
Environment and Natural Resources Research; Vol. 8, No. 3; 2018 
ISSN 1927-0488   E-ISSN 1927-0496 

Published by Canadian Center of Science and Education 

102 

Does the Date of Burning Affect Carbon and Nutrient Losses in a 
Humid Savanna of West Africa? 

Aya B. N’Dri1 & Louis N. Konan1 
1 UFR des Sciences de la Nature, Station d’Ecologie de Lamto/CRE, Pôle de Recherche Environnement et 
Développement Durable, Université Nangui Abrogoua , 02 BP 801 Abidjan 02, Côte d’Ivoire 
Correspondence: Brigitte A. N’Dri, UFR des Sciences de la Nature, Station d’Ecologie de Lamto/CRE, Pôle de 
Recherche Environnement et Développement Durable, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte 
d’Ivoire. Tel: 225-0807-4528. E-mail: ndri.brigitte@yahoo.fr / ndribrigitte.sn@univ-na.ci 
 
Received: July 18, 2018          Accepted: August 28, 2018         Online Published: September 19, 2018 
doi:10.5539/enrr.v8n3p102             URL: https://doi.org/10.5539/enrr.v8n3p102 

 
Abstract 
A significant impact of fires is the transfer to the atmosphere of the elements contained in combusted biomass. 
This study was carried out in the Guinean savanna of Lamto (Côte d’Ivoire) to evaluate fire-mediated carbon and 
nutrient losses from biomass according to the date of burning. The fire regimes tested consisted of three different 
burning dates: early (EF), mid (MF), and late (LF) season fires, on nine 0.5 ha plots. Carbon and five elemental 
nutrients were assessed in the aboveground biomass prior to burning and in ash and unburnt biomass after fires; 
losses were assessed by subtraction. The proportion of nutrients transferred to the atmosphere varied from 42 % 
(K) to 98 % (C). The lowest losses were recorded during the EF and the greatest during the MF and LF. 
Emission of CO2 was relatively greatest during the EF than during the MF and LF (16, 14 and 13 t ha-1 
respectively). The proportion of the fine ash fraction (< 1 mm) was the greatest during MF. The highest 
concentrations of K, P, Ca and Mg occurred in this fraction, most susceptible to losses due to wind and rainfall. 
The percentage losses of C, N and K were positively correlated with fire maximal temperatureand flame height, 
explaining the relatively higher losses during MF. Over the long term, the MF applied annually, would lead to 
important depletion of soil nutrients, particularly N and P, which contributes to the low availability of nutrients 
in the soils of Lamto savannas. 
Keywords: ash, biomass burning, burning dates, nitrogen, nutrients losses. 
1. Introduction 
Biomass burning is recognized as a significant source of greenhouse gases, which significantly impacts global 
atmospheric chemistry and climate change (Reid et al., 2005; Tunved et al., 2006). According to Shi et al. (2015), 
global annual CO2 emissions range from 6521.3 to 9661.5 Tg year-1, with a high proportion arising from tropical 
regions of Africa, South America and Southeast Asia. Globally, a great fraction of these emissions is released by 
the burning of savannas, followed by forests and croplands (Andreae, 1991; NASA, 2005). However, there is a 
large uncertainty on the exact CO2 emissions during savanna fires as estimates differ according to the specific 
methodologies used (Ellicott et al., 2009). Accurate estimates of CO2 emissions from biomass burning at local 
and regional levels are urgently needed to refine global estimations and better understand the impact of fire on 
climate. Thus, fires in African savannas are an essential factor of the global CO2 balance. Moreover, numerous 
studies view the West African savanna as one of the important “burn centers” of the planet (Menaut, 1993; Liousse 
et al., 2004; NASA, 2005). Our study aims at making up for the scarcity (Helas et al., 1995) of quantitative 
assessments of CO2, carbon and nutrients emissions from savanna fires in West Africa. 
Fire has a marked effect on nutrient balance and cycling in ecosystems (O’Connell et al., 1981) since a 
significant fraction of nutrients is lost directly to the atmosphere during fires by volatilization (non-particulates, 
gaseous emissions) and by entrained ash and vegetation fragments that are displaced by winds (particulate 
emissions) (Rossiter-Rachor et al., 2008). Particulate emissions may be redeposited within several kilometers of 
a fire. Non-particulate losses represent permanent losses from burnt sites since these losses are redistributed 
world-wide (Rossiter-Rachor et al., 2008). Many nutrients such as N, P, K and Mg are lost by volatilization 
under gaseous form, while calcium is lost mainly through ash particle transport (Raison et al., 1985a; Cook, 
1994). Further indirect losses may result from erosion of ash and soil (Bodí et al., 2014). 
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The proportion of transferred carbon and nutrients largely depends on fire intensity that affects both vaporization 
temperatures and the amount of ash produced (Raison et al., 1985b; Coutinho, 1990; Koné, 2012). Fire intensity 
is in turn influenced by fuel characteristics (load and moisture content) and weather during fire (Hoffmann et al., 
2012; N’Dri et al., 2018a). Thus, the magnitude of nutrient losses during fires is strongly influenced by factors 
