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Abstract 

The increase in negative effects of fossil fuels on the environment has forced many countries to use renewable 
energy sources, especially wind energy. Wind speed is the most important parameter of the wind energy. 
Probability distributions are useful for estimating wind speed because it is a random phenomenon. This study 
analyzes wind speed frequencies using wind data from Tabriz synoptic station in Iran. Four different 
distributions are fitted to the maximum annual wind from station, and parameters of the distributions are 
estimated using the method of maximum likelihood and the method of moments. Calculations are performed 
with Mathematica, a computer algebra system developed by Wolfram Research. The advantage of using this 
software is that the symbolic, numerical, and graphical computations can be combined and that all quantities can 
be accurately calculated; in particular, there is no need to resort to any approximate methods for the calculation 
of quantiles. There is a ready-to-use command for calculating quantiles from distributions that are built in 
Mathematica, while for other distributions they can be easily and accurately calculated by inverting the 
cumulative distribution functions or by solving nonlinear equations where the inversion is not possible. The best 
distribution is selected based on the root mean square error (RMSE), the coefficient of determination (R2), and 
the probability plot correlation coefficient (PPCC). The results indicate that the best performance can be 
obtained by the Gamma distribution. 

Keywords: Mathematica, Probability distribution, Tabriz synoptic station, Wind energy, Wind speed frequency  

1. Introduction 

Nowadays more and more countries in the world have had to seek help to renewable resources, such as wind, 
solar and geothermal, not only to meet the increasing energy demand, but also for environmental reasons. Wind 
energy production is an attractive and feasible method employing renewable energy source without emission of 
pollutants. 

Wind energy can be considered a green power technology as it has only minor impacts on the environment. 
Currently, wind energy is one of the fastest developing renewable energy source technologies across the globe. 
Countries all around the world are doing a thorough research on the specific energy that comes out by the uneven 
heating by the sun. Wind analysis gives remarkable information to researches involved in renewable energy 
studies.  
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Knowledge of the statistical properties of wind speed is essential for predicting the energy output of a wind 
energy conversion system. Because of the high variability in space and time of wind energy, it is important to 
verify that the analyzing method used in measuring wind data will yield the estimated energy collected that is 
close to the actual energy collected. The wind speed distribution, one of the wind characteristics, is of great 
importance not only for structural and environmental design and analysis, but also for the assessment of the wind 
energy potential and the performance of wind energy conversion system as well. For this reason, an accurate 
determination of probability distribution of wind speed values is very important in evaluating wind speed energy 
potential of a region. Wind energy potential can be determined by wind measurements of a certain investigation 
region depending on years. And also extreme wind speed frequency estimation is usually important in many 
fields of environmental studies such as climatology, hydrology, developing wind energy facilities, agricultural 
management, and structure designing (Lopez, 1998; Gomes et al., 2003).  

Many investigators have tried to fit different frequency distributions to wind data. Al Buhairi and Mahyoub 
(2006) found that, in recent years, many efforts have been made to construct an adequate model for the wind 
speed frequency distribution. In the literature, the Weibull distribution is commonly used in the practical studies 
related to the wind energy modeling (Steven, 1979; Toure, 2005; Zhou et al., 2006). Auwera et al. (1980) used 
Weibull three-parameter model for estimating mean wind power densities. Weisser (2003) analyzes wind energy 
analysis of Grenada using the Weibull density function. Lun and Lan (2000) studied Weibull parameters using 
long-term wind observations. Seguro et al. (2000) estimated the parameters of Weibull wind speed distributions 
for wind energy analysis. Celik (2003) used Weibull distribution to estimate wind energy output of large- and 
small-scale turbines. Rehman et al. (1994) used Weibull parameters for wind speed distribution in Saudi Arabia.  

