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Abstract

The increase in negative effects of fossil fuels on the environment has forced many countries to use renewable
energy sources, especially wind energy. Wind speed is the most important parameter of the wind energy.
Probability distributions are useful for estimating wind speed because it is a random phenomenon. This study
analyzes wind speed frequencies using wind data from Tabriz synoptic station in Iran. Four different
distributions are fitted to the maximum annual wind from station, and parameters of the distributions are
estimated using the method of maximum likelihood and the method of moments. Calculations are performed
with Mathematica, a computer algebra system developed by Wolfram Research. The advantage of using this
software is that the symbolic, numerical, and graphical computations can be combined and that all quantities can
be accurately calculated; in particular, there is no need to resort to any approximate methods for the calculation
of quantiles. There is a ready-to-use command for calculating quantiles from distributions that are built in
Mathematica, while for other distributions they can be easily and accurately calculated by inverting the
cumulative distribution functions or by solving nonlinear equations where the inversion is not possible. The best
distribution is selected based on the root mean square error (RMSE), the coefficient of determination (R?), and
the probability plot correlation coefficient (PPCC). The results indicate that the best performance can be
obtained by the Gamma distribution.
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1. Introduction

Nowadays more and more countries in the world have had to seek help to renewable resources, such as wind,
solar and geothermal, not only to meet the increasing energy demand, but also for environmental reasons. Wind
energy production is an attractive and feasible method employing renewable energy source without emission of
pollutants.

Wind energy can be considered a green power technology as it has only minor impacts on the environment.
Currently, wind energy is one of the fastest developing renewable energy source technologies across the globe.
Countries all around the world are doing a thorough research on the specific energy that comes out by the uneven
heating by the sun. Wind analysis gives remarkable information to researches involved in renewable energy
studies.
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Knowledge of the statistical properties of wind speed is essential for predicting the energy output of a wind
energy conversion system. Because of the high variability in space and time of wind energy, it is important to
verify that the analyzing method used in measuring wind data will yield the estimated energy collected that is
close to the actual energy collected. The wind speed distribution, one of the wind characteristics, is of great
importance not only for structural and environmental design and analysis, but also for the assessment of the wind
energy potential and the performance of wind energy conversion system as well. For this reason, an accurate
determination of probability distribution of wind speed values is very important in evaluating wind speed energy
potential of a region. Wind energy potential can be determined by wind measurements of a certain investigation
region depending on years. And also extreme wind speed frequency estimation is usually important in many
fields of environmental studies such as climatology, hydrology, developing wind energy facilities, agricultural
management, and structure designing (Lopez, 1998; Gomes et al., 2003).

Many investigators have tried to fit different frequency distributions to wind data. Al Buhairi and Mahyoub
(2006) found that, in recent years, many efforts have been made to construct an adequate model for the wind
speed frequency distribution. In the literature, the Weibull distribution is commonly used in the practical studies
related to the wind energy modeling (Steven, 1979; Toure, 2005; Zhou et al., 2006). Auwera et al. (1980) used
Weibull three-parameter model for estimating mean wind power densities. Weisser (2003) analyzes wind energy
analysis of Grenada using the Weibull density function. Lun and Lan (2000) studied Weibull parameters using
long-term wind observations. Seguro et al. (2000) estimated the parameters of Weibull wind speed distributions
for wind energy analysis. Celik (2003) used Weibull distribution to estimate wind energy output of large- and
small-scale turbines. Rehman et al. (1994) used Weibull parameters for wind speed distribution in Saudi Arabia.

Recently, Pandey and Sutherland (2003) fitted generalized Pareto distribution to peak-over-threshold extreme
wind speed through bootstrapping. Holmes and Moriarty (1999) also suggested generalized Pareto distribution to
fit the extreme wind speed in Australia. Recently, Zaharim et al. (2009) fitted gamma, lognormal and Weibull
distributions to wind speed data in the east coast of Malaysia. The numerical and graphical results obtained from
the specific statistics showed that the Weibull and gamma distributions, whose parameters are estimated using
the maximum likelihood principle, provide the best fits for the year 2005 and 2006, respectively.