depending on the timing of the burning during the seasonal cycle (vegetation state and weather).  
The quantification of the impact of fire regime, i.e. the frequency and timing of burning, on carbon and nutrient 
losses during fires, and the study of the determinants of these nutrient losses in humid savannas of West Africa 
have received little consideration, despite the importance of fire as a land management tool in this region where 
fire is more frequent and intense than in dry savannas, due to higher grass production. Fire commonly occurs 
annually in the middle of the dry season in humid savannas of West Africa (Innes, 1972). However, significant 
woody plant encroachment was reported in this area (Gautier, 1990; Heubes et al., 2011). Fires play a critical 
role in this type of savanna to control tree demography (Bond & Keely, 2005): they increase the mortality of 
saplings and decrease their growth by repeating killing their aboveground part, forcing them into a resprouting 
habit before they get taller than average flame height, usually around 2 m high. Thus, other fire regimes are 
currently tested (early and late fire: N’Dri et al., 2018a) in order to find out the best fire regime to reduce tree 
density. However, while little is known about the losses of carbon and nutrients during the usual mid-season fire, 
nothing is known about these losses and CO2 emission during the early and late fires. This should be studied 
because fire regimes may threaten soil fertility in the long term by causing nutrient unbalance, for example if 
early or late fire leads to higher carbon and nutrient losses than mid-season fire. The aim of this study was thus 
to quantify the losses of carbon and nutrients from grass biomass burning under different fire regimes defined by 
the date of burning (early, mid-season and late fires), to estimate CO2 emission during fires, and to determine the 
factors, i.e. fuel load, fire and weather characteristics, that determine the magnitude of losses of carbon and 
nutrients. 
2. Material and Methods 
2.1 Site Description 
The study was carried out in the Lamto Reserve (central Côte d’Ivoire: 6°9 and 6°13’N, -5°15 and -4°57 ’W), a 
2500 ha area of typical Guinean forest-savanna mosaic devoted to scientific research since 1962 (Abbadie et al., 
2006). The main savanna type is a shrubby savanna with tree cover between 7% and 62% (Gautier, 1990). The 
savanna is dominated by three species of Andropogoneae grasses: Andropogon ascinodis C. B. Cl., Andropogon 
canaliculatus (Schumach.), and Andropogon schirensis (Hochst. ex A. Rich). Annual aboveground grass net 
primary production can be as high as 20 t ha-1 yr-1 (dry mass) (Gignoux et al., 2006). 
The average annual rainfall is about 1,200 mm (Pagney, 1988). The climate is sub-equatorial with four seasons: a 
long rainy season from mid-March to July, a short dry season in August, a short rainy season from September to 
mid-November, and a long dry season from mid-November to mid-March. The annual rainfall during the study 
period (2014) was 991.9 mm, and the temperature averaged 28.8°C. December and February were the driest 
months (Figure 1). Rainfall and temperature data were obtained from the Lamto Geophysical Station nearby the 
study site (0.2 to 1 km off the study plots). Averaged wind speed in the region is generally low: 0.6 m s-1 (Le Roux, 
1995). Soils are Oxisols with granite as the main bedrock. The upper soil layer is generally sandy textured (60 % to 
80 % sand). Clays consist of illites and slightly crystallized kaolinites with a low adsorption capacity (Riou, 1974). 
Fires in the Lamto reserve is set by managers at the middle of the long dry season (mid-season fire), following 
practices of local populations. 
2.2 Experimental Set-Up and Fire Treatments 
Study was conducted on three 230 × 120 m blocks of shrubby savanna, each separated from the surrounding 
similar savanna by a 10-m wide firebreak, and distant from each other by a few kilometers (Figure 2). Each block 
was divided into three 100 m × 50 m plots separated from each other by 30 m-wide firebreaks. Each plot in a block 
received one of three fire treatments in a full factorial design: (1) early fire (EF) at the start of the long dry season 
(~18th November), (2) mid-season fire (MF) at the middle of the long dry season (~18th January), and (3) late fire 
(LF) at the very end of the long dry season (~15th March) (Figure 3). All blocks were located on a flat ground to 
eliminate the influence of slope on fire behaviour. All plots had experienced annual mid-season fire for at least 50 
years before the experiment. 
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2.5 Calculations of Carbon and Nutrient Loss and CO2 Emission Due to Burning 
Loss of carbon (C) and five elements (N, P, K, Ca, and Mg) during burning were calculated by subtraction: the 
measured values in plant biomass prior to burning minus the values in ashes after burning and in unburnt 
biomass (Rossiter-Rachor et al., 2008). As described above, sampled vegetation did not include the few woody 
species on the sites.  
Carbon and nutrient stocks in slashed biomass and in ashes and losses of those elements were calculated as:  

