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Abstract 
In this study, photocatalytic removal of methylene blue (MB) from natural seawater was examined using 
carbon-modified titanium oxide (CM-n-TiO2) nanoparticles under illumination of real sunlight. CM-n-TiO2 
nanoparticles exhibited significantly higher photocatalytic degradation efficiency compared to unmodified 
n-TiO2. Photocatalytic removal studies were carried out at different initial dye concentrations (5-30 µM), catalyst 
dose (0.5-1.5 gL-1), and pH (3-9). The highest removal rate of MB was obtained at the optimal conditions of pH 
8 and 1.0 gL-1 of CM-n-TiO2. The solar photocatalytic removal of MB from seawater using CM-n-TiO2 obeyed a 
pseudo-first order kinetics according to the Langmuir-Hinshelwood model. 
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1. Introduction 
The wastewater from the textile industry is rated as one of the most polluting amongst all industrial sectors, 
considering the volumes discharged and effluent composition (Bizani, Futianos, Poulios, & Tsiridis, 2005). 
About 15% of the total amount of dye is lost during the dyeing production process and released in wastewater 
effluents (Slokar & Le Marechal, 1998). Several classes of dyes are considered as possible carcinogens or 
mutagens that threaten the entire ecosystem (Flora, Bagnaco, & Zanacchi, 1991). Besides this, the presence of 
these colored compounds, even in trace quantities, is highly undesirable, as it can block both sunlight penetration 
and oxygen dissolution, which are essential for aquatic life. Therefore, the contamination of seawater with these 
compounds is a major environmental concern. 

Typical classical techniques to remove these compounds, such as adsorption (Rauf, Qadri, Ashraf, & 
Al-Mansoori, 2009), coagulation (Riera-Torres, Gutiérrez-Bouzán, & Crespi, 2010), ion flotation (Shakir, 
Elkafrawy, Ghoneimy, Beheir, & Refaat, 2010) and sedimentation (Zodi, Potier, Lapicque, & Leclerc, 2010) 
have inherent drawbacks due to the formation of secondary toxic products that require further treatment. It is 
therefore crucial to develop an effective and inexpensive method to remove these harmful pollutants safely. 
Photocatalysis using nanostructured semiconductors has attracted considerable attention in recent years as a 
potential and economical method for mineralization of organic pollutants in contaminated water to carbon 
dioxide and water (Stylidi, Kondarides, & Verykios, 2004).  

Over the past several years, heterogeneous semiconductor photocatalysis using titanium dioxide has received 
considerable attention for its application in water splitting to produce hydrogen (Fujishima & Honda, 1972; 
Khan, Al-Shahry, & Ingler, 2002; Shaban & Khan, 2010; Shaban, 2013), and degradation of organic pollutants 
(Xu, Killmeyer, Gray, & Khan, 2006; Shaban, El Sayed, El Maradny, Al Farawati, & Al Zobidi, 2013; Shaban, 
2013). However, its utilization is limited to the UV region due to its wide band gap (3.0-3.2 eV). Therefore, 
several attempts were made to extend its optical response to the visible spectral range by doping it with transition 
metals (Choi, Termin, & Hoffman, 1994; Anpo, 1997), nitrogen (Asahi, Morikawa, Ohwaki, Aoki, & Taga, 
2001), and sulphur (Umebayashi, Yamaki, Itoh, & Asai, 2002). Recently, it has been reported that carbon 
modification of n-TiO2 lowered its bandgap energy to 2.32 eV, consequently enhanced photoresponse was 
observed (Khan, Al-Shahry, & Ingler, 2002). Sakthivel and Kisch (2003) observed a fivefold increase in 
photocatalytic activity of carbon-doped n-TiO2 as compared to nitrogen-doped n-TiO2. Xu et al. (2006) reported 
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that the carbon-modified n-TiO2 nanoparticles, synthesized by a wet process using a glucose (C6H12O6) solution 
as the carbon source, showed a significantly enhanced photocatalytic activity as compared to regular undoped 
n-TiO2. 

