run-Time Test
	Conclusion