 ES = (PM x EC)/100  (1) 
 EL = [(ESBBB – (EA+ EPMAB)/ESBBB]x100  (2) 
where ES is element stock (g m-2), PM is plant material (kg ha-1) which refers to either slashed biomass or ashes, 
EC is element concentration (%), EL is element loss (%), ESBBB is element stock in biomass before burning (kg 
ha-1), EA is element stock in ashes (kg ha-1), and ESBAB is element stock in biomass after burning (kg ha-1). 

 CO2 emission was calculated as follows: C loss (g m-2) * 3.67 (IPCC, 2002)  (3) 
2.6 Measurements of Fire and Weather Characteristics 
Fire was ignited with a dry palm leaf along the shorter side of each plot in the direction of the wind, to rapidly 
establish a fire-line and ensure linear ignition. All burns were conducted in the morning (10:00 – 11:00 am) on the 
same day, in order to ensure similarity of fuel moisture levels and weather conditions (e.g, due to wind, air 
humidity and temperature). We characterized fire behaviour using six variables: rate of spread (m s-1), fire 
intensity (kW m-1), fire maximal temperature (°C), residence time above 60°C (s), flame height (m), and 
combustion efficiency (%). 
The rate of spread was determined by recording the time it took for a flame line to reach poles positioned every 
10 m on both sides of each plot using stop watches.  
Fire intensity was estimated using Byram’s (1959) equation:  
 I (kW m-1) = W H R (4) 
where: W (g m-2) is the mass of fresh fuel consumed; H is the heat yield of the fuel, which for grass fuel 16,890 
kJ kg-1 is the recommended value (Trollope, 1983); and R (m s-1) is the rate of spread.  
The fire residence time was defined as the time during which air temperature at ground level, measured with a 
thermocouple, was above 60°C – the commonly accepted lethal temperature for most plant cells (Daniell et al., 
1969). We used self-built synchronized fire temperature recorders (SFTRs) to measure this time. Each SFTR was 
comprised of a thermocouple (type K 250 mm steel probe, 0 to 1100°C range) connected to a Raspberry Pi 
nano-computer (https://www.raspberrypi.org/), plus batteries. Prior to setting fires, the SFTRs were 
synchronized by sending a 'start' signal prior to burying them in the plots, with only the top 10 cm of the 
thermocouple probe protruding from the ground. They were placed at the ends of equilateral triangles, with sides 
20 m in length. After the fires, the time series of temperatures were downloaded from the STFRs and residence 
times were computed from those data. 
Flame height (m) was measured on each plot and after each fire using 10 iron poles, each of 4 m height, on 
which 5 cm-long pieces of sticking paper tape had been placed every 20 cm. The flame height was equal to the 
maximal height where the paper was burnt. The 10 poles on each plot were distributed randomly; and heights 
were averaged over the ten poles for each plot (N’Dri et al., 2018a; b).  
Immediately after each experimental fire, the residual unburned fuel in each plot from 10 random quadrats of 1 
m2 was sampled, dried, and weighed, using techniques that were similar to those for the pre-fire samples. For 
each plot and fire, we used the average values of post-fire mass and the pre-fire mass to estimate combustion 
efficiency (%).  
During each fire, wind speed (m s-1), air temperature (°C) and relative humidity (%) were recorded every five 
minutes, similar to methods of Kidnie and Wotton (2015), using an in situ automatic weather station (Model Pro, 
Ref.:SM55PRO) placed at 2 m above ground, in the fire break between two adjacent plots. The recorded values 
were averaged over the period of fire propagation for each plot. 
2.7 Statistical Analyses 
All statistical analyses were performed using the R software (R Development Core Team, 2014). ANOVA were 
performed to analyse: (i) the quantity of initial biomass, residual unburnt biomass, and total ash according to fire 
season, (ii) the carbon and nutrients losses to the fire season, (iii) fuel, fire behaviour, and weather characteristics 
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3.5 Fuel, Fire and Weather Parameters 
Grass height was the highest for the early dry season and the lowest for the late dry season. The standing 
biomass and the total fresh fuel load (standing biomass + litter before drying) were significantly higher for the 
early dry season than for the mid and late dry seasons. There was no significant difference between mid and late 
dry seasons. Litter moisture content was significantly lower for the mid dry season than for the early and late dry 
seasons. There was no significant difference in litter moisture content between early and late dry seasons. Fresh 
litter, standing fuel moisture content, and total fuel moisture content did not vary with burning date (Table 3). 
The fire rate of spread was the highest in EF and the lowest in MF, while fire intensity was the highest in MF 
and the lowest in EF. LF presented intermediate values. The maximal temperature and flame height were 
significantly higher for the MF than for the EF and LF. There was no significant difference between EF and LF. 
The combustion efficiency was significantly lower for EF than for the MF and LF. There was no significant 
difference between MF and LF. Residence time above 60° C did not vary with burning date (Table 3). 
The weather characteristics did not vary according to the burning date (Table 3).  
 