This study aims to find the best probability distribution to the annual maximum wind speed of Tabriz, Iran and is
the first study in Iran that investigates the best probability distribution of maximum wind speed. The study uses
the Mathematica code developed for (Ghorbani et al., 2010); see http://users.utu.fi/ruskeepa/ .

2. Methodology
2.1 Probability density functions

Four different probability distributions are considered in this study, some of which are very widely used in
climatology frequency analysis. These distributions and their probability density functions are presented in Table
1. Only the Gamma, lognormal, truncated extreme value and truncated logistic distributions are used.

Since wind speed is always non-negative, it is more realistic to truncate the density functions so that they yield a
domain that consists of only non-negative values. The truncation is done by simply dividing the original density
function by a suitable constant, to make the integral of the truncated density function equal to one; the constant is
given by P(X > 0) =1-F(0), where F(x) is the cumulative distribution function of the original distribution. The
CDF of the truncated distribution is then calculated by integration the truncated density from 0 to x. [Note: In the
truncated Pearson type III density function, the term I'(a,—&/f3)is the value of the incomplete gamma function
I'(a,z)= J"xt"’le”a't ]-

If £=0, then this distribution reduces to the gamma distribution. The extreme value is the limiting distribution
for the largest values in large samples drawn from a variety of distributions, including Normal, Exponential, and
Weibull distributions.

Table 1. Probability distributions and their density functions
2.2 Method of parameters estimating
2.2.1 Mmaximum-likelihood estimation (MLE)

In statistics, maximum-likelihood estimation (MLE) is a method of estimating the parameters of a statistical
model. When applied to a data set and given a statistical model, maximum-likelihood estimation provides
estimates for the model's parameters.

The method of maximum likelihood corresponds to many well-known estimation methods in statistics. In
general, for a fixed set of data and underlying statistical model, the method of maximum likelihood selects
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values of the model parameters that produce a distribution that gives the observed data the greatest probability
(i.e., parameters that maximize the likelihood function). Maximum-likelihood estimation gives a unified
approach to estimation, which is well-defined in the case of the normal distribution and many other problems.
However, in some complicated problems, difficulties do occur: in such problems, maximum-likelihood
estimators are unsuitable or do not exist.

Suppose there is a sample xy, X, ..., X, of n iid observations, coming from a distribution with an unknown pdf
fo(*). Tt is however surmised that the function f, belongs to a certain family of distributions {f(-|0), 6 € ® },
called the parametric model, so that f, = f(*|0p). The value 0, is unknown and is referred to as the "true value" of
the parameter. It is desirable to find some estimator & which would be as close to the true value 8, as possible.
Both the observed variables x; and the parameter 6 can be vectors.

To use the method of maximum likelihood, one first specifies the joint density function for all observations. For
an iid sample this joint density function will be:

f(. %X, |0) = £(x]0).1(x,]0)...f (x,|0) (1)
Now we look at this function from a different perspective by considering the observed values x, X,, ..., X, to be
fixed "parameters" of this function, whereas 6 will be the function's variable and allowed to vary freely. From
this point of view this distribution function will be called the likelihood:

0O] Xy X,) = [ (X X X, ) (2)

O=T1/t
2.2.2 Method of moments (MOM)

The method of moments (MOM) is a technique for constructing estimators of the parameters that is based on
matching the sample moments with the corresponding distribution moments. First, let:

pi(a) =E(X [ a) ©)
denote the i'th moment of X about 0. Note that we are emphasizing the dependence of these moments on the
vector of parameters a. Note also that () is just the mean of X, which we usually denote by p. Next, let

Mi(X) = (Xji+ Xpi + -+ X)) /n 4)

denote the i'th sample moment. Note that we are emphasizing the dependence of the sample moments on the
sample X. Note also that M;(X) is just the ordinary sample mean, which we usually just denote by M,,.

