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Abstract 
Full assessment of soil carbon (C) and nitrogen (N) pools is necessary for long-term sustainability of agricultural 
production and provides information on plant health and nutrient cycling. A major component of nutrient cycling 
is plant root C and N. Although root C and N contribute to nutrient cycling, determination of these quantities is 
laborious and tedious and is, therefore, not commonly done. In this study we attempt to determine the feasibility 
of using remotely sensed canopy reflectance as a proxy to determine root C and N data of live, standing forages. 
The study site was the United States Department of Agriculture-Grazinglands Research Laboratory located in El 
Reno, Oklahoma. Twelve plots in each of two sites (a native, tallgrass prairie and an improved, Old World 
Bluestem pasture) were used for collection and measurement of root C and root N and measurement of canopy 
reflectance using a field portable hyperspectral spectroradiometer. Root and soil samples were then taken from 
under the remote sensed area for total C and N analysis using the combustion method. The results of this study 
indicated that it is feasible to predict root C and N, but further study is required to improve model accuracy. 
Keywords: Canopy reflectance, forage, remote sensing, root biomass carbon, root biomass nitrogen  
1. Introduction 
Van Ginkle et al. (1996) indicated that forage tissue nutrients in grassland aboveground biomass is shuttled to 
belowground biomass storage in the roots. This study reaffirmed previous research that 20-50% of all 
photosynthates, mainly carbon containing molecules, made in the aboveground biomass are transported to the 
belowground biomass (Merckx et al., 1986; VanVeen et al., 1989; Meharg & Killham, 1990; Swinnen et al., 
1995). Additionally, root C and N is altered by climatic and abiotic factors, such as soil texture, pH, water 
holding capacity, and temperature (Avice et al., 1996, Bouma et al., 1997, Gavito et al., 2001, Johnson et al., 
2006, Scheffer and Aerts, 2000). Upon decomposition, C and N stored in the roots can return to the soil profile 
(Scheffer & Aerts, 2000). 
Grasslands, which account for about 26% of the Earth’s land area and about 70% of total agricultural area 
(Ramankutty et al., 2008; Ramankutty & Foley, 1999; FAO, 2010), are known to have root biomass equal to, or 
greater than, the mass of the aboveground forage (Yang et al., 2010). Robinson (2004) analyzed the allometric 
scaling equation proposed by West et al. (1997; 1999), and found that for relatively small plants, like grasses, the 
equation indicated that prediction of root mass was an isometric function of aboveground mass. Frank et al. 
(2010) also showed a strong (but non-linear) relationship between shoot biomass and root frequency of grasses 
growing under both dry and mesic conditions in Yellowstone National Park. Cheng et al. (2015) investigated the 
allometric partitioning theory on the above- and below-ground biomass in understory tropical plants (n = 1586), 
and noted a strong statistical relationship between the two variables. Moreover, this relationship was nearly 
isometric. Similarly, there is a strong relationship between leaf concentrations of N and that found in the roots. 
Kerkhoff et al. (2006) conducted an analysis on a large data set (n = 1287 plant species) containing N 
concentration of leaves, stems, roots, and reproductive structures of both woody and herbaceous species. They 
showed that a statistically significant relationship exists between the root N and that in the plant’s leaves.  
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“Grasslands” is a general term and includes rangelands, native grasslands, and pastures, which are typically used 