Table 3. Response of biomass, fire behaviour, and weather characteristics to the burning date 

    Early fire   Mid-season fire Late fire 
Fuel variables 

GH 2.10 ± 0.07a 1.80 ± 0.02b 1.42 ± 0.08c 
BM 1.90 ± 0.16a 1.08 ± 0.11b 1.28 ± 0.09b 
LM 0.25 ± 0.02a 0.22 ± 0.01a 0.20 ± 0.01a 
BC 43.11 ± 0.95a 34.93 ± 5.77a 43.73 ± 0.52a 
LC 17.51 ± 2.05a 4.06 ± 1.41b 14.50 ± 2.87a 
TFC 40.02 ± 0.66a 31.22 ± 6.47a 39.44 ± 0.22a 

Fire behaviour parameters  
RoS 0.19 ± 0.61a  0.02 ± 0.01b  0.05 ± 0.01ab 
FI 714.41 ± 14.54b 3943.02 ± 1062.85a 1274.64 ± 49.35ab 
RT > 60° C 2.46 ± 0.02a 2.18 ± 0.05a 2.43 ± 0.18a 
Max. T° 472.56 ± 12.10b 604.06 ± 7.16a 519.90 ± 20.46b 
FH 1.31 ± 0.19b 2.65 ± 0.18a 1.92 ± 0.02b 
CE 91.93 ± 1.88b 98.96 ± 0.54a 97.47 ± 0.66a 

Weather conditions 
AT 33.45 ± 2.36a 32.8 ± 2.40a 32.7 ± 1.96a 
AH 62.97 ± 9.47a 45.7 ± 9.01a 55.65 ± 1.93a 
WS 1.63 ± 1.34a 3.8 ± 1.89a   5.4 ± 1.44a 

GH: Grassy understory height (m); BM: Biomass (kg m-2); LM: Litter mass (kg m-2); BC: Biomass moisture 
content (%); LC: Litter moisture content (%); TFC: Total fuel moisture content (%); RoS: Fire Rate of spread (m 
s-1); FI: Fire intensity (kW m-1); RT > 60° C: Fire Residence time above 60° C (s); Max. T°: Fire Maximal 
temperature (°C); FH: Flame height (m); CE: Combustion efficiency (%); AT: Air temperature (°C); AH: Air 
humidity (%), WS: Wind speed (m s-1). Letters indicate groups of non-significantly different values between 
burning dates (Tukey HSD post-hoc tests, α=0.05).  
 