Recently, Pandey and Sutherland (2003) fitted generalized Pareto distribution to peak-over-threshold extreme 
wind speed through bootstrapping. Holmes and Moriarty (1999) also suggested generalized Pareto distribution to 
fit the extreme wind speed in Australia. Recently, Zaharim et al. (2009) fitted gamma, lognormal and Weibull 
distributions to wind speed data in the east coast of Malaysia. The numerical and graphical results obtained from 
the specific statistics showed that the Weibull and gamma distributions, whose parameters are estimated using 
the maximum likelihood principle, provide the best fits for the year 2005 and 2006, respectively. 

This study aims to find the best probability distribution to the annual maximum wind speed of Tabriz, Iran and is 
the first study in Iran that investigates the best probability distribution of maximum wind speed. The study uses 
the Mathematica code developed for (Ghorbani et al., 2010); see http://users.utu.fi/ruskeepa/ .  

2. Methodology 

2.1 Probability density functions 

Four different probability distributions are considered in this study, some of which are very widely used in 
climatology frequency analysis. These distributions and their probability density functions are presented in Table 
1. Only the Gamma, lognormal, truncated extreme value and truncated logistic distributions are used.  

Since wind speed is always non-negative, it is more realistic to truncate the density functions so that they yield a 
domain that consists of only non-negative values. The truncation is done by simply dividing the original density 
function by a suitable constant, to make the integral of the truncated density function equal to one; the constant is 
given by ( 0) 1 (0)P X F   , where F(x) is the cumulative distribution function of the original distribution. The 
CDF of the truncated distribution is then calculated by integration the truncated density from 0 to x. [Note: In the 
truncated Pearson type III density function, the term ( , / )    is the value of the incomplete gamma function 

1( , ) a t

z
a z t e dt

     ]. 

If 0  , then this distribution reduces to the gamma distribution. The extreme value is the limiting distribution 
for the largest values in large samples drawn from a variety of distributions, including Normal, Exponential, and 
Weibull distributions. 

Table 1. Probability distributions and their density functions 

2.2 Method of parameters estimating  

2.2.1 Mmaximum-likelihood estimation (MLE) 

In statistics, maximum-likelihood estimation (MLE) is a method of estimating the parameters of a statistical 
model. When applied to a data set and given a statistical model, maximum-likelihood estimation provides 
estimates for the model's parameters. 

The method of maximum likelihood corresponds to many well-known estimation methods in statistics. In 
general, for a fixed set of data and underlying statistical model, the method of maximum likelihood selects 
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observed quantiles (O’Donnell, 1985): (1) the root mean square error (RMSE), which is the square root of 
2

1
( ) /

n

pi ii
X X n


 ; 

(2) the coefficient of determination (R2), which is the coefficient square of the correlation between the computed 
and the observed quantiles; and (3) the probability plot correlation coefficient (PPCC). The test uses the 
correlation r between the ordered Xi .The PPCC is a test statistic to measure linearity of the probability plot.  

Critical values have been obtained for the normal and Gumbel distributions by Vogel (1986). The test has also 
been developed for the Weibull and the uniform distribution by Vogel & Kroll (1989), and for the extreme value 
distributions by Chowdhury et al. (1991). The critical values obtained for the normal distribution can also be 
used for the Log-normal distribution.  

The correlation coefficient test statistic, r, is calculated between the ordered observed values and the inversed 
values of the cumulative distribution function of the fitted distribution. If the observed values conform to the 
applied distribution, the r statistic should be greater than the critical value for the selected significance level. The 
equations that give unbiased estimates of the inverse values, have been obtained by different researchers. The r 
test statistic is defined as 

( )( )
1

2 2( ) ( )
1

n
x x m m
i i

ir
n n

x x m m
i i

i i
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

  
 

                                     
(8)

 

in which xi (x1 ≤ ... ≤ xi ≤ ... ≤ xn) is the ordered ith value and X  is the mean of observed values. Also, 

)p(Fm i

1

xi

                                       (9) 

in which F(.) is the cumulative probability value and pi is the value estimated by unbiased equations for different 
probability distributions. 