to provide forage for grazing animals. Unlike rangelands and native grasslands, pastures are typically intensively 
managed (e.g., fertilized) and consist of forages selected and managed (e.g., by applying herbicides and 
fertilizers) to support animal-based agriculture. Agriculturalists that base their efforts on managed grasslands are, 
or will, face increasing pressure to maintain profitability in the face increasing environmental regulations. This is 
exemplified by Knoblauch et al. (2017) who noted that changes in the European milk market coupled with 
European environmental directives are forcing dairy farmers to improve pasture/forage production while at the 
same time reducing nutrient loads, primarily N, to the environment. To this end, Knoblauch et al. (2017) used 
vegetation indices determined from remotely sensed data collected from managed grasslands to investigate 
possible relationships between N fertilizer levels, plant biomass, and N dynamics. These researchers found that 
the Normalized Difference Vegetation Index (NDVI) and Simple Ratio (SR) were moderately related to plant 
biomass, but could not be used to link plant biomass to soil N processes.  
However, it has been demonstrated that hyperspectral canopy reflectance data can be used to determine selected 
forage quality variables, including N (Wessman et al., 1988; Starks et al., 2004; Starks & Brown, 2010, Starks et 
al., 2016). Because of the connection between C and N in the canopy and that in the roots, it is hypothesized that 
hyperspectral canopy reflectance could serve as a proxy to estimate the concentrations of root C and N in 
standing, live forage. Such an approach would provide additional information concerning potential root 
contributions to the soil nutrient pool, thus allowing better management of chemical inputs and to reduce 
unintended inputs of N to stream and groundwater resources. Thus, our objective is to examine the feasibility of 
using hyperspectral canopy reflectance to predict root C and N. 
2. Material and Methods 
2.1 Site Description 
This study was conducted at the Grazinglands Research Laboratory in El Reno, Oklahoma (35°34'4.19"N,    
98° 3'36.22"W; 414 m above sea level) during May to August 2015 and May to August 2016. Precipitation in the 
study area is bimodal with rainfall occurring in May-June and October-September. The months of July and 
August are typically hot and dry. The 30-year normal (NCDC, 2017) monthly average precipitation is 65.8 mm, 
while the 30-year normal daily high temperature during May to August is 33.2°C, and the low is 21.2°C.  
Two perennial forage systems were used in this study. One system was a large field consisting of an undisturbed, 
native tallgrass prairie (TGP) composed of a mixture of Big bluestem (Andropogon gerardii Vitman.), Little 
bluestem (Schizachyrium scoparium (Michx.) Nash), Indiangrass (Sorghastrum nutans (L) Nash), and 
Switchgrass (Panicum vergatum L.). This field is gently sloping (≈ 1%) with an eastward aspect. The other 
forage system was located on a gently sloping (≈ 2%) field with a westward aspect and consisted of a 
monoculture of Old World Bluestem (OWB; Bothriochloa ischaemum (L) Keng). Both the TGP and OWB fields 
were subjected to grazing by stocker cattle with animal numbers and grazing bouts based on visual inspection 
and measurements of biomass availability. The OWB site was established over ten years before the study began 
and is annually fertilized with 89.7 kg per hectare urea and treated with Grazon ® (Dow AgroSciences, Midland, 
MI, USA) at 946.4 mL per acre. Fertilizer and herbicide treatments were not applied to the TGP field. The soil 
type for the research area was Bethany silt loam (a fine, mixed, superactive, thermic Pachic Paleustolls). 
Physical properties of the soil in the research area are presented in Table 1.  
 