3.6 Effects of Fuel, Fire and Climate Characteristics on the Proportion of Nutrient Losses 
Standing fuel moisture content, Total fuel moisture content, Residence time above 60° C, air temperature, 
relative humidity, and wind speed which did not show any correlation with ash characteristics and carbon and 
nutrients losses, were remove from table 4. Among fuel characteristics, the total fuel and live fuel moisture 
contents neither explained ash quantity nor nutrients losses. Medium and coarse ash fractions were negatively 
influenced by the fire rate of spread and intensity, and the maximal fire temperature. The live fuel and total fuel 
loads, and litter moisture content influenced positively these ash fractions.  
C, N and K losses were negatively correlated with standing fuel and total fresh fuel loads, but positively 
correlated with the maximal fire temperature and flame height. The maximal fire temperature was also positively 
correlated with Ca and Mg losses. No climate characteristic explained ash quantity and nutrient losses (Table 4).  
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Table 4. Correlation coefficients for the relationships involved.  
  GH  BM  LM  TFL   LC  RoS    FI Max.T°  FH CE 
Ash quantity 0.77 0.86 NS 0.88 NS NS NS NS NS NS 
Fine ash  0.84 NS NS NS NS NS NS NS NS NS 
Medium ash NS 0.95 NS 0.94 0.86 -0.71 -0.71 -0.81 -0.8 -0.67 
Coarse ash NS 0.85 NS 0.86 0.75 -0.8 -0.79 -0.84 -0.8 -0.77 
C loss NS -0.68 NS -0.71 NS NS NS 0.74 0.88 0.99 
N loss NS -0.72 NS -0.74 NS NS NS 0.87 0.86 0.94 
K loss NS -0.7 NS -0.74 NS NS NS 0.68 0.74 0.90 
P loss 0.68 NS NS NS NS NS NS NS NS NS 
Ca loss NS NS -0.88 NS NS NS NS 0.67 NS 0.87 
Mg loss NS -0.72 -0.8 -0.75 NS NS NS 0.68 NS 0.84 

GH: Grassy understory height (m); BM: Biomass (kg m-2); LM: Litter load (kg m-2); TFL: Total fuel loads (kg 
m-2); LC: Litter moisture content (%); RoS: Fire Rate of spread (m s-1); FI: Fire intensity (kW m-1); Max. T°: Fire 
Maximal temperature (°C); FH: Flame height (m); CE: Combustion efficiency; NS: non-significant. 
 