Although seawater is an increasingly important water source, its behavior as a medium for photocatalytic 
removal of contaminants has not been studied extensively. Most studies dealing with the photodegradation of 
dyes using n-TiO2 have been carried out in distilled water under illumination of UV light sources. On the basis 
of these considerations, visible light active carbon-modified (CM)-n-TiO2 nanoparticles were prepared by sol-gel 
method using carbon-containing precursor as a source of both carbon and titanium without using any external 
source of carbon. The photocatalytic performance of CM-n-TiO2 was examined for the photocatalytic removal of 
methylene blue, an intensely colored cationic dye, from natural seawater under sunlight illumination. The 
photocatalytic activity of CM-n-TiO2 was compared with regular n-TiO2. In succession, the effects of 
photocatalyst loading, MB concentration, and pH on the photocatalytic removal rate of MB were investigated. 

2. Materials and Methods 
2.1 Chemicals and Reagents 

All chemicals were of analytical grade and were used without any further purification: titanium butoxide (Fluka, 
97%); titanium trichloride (Sigma-Aldrich, TiCl3 12% in hydrochloric acid (5-12%)); methelyene blue 
(Riedel-De Haën AG) and ethanol (Sigma-Aldrich, HPLC). HCl and NaOH (analytical grade) were used for pH 
adjustment. Solutions were prepared with ultra-pure water obtained using a Millipore device (Milli-Q). 

2.2 Synthesis and Characterization of n-TiO2 and CM-n-TiO2 Nanoparticles 

Regular (unmodified) titanium dioxide (n-TiO2) nanoparticles were synthesized by hydrolysis and oxidation of 
titanium trichloride (TiCl3) in an aqueous medium. Visible light active carbon-modified titanium dioxide 
(CM-n-TiO2) nanoparticals were synthesized by a sol-gel synthesis using titanium butoxide (Ti[O(CH2)3CH3]4), 
carbon-containing precursor, as a molecular precursor of TiO2 as well as a carbon source. The preparation and 
characterization of carbon-modified titanium oxide (CM-n-TiO2) and unmodified n-TiO2 have been reported in 
details elsewhere (Shaban et al., 2013). 

2.3 Photocatalytic Removal Experiments  

All solar photocatalytic experiments were carried out at the Faculty of Marine Sciences, Obhur, Jeddah, KSA, in 
the daytime between 11:00 am and 15:00 pm, during June-July, 2012. Natural seawater samples were collected 
from Sharm Obhur, Jeddah, KSA. Before spiking with different concentrations of MB, seawater samples were 
passed through Whatman GFC to remove any solid particles. Experimental set up for photocatalytic degradation 
consisted of a magnetically stirred 500 mL glass reactor loaded with the seawater solution (400 mL) containing 
different concentrations of MB ranging from 5 to 30 µM. The synthesized photocatalyst (n-TiO2 or CM-n-TiO2) 
was added with continuous stirring for uniform mixing. The photocatalytic reactor was directly exposed to 
natural sunlight. The average solar intensity was 1200 Wm-2, measured by Field Scout Light Sensor Reader 
(Spectrum Technologies, Inc.) equipped with 3670i Silicon Pyranometer Sensor.  

2.4 Sample Analysis 

Aliquots of treated seawater samples were regularly withdrawn from the reactor and centrifuged immediately to 
remove the catalyst. The samples were analyzed using a Shimadzu UV-VIS Spectrophotometer (Model 
PharmaSpec UV-1700). The photodegradation efficiency (η) was then calculated from the decrease of 
absorbance of the dye solution at its maximum absorption wavelength (668 nm) as follows: 

η = [(Co− Ct)/Co] × 100          (1) 

where Co represents the initial concentration of the dye solution and Ct represents the concentration of the dye at 
solar light irradiation time (t). 

3. Results and Discussion 
3.1 Effect of Catalyst Dose  

To ensure maximum absorption of photons and to avoid an excess amount of catalyst, the optimum catalyst 
loading must be determined. The influence of CM-n-TiO2 dose on photodegradation of MB (20 µM) under 
natural sunlight is shown in Figure 1a. The photocatalytic removal rate of MB increased with increase in catalyst 
dose from 0.5 to 1.0 gL-1. The increase in catalyst amount increases the number of active sites on the 
photocatalyst surface thus causing an increase in the number of •OH radicals which can take part in decoloration 
of the dye solution. Further increase in the catalyst loading to 1.5 gL-1 slightly decreases the degradation 
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