Table 1. Soil properties of the forage systems used in this study 

Soil Property Units TGP OWB 
Texture -- Silt Loam Silt Loam 
Bulk density g cm-3 1.4 (0.03) 1.4 (0.02) 
Total Carbon % 1.8 (0.1) 1.7 (0.1) 
Total Nitrogen % 0.2 (0.01) 0.2 (0.01) 
pH -- 5.9 (0.4) 5.8 (0.2) 
Organic matter % 2.0 (0.32) 2.0 (0.28) 
Electrical Conductivity μS cm-3 357 (28) 299 (54) 

Note. TGP=Tallgrass prairie; OWB=Old World Bluestem. Values in parentheses are standard errors (n = 12 for 
each forage system). 
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2.2 Sampling Design 
Four east-west transects, spaced about 100 m apart, were laid out in each field. Along each transect a 15 m2 
sampling area was established at the top, middle, and toe of the slope. Thus, each slope position was replicated 
four times in each field. For this study it was assumed that variations in topographic aspect and slope, forage 
type, fertilizer vs. no fertilizer treatment, and the effects of grazing (urine and fecal patches) would induce 
variations in root biomass C and N concentrations. Each replicate in each field was sampled on 6 and 25 June 
and 14 July in 2015 and on 6 and 22 June and 15 July in 2016; thus, n = 144 samples. For ease of reference 
below, we refer to the early June sampling dates of both years as “sampling date 1”, the late June sampling as 
“sampling date 2”, and the July sampling as “sampling date 3”. 
2.3 Sampling Protocols 
2.3.1 Remotely Sensed Data 
Before root collection, canopy spectral reflectance data were collected in three replicates in each plot using an 
ASD field portable hyperspectral spectroradiometer (PANalytical, Inc., Westborough, MA). The 
spectroradiometer had a 25o field-of-view and the spectra were acquired 0.5 m above the canopy, producing a 
view diameter of about 22 cm. This view area typically represented the reflectance from a single plant or small 
group of identical plants. Prior to collecting the canopy spectra, the spectrum of a white reflectance panel 
(Labsphere Inc., New Hampshire, USA) was collected. Division of the canopy reflectance by the panel 
reflectance yielded a reflectance factor (RF) spectrum. The three RF spectra for each replicate were averaged and 
then converted into an absorbance spectrum via:  ܾ݁ܿ݊ܽݎ݋ݏܾܣ = log ( ଵோி). 

2.3.2 Root Sampling and Preparation 
Root samples were removed from the ground in a 15 x 15 x 15 cm block of soil (containing the plants measured 
by the spectroradiometer) from each of the 12 plots in the TGP and OWB fields. The soil block was placed in a 
bag, labeled and put on ice, transported to the laboratory, and stored at 4°C until processing. 
Root processing consisted of removing large and fine roots from the soil block from each sampling point. Roots 
were picked out of the soil, washed, and dried at room temperature for one week. After the roots were dry, the 
sample was ground in a Wylie Mill to pass through 2 mm mesh sieve. Each sample was then weighed into 
approximately 2 g samples, wrapped in tin foil, and analyzed using a combustion analyzer (Carlo Erba 
Elementar, MAX, Milan, Italy) for C and N content. 
2.4 Statistical Analysis 
Statistical analysis of measured root C and N content was conducted using a mixed model procedure in R (R 
Core Team, 2017) to compare means (ANOVA) between forage systems and to evaluate possible impacts of 
sampling date , slope aspect, slope position, and their various interactions. Statistical significance of treatment 
effects was determined at p = 0.05. Contrasts were used to determine the effect of forage system and date on root 
C and N content.  
The spectral absorbance data for a given replicate were paired with their respective measured root C and N 
values. The data pairs (n = 144) were entered into JMP Pro 13 (SAS Institute, Cary, NC) to develop calibration 
equations relating C or N to the spectral data using either recursive partitioning (RP) or artificial neural networks 
(ANNs). Recursive partitioning is a data mining technique in which the data are partitioned according to 
relationships between the predictors and a response variable; thus, creating a decision tree. The partitioning 
continues recursively until a desired level of fit is achieved. Artificial neural networks seek to associate a 
combination of all predictors with the response variable through a set of “hidden neurons” whose number is 
based upon the number of predictors and responses. The neurons learn through trial and error as the number of 
cases is presented to them and some level of learning is achieved. Because this was an exploratory study which 
produced a smaller than desired data set, we chose to use all of the data to construct and then evaluate the 
calibration equations using k-fold cross-validation. In k-fold validation, the calibration data set is randomly 
divided into 5 (in this case) somewhat equally-sized data sets. Four training data sets are used to construct a 
calibration (sometimes called prediction) equation, which is then used to predict the response variable in the test 
data set that was withheld. The error of cross-validation statistics are then determined and averaged as the 
algorithm cycles through the remaining data sets. The statistics used herein to evaluate the performance of the 
cross-validation are the root mean square error (RMSE) and/or the coefficient of determination (r2). 
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3. Results 
3.1 Weather Conditions 
The average daily high and low temperatures from May to August in 2015 were 25.2 and 22.3°C, respectively, 
and the total precipitation during this time was 161 mm. In 2016 the average high and low temperatures over the 
same time period were 26.4 and 21.6°C, respectively, and the total precipitation was 126 mm. 
3.2 Measured Root Carbon Content 
Variation in root biomass C was not dependent upon slope position, sampling date or forage system (p > 0.5), 
specifically but did have significant interactions (Table 2). In fact, year was significant (p ≤ 0.5) and interacted 
strongly with slope position and forage system, but not to the level of being statistically significant (0.06 < p < 0.47). 
 