4. Discussion 
4.1 Ash Fractions Related to Different Burning Dates  
The higher proportion of fine ash than coarse ash irrespective of the burning date could be explained by a good 
combustion efficiency measured in our experimental plots (over 90 % for the three fire seasons). Raison et al. 
(1985b) and Bodí et al. (2014) suggested that the proportion of fine ash increases with combustion completeness. 
Accordingly, the greater proportion of fine ash fraction recorded in the MF, could be attributed to its better 
combustion efficiency. In addition, the greater proportion of fine ash and lower proportion of coarse ash for MF, 
could be explained by its lower biomass, and its relatively highest values of fire rate of spread, intensity, 
combustion efficiency, flame height and fire maximal temperature. Indeed, our correlation matrix showed a 
positive correlation between coarse ash fraction and biomass, and the negative correlation between the coarse ash 
fraction and these fire behaviour parameters.  
Indirect losses of particulate matter resulting from wind may affect more the fine ash fraction than the others 
(Raison et al., 1985b, Bodí et al., 2014). Since the proportion of the fine fraction was the greatest for MF, the 
indirect nutrient losses could potentially be the highest under this fire regime. These indirect losses concern 
mainly the less volatile (K and P) and nonvolatile (Ca) elements.  
4.2 Losses of Carbon and Nutrients From Biomass During Fires 
As commonly reported (Raison et al., 1985a, 1985b; Cook, 1994; Rossiter-Rachor et al., 2008, and references 
therein), an important fraction of carbon and nutrients contained in grass biomass was released into the 
atmosphere during fire in the present study. The lower the temperature of vaporization of a chemical element, the 
higher its rate of volatilization (Mackensen et al., 1996). Based on this, our investigated nutrients may be ranked 
as follows, from lower to higher temperature of volatilization: N > P> K > Mg > Ca (Mackensen et al., 1996). 
This ranking was only found for MF. For the other burning dates, the following rankings were found: C > N > K > 
Mg > P > Ca for LF and, N > C > Ca > Mg > P > K for EF. Both display a striking deviation regarding P and K.  
The fact that nitrogen and carbon had the highest (>75 %) losses is perhaps not surprising as they both have 
relatively lower temperatures of volatilization, from 200 °C to 350 °C (Fernández et al., 1997). The mean 
maximal temperature during our experimental fires were over 450 °C for the different fire seasons, possibly 
explaining these important losses of C and N. Calcium has a temperature of volatilization of 1484° C that is far 
higher than the temperature of volatilization of the other elements. Accordingly, it was lost the least during the 
EF (with the lowest temperatures). There is no clear reason for the higher than expected level of Ca loss during 
all fire regimes. Phosphorus and potassium have intermediate temperatures of volatilization, between 774 °C and 
800 °C, explaining their intermediate rates of loss during EF and MF as compared to C and N. Surprisingly, they 
were lost me most during EF. It is possible that our method used to estimate losses could have over-estimated 
loss, particularly for P, Mg and Ca, because ash collection trays were retrieved about 30 min after fires, and the 
finest ash fraction probably was still in the air and was not taken into account. Had we waited for a longer time 
before retrieving trays, ash drift due to even the very mild winds of the day could have distorted values even 
further. Overall, we consider the portion of any fine ash that might not have settled 30 minutes after fires as 
insignificant, relative to the much larger volumes of the ash samples. 
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The generally lower losses of carbon and nutrient during EF than MF and LF recorded in our study could be 
explained by the greener biomass and its higher moisture at that date, which prevent complete burning (Figure 2), 
leading to relatively lower fire intensity, temperature, and combustion efficiency (Table 3). Accordingly, C, N, 
and K losses were positively correlated with combustion efficiency and maximal temperature during fire (Table 
4).  
The rates of nutrient loss we measured were close to values reported by N’Dri et al. (2018c) in fallow systems 
around Lamto reserve. Whereas, the rates of nutrient loss measured by Villecourt et al. (1980) in Lamto over two 
years during mid-season fire (C, 97%; N, 90%; P, 13%; K, 44%; Ca, 27%) were generally lower than those we 
measured. In addition, these authors might have overestimated the losses because they did not take into account 
the residual unburnt fuel in their calculation. The higher losses we obtained could be explained by the fire 
intensity that has likely increased in Lamto, due to higher rainfalls and the subsequent higher grass biomass. The 
mean fire intensity measured from 2009 to 2010 was 2966 kW m-1 and 1673 kW m-1 for MF and LF, 
respectively (N’Dri et al. 2012), whereas that measured from 2013 to 2017 were 3920 kW m-1, and 3134 kW m-1 
for MF and LF, respectively (N’Dri et al., 2018a). Losses measured by Laclau et al. (2002) using Villecourt et al.’ 
(1980) method, in the littoral savanna of Congo (N 85%, P 25%, K 39%, Ca 21%, and Mg 28%), were also 
lower than ours, probably due to the lower biomass in Congo savanna.  
Losses of C and N nearly reached 100% irrespective of the burning date. The N stocks in aboveground biomass 