2.4 Study area and data analysis  

In this study, wind speed frequency analysis is performed for Tabriz synoptic station in Iran. The station is 
located in Iran north-west 38° 4´ N, 46° 17´ E with elevation of 1364 meters above sea level. Figure 1 shows the 
geographical location of the study area. The data considered for the wind speed frequency analysis are the annual 
maximum wind values.  

Figure 2 shows the variations of wind values for the Tabriz synoptic station (in the above order) and Table 2 
presents some statistical parameters of wind speed. Wind speed frequency analysis is carried out by using four 
distribution functions and with the two parameter estimation methods (i.e. MLE and MOM). 

Figure 1. The geographical location of the study area 

Figure 2. Maximum annual wind speed at Tabriz station 

Table 2. Some statistical parameters of wind speed (km/hr) data used 

3. Results and Discussions 

3.1 Distribution parameters 

Table 3 shows the estimated parameters of the distributions when the estimation is done with the maximum 
likelihood method and the method of moments.  

Table 3. Estimated values of parameters 

Three goodness-of-fit methods including RMSE, R2, and PPCC are considered to select the best distribution. For 
the synoptic station, the results for selected distributions are presented in Table 4 for the maximum likelihood 
estimation and for the method of moments, respectively.  

Table 4. Performance evaluation for selected distributions 

With two methods, the Gamma distribution is better than the other distributions according to all the three criteria 
(RMSE, R2, and PPCC) and by both methods (MLE and MOM). Based on this result, it may be inferred that the 
Gamma is generally suitable for synoptic stations. Thus, the Gamma distribution may be suggested as an 
appropriate distribution for synoptic Tabriz station, and possibly for other Iranian conditions.  

3.2 Comparison of distributions 

With the maximum Likelihood estimation method, the best distribution is as follow: 

Gamma (PPCC, R2, RMSE) 
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Figure 3 presents the best estimated density function (chosen based on RMSE, R2, and PPCC) for the Tabriz 
station obtained with these two parameter estimation methods, the best curve(s) is presented.  

Figure 3. Histograms and the estimated probability density functions 

Based on these results, it may be inferred that the Gamma distribution is generally suitable for Tabriz synoptic 
station, when the maximum likelihood method used for parameter estimation. Also with the method of moments, 
Gamma distribution seem more suitable. Taking these collectively, the Gamma distribution may be suggested as 
an appropriate for the Tabriz synoptic station, and possibly for other Iranian stations, although caution needs to 
be exercised in making such a generalization. 

Rajabi and Modarres (2008) Estimated maximum wind speed is an essential task in many fields of 
environmental and engineering risk analysis. This study used prevalent westerly annual maximum wind speeds 
for the period of 1983-1998 for East Isfahan station in Isfahan Province, Iran. The frequency analysis of AM 
data wind speeds obtained by averaging the wind data over some chosen averaging periods showed that extreme 
value Type I distribution is the best distribution for 15, 30, 60 and 120 min wind durations. 

Ghorbani et al. (2010) studied analyzes flood frequencies using discharge data from 6 gaging stations in the Aji 
River basin in Iran. The results also indicate that, among the 18 different distribution, the inverse gamma 
distribution is the most appropriate for the Aji River basin,followed by the inverse Gaussian distribution. 

Morgan et al. (2011) studied on offshore wind farms. They show that the widely-accepted Weibull distribution 
provides a poor fit to the distribution of wind speeds when compared with more complicated models. They 
compare distributions in terms of three different metrics: probability plot R2, estimates of average turbine power 
output, and estimates of extreme wind speed. While the Weibull model generally gives larger R2 than any other 
2-parameter distribution, the bimodal Weibull, Kappa, and Wakeby models all show R2 values significantly 
closer to 1 than the other distributions considered (including the Weibull), with the bimodal Weibull giving the 
best fits. The Kappa and Wakeby distributions fit the upper tail (higher wind speeds) of a sample better than the 
bimodal Weibull, but may drastically over-estimate the frequency of lower wind speeds. Because the average 
turbine power is controlled by high wind speeds, the Kappa and Wakeby estimate average turbine power output 
very well, with the Kappa giving the least bias and mean square error out of all the distributions. The 
2-parameter Lognormal distribution performs best for estimating extreme wind speeds, but still gives estimates 
with significant error.  