Table 2. Results of ANOVA for root biomass carbon (root C)  

 Sum of Squares Df F-Value p-Value 
Y 436.68 1 54.16 ≤0.05 
SP 4.59 2 0.28 0.75 
SD 10.97 2 0.68 0.51 
FS 1.30 1 0.16 0.69 
Y:SP 47.27 2 2.93 0.06 
Y:SD 0.01 1 0.01 0.98 
SP:SD 10.85 4 0.34 0.85 
Y:FS 0.04 1 0.01 0.95 
SP:FS 142.64 2 8.85 ≤0.05 
SD:FS 39.02 2 2.42 0.10 
Y:SP:SD 12.44 2 0.77 0.47 
Y:SP:FS 31.98 2 1.98 0.15 
SP:SD:FS 65.11 4 2.02 0.10 
Residuals 564.39 70   

Note. Y=year; SP=slope position; SD=sampling date; FS=forage system; DF=degrees of freedom. Table also has 
the effect of each interaction. n=144. 
 
Sampling date did not significantly affect root c (p=0.51). Slope position was not significant to root c either 
(p=0.75). An interactions containing the variables slope position with forage system was significant (p≤0.05). 
Table 3 gives the mean root C values by slope position, forage system, and year. From Table 3 it is observed that 
the middle and toe slope positions in the TGP forage system have statistically similar mean root C values in 2015 
and that these values are higher (statistically) than that observed at the top of the slope. In 2016, root C is about 3 
to 7% higher (absolute) along the slope positions than observed in 2015.  
 
Table 3. Least squares means of root biomass C as a function of slope position, forage system and year. Means in 
column within a year having differing superscript letters are significantly different at p>0.05 

                                      Mean Root Biomass C 
 2015 2016 

TGP     
Top Slope 34.58b 41.72b 
Middle Slope 37.91a 42.80a 
Toe Slope 37.12a 40.98b 

OWB     
Top Slope 38.35a 42.38a 
Middle Slope 36.25b 36.68b 
Toe Slope 36.93b 41.64a 

Note. TGP=Tallgrass prairie; OWB=Old World Bluestem. 
 
In 2016, however, the mid-slope position has the highest root C value and the top and toe slope positions are 
lower and statistically similar to each other in TGP. In the OWB forge system in 2015, the middle and toe slope 
positions had statistically similar root C values, which were lower than that observed at the top of the slope. In 
2016, the top slope position again had the highest root C value followed closely by the toe slope positions. The 
mid slope position had both statistically and practically lower root C values. 
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Figure 1 is a box-and-whisker plot of root C as a function of forage system, slope, position, and sampling date. 
In Figure 1, sampling date represents the respective sampling time of both years, as explained earlier. From 
Figure 1 it is observed that root C varied considerably: from ≈ 24% at the top of the slope in the TGP forage 
system during sampling date 1, to > 40% in both fields at various slope positions and sampling dates. 
 

 

Figure 1. Root biom
ass percent C as a function of forage system

 (TG
P = tallgrass prairie, O

W
B = O

ld W
orld Bluestem

), slope 
position (TPS = top of slope, M

S = m
iddle of slope, TS = Toe of slope), and sam

pling period (1, 2, or 3).  (N
ote: sam

pling period 1 
= the early June sam

pling in both 2015 and 2016, sam
pling period 2 = the late June sam

pling in both 2015 and 2016, and sam
pling 

period 3 = the July sam
pling in both 2015 and 2016) 



enrr.ccsenet.org Environment and Natural Resources Research Vol. 8, No. 1; 2018 

89 

3.3 Measured Root Nitrogen Content 
Root N did not vary as a function of forage system (p = 0.65) or sample date (p = 0.25) (Table 4). However, root 
N did vary significantly as a function of year (p < 0.05), slope position (p≤0.05) and had a tendency to interact 
with forage system (p = 0.07), slope aspect and sampling date (p≤0.05), sampling date and forage system 
(p≤0.05), year, slope position and sampling date (p≤0.05) and slope position, sampling date and forage system 
(p≤0.05). Root N content in 2016 was statistically greater than in 2015 in both TGP and OWB. The first 
sampling showed statistically similar root N content in both forage systems (0.85%).  
 