(6, 3 and 4 g m-2, respectively for EF, MF and LF) were almost completely lost (-5, -3 and -4 g m-2 respectively) 
mainly through gaseous forms. Thus, burning plays an important role in the losses of nutrients.   
4.3 Implications for Savanna Functioning and Land Management 
The recurring losses of nutrients caused by annual fires may be causing irreversible nutrient rundown of the 
Lamto savanna. Our study showed that the MF fire implemented since 1962 in that savanna causes higher losses.  
The approximate annual N inputs to Lamto savanna from natural sources are 29 kg ha-1 year-1, including 19 kg of 
wet deposition and about 10 kg from non-symbiotic biological fixation (Villecourt et al., 1980). The annual N 
outputs were also estimated to 15.6 kg ha-1 year-1, including 10 kg from fire, and 5.6 from drainage (Villecourt et 
al., 1980). Therefore, Abbadie (2006) concluded that N fixation was sufficient to replace annual losses due to 
mid-season fire. However, the loss of N from fire only in our study was 29 kg ha-1 year-1 for mid-season fire, the 
main fire regime in Lamto which is three time as high as the value reported by Abbadie et al. (2006). Fire 
intensity becoming higher, losses also becoming greater, which could lead to the low equilibrium between inputs 
and outputs of N. Moreover, the processes by which N is stored in soil organic matter or in microbial biomass 
and released through mineralization may be strongly affected by fire (Menaut et al., 1993). The substantial losses 
of N caused by burning are potentially reversible if fire is excluded for several years, but this is unlikely to occur, 
as fire is the main tool to maintain savanna in this area where forests can also grow (Devineau et al., 1984). 
Therefore, fire can cause considerable losses of all nutrients to the atmosphere, but nitrogen being one of the 
main component of phytomass, its losses is much greater than those of other nutrients, as we recorded in our 
study, and in studies of Cook (1994), and Kauffman et al. (1995). As a result, repeated fires are likely to promote 
a shortage of N, and many savannas are thought to be primarily N-limited in soil and primary production 
(Abbadie, 2006). This could explain the almost zero nitrogen content of soils observed in Lamto (Riou, 1974).  
Atmospheric inputs of P are only about 3.6 kg ha-1 year-1 (Villecourt et al., 1980) and are clearly insufficient to 
balance outputs we recorded (6 kg for MF and about 5 kg for EF and LF). Transfer of K, Ca, and Mg to the 
atmosphere in repeated fires is likely to have less impact on short-term savanna nutrition than losses of N and P 
that are more widely deficient elements for tree growth in the Lamto savanna (Riou, 1974; Koné et al., 2008). 
Cech (2008), also found that biomass production was co-limited by N and P in frequently burnt humid savannas 
of Tanzania. Humid savannas are often limited by shortages of N, P, or both (Högberg, 1986; Medina, 1987; 
Ludwig et al. 2004).  
The losses of C and nutrients are well known for mid-season fire in Lamto (Villecourt et al. 1980; Abbadie, 
2006), but no information is available for early and late fire. But according to Coutinho (1990), the seasonal 
variations of C and nutrients in plants suggest an intensive and efficient adsorption of the ash nutrients that 
return to the soil after burnings. However, because rains tend to be more frequent when late fires occur, ash 
nutrients could be quickly incorporated into the soil, whereas a great part of ash nutrients could be lost by wind 
after mid-season fire. The important losses of C seem to threaten the life of this ecosystem by reducing its source 
of energy.  
Moreover, biomass burning contributes to the increase in the atmospheric budget of several gases, mainly carbon 
dioxide (Crutzen & Andreae 1990). Our study showed that EF seem to contribute to the increase of CO2 in 
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atmosphere than MF and LF, contrary to Koné (2012) who suggested that less intense burning also produces less 
gas emissions into the atmosphere. 
The choice of the fire management strategy to control bush encroachment in Lamto must consider fire impact on 
the carbon and nutrients dynamics. Fire regime should be selected to reduce losses of nutrients on the long term. 
The data collected, when combined with other information on the effects of fire and estimates of natural rates of 
element replacement, can be used to guide managers in the selection of appropriate fire regimes.  
5. Conclusion 
This study is one of the first focusing on carbon and nutrient losses during biomass burning at different burning 
dates. Significant quantity of all nutrients was transferred to the atmosphere during fires in Lamto savanna, but N 
losses were the highest during the mid-season fire, and likely to greatly exceed the inputs based on the currently 
available data. The losses of N were highly correlated to flame height and fire maximal temperature, which were 
the highest during MF.   
This work indicates that, under an annual burning in which the burns are complete as MF, the nitrogen reserves 
of savanna may be depleted. To reduce the likelihood of this occurring, others burning seasons have to explored, 
helping land managers to develop management options to reduce nutrient losses from fires. Carbon and nutrients 
losses from wind and rainfall may increase the output and must be estimated during further studies. 
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