To construct estimators Wy, W, ..., Wy for our unknown parameters a;, a,, ..., ay, respectively, we attempt to
solve the set of simultaneous equations:

p’](Wla W25 eeey Wk) = Ml (Xh X27 eery Xn) (5)

MZ(Wls W29 eeey Wk) = MZ (Xl, XZ: cees Xn) (6)

”’k(Wl’ W25 sey Wk) = Mk (Xh X23 eeey Xn) (7)

for W, W, ..., Wy in terms of X, X,, ..., X,,. Note that we have k equations in k unknowns, so there is hope that
the equations can be solved.

2.3 Comparison of estimated probability density functions

Many methods are available for estimating the parameters of the above distributions, such as least-squares,
maximum likelihood, moments, weighted moments, linear moments, and entropy. Extensive details of these
methods are already available in the literature (Singh, 1996) and, therefore, are not reported here. In this study,
only two of these methods are employed: maximum likelihood estimation and the method of moments.

There is no specific reason for preferring these two methods against the others, except that they are simple and
also sufficient for the purpose of this study.They are neither treated as superior to the other methods nor any
effort is made compare with them.

The probability density functions thus fitted are compared using quantiles. Assuming that there are n number of
observations, Cunnane’s plotting positions are first calculated as: p;-(i-0.4)/(n+0.2) for i-1,...,n, where i is the
order of the i™ observation arranged in ascending order and p; is the probability of non-exceedance of the i™
observation estimated by the Cunnane’s plotting position formula. For each of the density functions, the
pi-quantiles, given by X, i=1,...,n, are calculated.These quantiles are then compared with the observed values,

denoted as X;, the i™ ordered value. Three statistical indicators are used to compare the computed and the

98 ISSN 1927-0488  E-ISSN 1927-0496



www.ccsenet.org/entr Environment and Natural Resources Research Vol. 2, No. 1; March 2012

observed quantiles (O’Donnell, 1985): (1) the root mean square error (RMSE), which is the square root of
2 (X=X s
(2) the coefficient of determination (R?), which is the coefficient square of the correlation between the computed

and the observed quantiles; and (3) the probability plot correlation coefficient (PPCC). The test uses the
correlation r between the ordered X; . The PPCC is a test statistic to measure linearity of the probability plot.

Critical values have been obtained for the normal and Gumbel distributions by Vogel (1986). The test has also
been developed for the Weibull and the uniform distribution by Vogel & Kroll (1989), and for the extreme value
distributions by Chowdhury et al. (1991). The critical values obtained for the normal distribution can also be
used for the Log-normal distribution.

The correlation coefficient test statistic, 7, is calculated between the ordered observed values and the inversed
values of the cumulative distribution function of the fitted distribution. If the observed values conform to the
applied distribution, the 7 statistic should be greater than the critical value for the selected significance level. The
equations that give unbiased estimates of the inverse values, have been obtained by different researchers. The r
test statistic is defined as

2 (== (8)

r=

_gl(xi —x)? %(mi —m)?
in which x; (x; <...<  x;<...<x,) is the ordered ith value and X is the mean of observed values. Also,
m, =F(p,) )

in which F(.) is the cumulative probability value and p; is the value estimated by unbiased equations for different
probability distributions.

2.4 Study area and data analysis

In this study, wind speed frequency analysis is performed for Tabriz synoptic station in Iran. The station is
located in Iran north-west 38" 4’ N, 46" 17" E with elevation of 1364 meters above sea level. Figure 1 shows the
geographical location of the study area. The data considered for the wind speed frequency analysis are the annual
maximum wind values.

Figure 2 shows the variations of wind values for the Tabriz synoptic station (in the above order) and Table 2
presents some statistical parameters of wind speed. Wind speed frequency analysis is carried out by using four
distribution functions and with the two parameter estimation methods (i.e. MLE and MOM).