Table 4. Descriptive statistics for root nitrogen in studied forage systems in 2015 and 2016.  

 Sum of Squares Df F-Value p-Value 
Y 0.36 1 14.66 ≤0.05 
SP 0.15 2 3.10 ≤0.05 
SD 0.07 2 1.399 0.25 
FS 0.01 1 0.20 0.65 
Y:SP 0.01 2 0.29 0.74 
Y:SD 0.01 1 0.42 0.52 
SP:SD 0.28 4 2.76 ≤0.05 
Y:FS 0.12 1 4.91 ≤0.05 
SP:FS 0.14 2 2.82 0.07 
SD:FS 0.36 2 7.32 ≤0.05 
Y:SP:SD 0.06 2 1.18 0.31 
Y:SP:FS 0.16 2 3.16 ≤0.05 
SP:SD:FS 0.43 4 4.31 ≤0.05 
Residuals 1.97 79   

Note. Y=year; SP=slope position; SD=sampling date; FS=forage system; DF=degrees of freedom. Table also has 
the effect of each interaction. n=144. 
 
Table 5 gives the results of the means comparison test for root N as function of year, slope position, sampling 
date, and forage system. From Table 5 it is observed that in both 2015 and 2016, the top slope position in the 
TGP forage system had the highest root N content, and that root N decreased with lower slope position in both 
years. In 2015, root N tended to be similar among slope positions in the OWB forage system, but the top slope 
position had higher root N in 2016 as compared to the other slope positions. 
 
Table 5. Least squares means of root biomass N as a function of slope position, forage system and year. Means 
in column within a year having differing superscript letters are significantly different at p>0.05 

                                     Mean Root Biomass N 
 2015 2016 

TGP     
Top Slope 0.73a 0.88a 

Middle Slope 0.63b 0.80a 

Toe Slope 0.57c 0.69b 

OWB     
Top Slope 0.51b 0.91a 

Middle Slope 0.58a 0.80a 

Toe Slope 0.60a 0.81b 

Note. TGP=Tallgrass prairie; OWB=Old World Bluestem. 
 
Figure 2 is a box-and-whisker plot of root N as a function of forage system, slope, position, and sampling date. 
From Figure 3 it is observed that root N varied from below 0.4% at the mid-slope positions in both the OWB and 
TGP forage systems during sampling period 2 and 3, respectively, to > 1.2% in OWB during sampling period 1 
in both the middle and top slope positions. 
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3.4 Remotely Sensed Root C and N 
In the calibration phase, the RP technique indicated that about 76% of the variation in measured root C was 
accounted for by the canopy reflectance spectra. However, during calibration, the ANN only accounted for about 
23% of the variability in measured root C. In the cross-validation phase, both the RP and ANN procedures 
indicated that about 56% (RP) and 62% (ANN) of the variability in root C could be explained by the canopy 
reflectance spectra (Table 6). (In the application of ANNs it is better to have a network that tests well despite low 
training statistics than to have a network that trains well but does not predict well (Lawrence, 1994).) The 
RMSEs were from 2.2% (RP) to 2.9% (ANN) in the cross-validation. 
 
Table 6. Calibration and cross-validation of relationships developed between the canopy hyperspectral 
reflectance data and other 

RP  ANN 
 Calibration Validation  Calibration Validation 
RV RMSE r2 RMSE r2  RMSE r2 RMSE r2 
Root C -- 0.76 2.23 0.56  3.92 0.23 2.92 0.62 
Root N -- 0.78 0.09 0.67  0.15 0.47 0.09 0.80 

Note. RMSE=root mean square error; RV=response variables; root C=root carbon; root N=root nitrogen; 
RP=recursive partitioning; ANN=artificial neural network. 
 