Table 5 show distribution parameters and wind speed exceeding a given value (i.e. quantiles) with the given 
probability for MLE and MOM, respectively. 

Table 5. Distribution parameters and wind speed exceeding a given value with a given probability. 

3.3 Conclusion 

In this study, wind speed frequency analysis was performed for Iranian conditions. Maximum annual wind speed 
values observed at Tabriz synoptic station were studied. Four different probability distributions were fitted, and 
the method of maximum likelihood and the method of moments were used for parameter estimation. This study 
is also the first one where the software Mathematica was used for performing any type of wind speed frequency 
analysis. The results also indicate that, among the four different distributions, the Gamma distribution is the most 
appropriate for the Tabriz station. 

The present study has important implications for wind speed frequency analysis for Iran in particular, and for 
regional climatology in general. Further, the use of Mathematica provides a new dimension to the wind speed 
frequency analysis. With the many challenges faced in using the existing methods (often due to difficulties in 
calculations) for the selection of the most appropriate probability distribution for a given region, the symbolic, 
numerical, and graphical capabilities of Mathematica together with its flexibility can go a long way. Future work 
will focus on advancing the use of Mathematica towards developing a more generalized and flexible framework 
for wind speed frequency analysis, details of which will be reported elsewhere. 
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Table 2. Some statistical parameters of wind speed (km/hr) data used 

Statistical parameter Value 
Number 55 

Average (km/hr) 74.619 
Max (km/hr) 107.416 
Min (km/hr) 50.004 

Skewness (km2/hr2) 0.3184 
Standard Deviation (km/hr) 13.143 

 

Table 3. Estimated values of parameters 

Distribution 
 

Method 
Gamma Log-normal 

Truncated extreme 
value 

Truncated 
logistic 

MLE 
α=32.9867 
β=1.22143 

µ=3.68089 
δ=0.174956 

α=36.8822 
β=6.19048 

µ=40.0452 
β=4.10404 

MOM 
α=32.8331 
β=1.22714 

µ=3.68112 
δ=0.173212 

α=37.1263 
β=5.48247 

μ=40.2895 
β=3.87901 

 

Table 4. Performance evaluation for selected distributions 

Method Distribution PPCC R2 RMSE 

 
 

MLE 

Gamma 0.992093 0.984248 0.892496 
Log-normal 0.991606 0.983282 0.911586 

Truncated logistic 0.983074 0.966435 1.33081 
Truncated extreme value 0.981376 0.963099 1.53706 

 
MOM 

Gamma 
Log-normal 

0.992095 
0.991638 

0.984253 
0.983345 

0.89016 
0.917314 

Truncated logistic 0.983054 0.966396 1.29925 
Truncated extreme value 0.981376 0.963099 1.35977 

 

Table 5. Values that the wind speed exceeds with a given probability 

Wind speed quantiles Best 
Distribution 

Criteria Method 
P=0.999P=0.99P=0.95 P=0.9 P=0.8 P=0.7 P=0.6 P=0.5 

65.483358.380552.4814 49.50246.045443.654341.677539.8845 Gamma 
PPCC 

MLE RMSE 
R2 

65.550458.426852.5113 49.523946.058443.661341.679839.8826 Gamma 
PPCC 

MOM RMSE 
R2 
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Figure 1. The geographical location of the study area 

 

 
Figure 2. Maximum annual wind speed at Tabriz station 
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Figure 3. Histograms and the estimated probability density functions 