Figure 1. The geographical location of the study area

Figure 2. Maximum annual wind speed at Tabriz station

Table 2. Some statistical parameters of wind speed (km/hr) data used
3. Results and Discussions

3.1 Distribution parameters

Table 3 shows the estimated parameters of the distributions when the estimation is done with the maximum
likelihood method and the method of moments.

Table 3. Estimated values of parameters

Three goodness-of-fit methods including RMSE, R?, and PPCC are considered to select the best distribution. For
the synoptic station, the results for selected distributions are presented in Table 4 for the maximum likelihood
estimation and for the method of moments, respectively.

Table 4. Performance evaluation for selected distributions

With two methods, the Gamma distribution is better than the other distributions according to all the three criteria
(RMSE, R?, and PPCC) and by both methods (MLE and MOM). Based on this result, it may be inferred that the
Gamma is generally suitable for synoptic stations. Thus, the Gamma distribution may be suggested as an
appropriate distribution for synoptic Tabriz station, and possibly for other Iranian conditions.

3.2 Comparison of distributions
With the maximum Likelihood estimation method, the best distribution is as follow:
Gamma (PPCC, R%, RMSE)

Published by Canadian Center of Science and Education 99



www.ccsenet.org/entr Environment and Natural Resources Research Vol. 2, No. 1; March 2012

Figure 3 presents the best estimated density function (chosen based on RMSE, R? and PPCC) for the Tabriz
station obtained with these two parameter estimation methods, the best curve(s) is presented.

Figure 3. Histograms and the estimated probability density functions

Based on these results, it may be inferred that the Gamma distribution is generally suitable for Tabriz synoptic
station, when the maximum likelihood method used for parameter estimation. Also with the method of moments,
Gamma distribution seem more suitable. Taking these collectively, the Gamma distribution may be suggested as
an appropriate for the Tabriz synoptic station, and possibly for other Iranian stations, although caution needs to
be exercised in making such a generalization.

Rajabi and Modarres (2008) Estimated maximum wind speed is an essential task in many fields of
environmental and engineering risk analysis. This study used prevalent westerly annual maximum wind speeds
for the period of 1983-1998 for East Isfahan station in Isfahan Province, Iran. The frequency analysis of AM
data wind speeds obtained by averaging the wind data over some chosen averaging periods showed that extreme
value Type I distribution is the best distribution for 15, 30, 60 and 120 min wind durations.

Ghorbani et al. (2010) studied analyzes flood frequencies using discharge data from 6 gaging stations in the Aji
River basin in Iran. The results also indicate that, among the 18 different distribution, the inverse gamma
distribution is the most appropriate for the Aji River basin,followed by the inverse Gaussian distribution.

Morgan et al. (2011) studied on offshore wind farms. They show that the widely-accepted Weibull distribution
provides a poor fit to the distribution of wind speeds when compared with more complicated models. They
compare distributions in terms of three different metrics: probability plot R%, estimates of average turbine power
output, and estimates of extreme wind speed. While the Weibull model generally gives larger R? than any other
2-parameter distribution, the bimodal Weibull, Kappa, and Wakeby models all show R* values significantly
closer to 1 than the other distributions considered (including the Weibull), with the bimodal Weibull giving the
best fits. The Kappa and Wakeby distributions fit the upper tail (higher wind speeds) of a sample better than the
bimodal Weibull, but may drastically over-estimate the frequency of lower wind speeds. Because the average
turbine power is controlled by high wind speeds, the Kappa and Wakeby estimate average turbine power output
very well, with the Kappa giving the least bias and mean square error out of all the distributions. The
2-parameter Lognormal distribution performs best for estimating extreme wind speeds, but still gives estimates
with significant error.

Table 5 show distribution parameters and wind speed exceeding a given value (i.e. quantiles) with the given
probability for MLE and MOM, respectively.