In the calibration phase, the RP technique indicated that about 78% of the variation in measured root N was 
accounted for by the canopy reflectance spectra, whereas when the spectral were used in the ANN technique, 
only about 47% of the variability could be explained (Table 6). The results for root N cross-validation were 
stronger than those observed for root C where 67% (RP) and 80% (ANN) of the variation in measured root N 
was accounted for by the canopy reflectance spectra. The RMSEs were 0.67% (RP) and 0.09% (ANN). It is also 
observed that the calibration r2 in the ANN was lower than that observed for the cross-validation (Table 6). 
4. Discussion and Conclusions 
Although the systems we included in our study represented unmanaged and managed forages (i.e., the managed 
system included N applications), our results showed that forage system was not a factor in inducing variation in 
root biomass C or N. However, large variations in these quantities were observed and were a function of both 
year and slope position. We deemed the variation large enough to investigate the feasibility of using 
hyperspectral canopy reflectance to predict root biomass C and N. 
Both the recursive partitioning (RP) and artificial neural networks (ANN) indicated that, during cross-validation, 
from 56% to 80% of the variation in root C and N could be explained by the hyperspectral canopy reflectance 
data. Although the RP technique showed higher r2 values during equation calibration, the ANN approach yielded 
higher r2 (0.62 and 0.80 for root C and N, respectively) during equation cross-validation; that is, the ANN 
equations tested better than the decision trees developed in the RP approach. It should be noted that we did 
evaluate the use of partial least squares (PLS) regression, a linear regression technique, in developing predictive 
equations for root C and N. This was not discussed in the main body of paper since the PLS results indicated that 
the r2s from the cross-validation were < 0.06. This finding from the PLS, coupled with RP and ANN results, 
suggests that non-linear approaches like RP and ANN may be more appropriate for quantifying root C and N 
from canopy reflectance. Identifying the source of the non-linearity between root C and N and canopy 
reflectance was beyond the objectives of this study.  
The finding from our preliminary study suggests that it is feasible to predict root biomass C and N via remote 
sensing of live forage canopies using hyperspectral canopy reflectance data. However, a more robust 
examination is needed to test the applicability of this approach over a wider range of root C and N concentrations, 
and preferably over a range of forage and agronomic crop types. Our study was performed on live standing 
grasses with an erectophile morphology from which canopy reflectance was measured from the nadir position. 
Although our measurements were made on closed canopies to minimize reflectance from extraneous sources, it 
is possible that reflected radiation from exposed leaf litter or soil could have contributed to the “canopy 
reflectance” in some cases; thus, reducing the accuracy of our calibration equations. The possible impact of litter 
and soil reflectance was not evaluated in our study. 
In our study we used reflected radiation from plant canopies over the 400-2200 nm spectrum. We suggest that 
the use of hyperspectral reflectance data to assess root C and N is likely to be more robust than approaches using 
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current vegetation indexes typically calculated from wide-band multi-spectral radiometers on satellite-, aircraft-, 
and handheld- platforms. The hyperspectral data provides narrow-band data that is better related to plant 
chemistry. However, from an agricultural producer’s point of view, hyperspectral spectroradiometers that collect 
data from the region noted above are often costly and not practical for use. Thus, further research is needed to 
isolate and minimize the specific wavebands needed to quantify the variable(s) of interest in order to reduce cost 
and increase likelihood of use. 
Full assessment of soil C and N pools is necessary to develop methods to ensure long-term sustainability of 
agricultural production and to provide information on plant health and nutrient cycling. Should remote sensing of 
root C and N be further corroborated, it may be possible to provide a tool to agricultural producers to assist in better 
managing fertilizer inputs for forages and crops, thereby increasing profitability and enhancing environmental 
outcomes. At a larger scale, remote sensing may provide useful information regarding the state of root C and N, 
which could be coupled with allometric equations to assess landscape and ecosystem level nutrient cycling. 
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