Table 5. Distribution parameters and wind speed exceeding a given value with a given probability.
3.3 Conclusion

In this study, wind speed frequency analysis was performed for Iranian conditions. Maximum annual wind speed
values observed at Tabriz synoptic station were studied. Four different probability distributions were fitted, and
the method of maximum likelihood and the method of moments were used for parameter estimation. This study
is also the first one where the software Mathematica was used for performing any type of wind speed frequency
analysis. The results also indicate that, among the four different distributions, the Gamma distribution is the most
appropriate for the Tabriz station.

The present study has important implications for wind speed frequency analysis for Iran in particular, and for
regional climatology in general. Further, the use of Mathematica provides a new dimension to the wind speed
frequency analysis. With the many challenges faced in using the existing methods (often due to difficulties in
calculations) for the selection of the most appropriate probability distribution for a given region, the symbolic,
numerical, and graphical capabilities of Mathematica together with its flexibility can go a long way. Future work
will focus on advancing the use of Mathematica towards developing a more generalized and flexible framework
for wind speed frequency analysis, details of which will be reported elsewhere.
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1 71[ log(x)-4 )z
Log-normal e © o>0 x>0
\N2mox
a-1  x-¢
1 x—& 5
Log-Pearson Type III B a>0,8>0,6<0 x>0,x>e°
¢ o il 7)
2 _lfx
Maxwell fx ; ZEUJ c>0 x>0
o
1 x :
Rayleigh lz _5[5] >0 x>0
o
Truncated Cauchy i[ [X ; a ] (é + %tan’l(fjJ b>0 x>0
«\7! x—a =
Truncated Extreme 1 T 7 @>0,550 20
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3 x*a_( ;ya
Truncated Gumbel l e’ a>0,8>0 x>0
B
K 2
o l+e # ——F =
Truncated Logistic P llye * 1©>0,8>0 x>0
B
Lu
Truncated Normal ;\% (1+erf(o_i;5))’le D c>0 x>0
1 x—g)" -5
Truncated Pearson Type 78(7] e @>0,f>0,6<0 >0
1l ﬂf[a,—ﬁj
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Table 2. Some statistical parameters of wind speed (km/hr) data used

Statistical parameter Value
Number 55
Average (km/hr) 74.619
Max (km/hr) 107.416
Min (km/hr) 50.004
Skewness (km?/hr?) 0.3184
Standard Deviation (km/hr) 13.143

Table 3. Estimated values of parameters

istribution Truncated extreme Truncated
Gamma Log-normal / lowisti
Method value ogistic
MLE 0=32.9867 pn=3.68089 0=36.8822 pu=40.0452
B=1.22143 6=0.174956 B=6.19048 B=4.10404
MOM 0=32.8331 p=3.68112 0=37.1263 p=40.2895
B=1.22714 6=0.173212 B=5.48247 B=3.87901
Table 4. Performance evaluation for selected distributions
Method Distribution PPCC R’ RMSE
Gamma 0.992093 0.984248 0.892496
Log-normal 0.991606 0.983282 0.911586
MLE Truncated logistic 0.983074 0.966435 1.33081
Truncated extreme value 0.981376 0.963099 1.53706
Gamma 0.992095 0.984253 0.89016
Log-normal 0.991638 0.983345 0.917314
MOM Truncated logistic 0.983054 0.966396 1.29925
Truncated extreme value 0.981376 0.963099 1.35977
Table 5. Values that the wind speed exceeds with a given probability
o Best Wind speed quantiles
Method  Criteria 0 ibition — P=0.5 =06  P=0.7 _ P=0.8 _ P=09  P=095 P=0.99 P=0.999
PPCC
MLE RMZSE Gamma 39.8845 41.6775 43.6543  46.0454 49.502 52.4814  58.3805 65.4833
R
PPCC
MoM RMSE Gamma 39.8826 41.6798 43.6613  46.0584 49.5239 525113  58.4268 65.5504
R2
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Figure 3. Histograms and the estimated probability density functions
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