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Abstract 
This paper surveys the literature on resilience, provides several definitions of resilience, and proposes a new 
comprehensive definition for a resilient engineered system, which is: a system that is able to successfully 
complete its planned mission(s) in the face of disruption(s) (environmental or adversarial), and has capabilities 
allowing it to successfully complete future missions with evolving threats. This definition captures the subtle 
differences between resilience and a resilient engineered system. We further examine the terminology associated 
with resilience to understand the various resilient time-frames and use the terminology to propose a resilience 
cycle, which differentiates mission resilience (short term) and platform resilience (long term). We then provide 
insight into various resilience evaluation methodologies and discuss how understanding the full scope of 
resilience enable designers to better incorporate resilience into system design, decision makers to consider 
resilient trade-offs in their assessment, and operators to better manage their systems. A resilient engineered 
system can lead to improved performance, reduced life-cycle costs, increased value, and extended service life for 
engineered systems.  
Keywords: adaptability, engineered systems, flexibility, recoverability, resilience 
1 Introduction 
In this paper we review existing resilience literature with a focus on engineered systems. We focus on engineered 
systems (systems designed, developed, and implemented by using a systematic engineering process) because 
engineered and natural systems work and respond differently. Our focus is on deployable engineered systems. 
Resilience is not a new subject; it has been examined in a variety of fields for decades.  Ecology and psychology 
have historically studied and made use of the term resilience most often. Resilience has recently become a research 
topic in man-made systems, primarily in the areas of networks and infrastructure. Engineered systems, which are 
systems created by and for people and are designed to satisfy key stakeholder’s value propositions, are the most 
recent field to incorporate resilience concepts (Engineered Systems glossary 2018). Specifically, when designing 
large complex engineered system platforms, such as Department of Defense (DoD) weapon systems, the designers 
and decision makers are more interested in incorporating resilience into these systems. To perform better in 
today’s increasingly connected world, this research topic is being extended to collections of individual systems 
called systems of systems (SoS).  
Engineered systems benefit from clear definitions and methods of measurement. Currently, resilience is not 
defined for engineered systems in a way that incorporates the entire scope of resilience. Literature reviews 
substantiate that there has been no complete or agreed upon method for evaluating engineering resilience (Hosseini, 
Barker, & Ramirez-Marquez, 2016; Sheard & Mostashari, 2008; Reid & Botterill, 2013). Most discussions of 
resilience focus on design principles and methods for improving resilience.  
This paper compiles the definitions from the existing literature and develops a definition for engineered systems 
resilience that does not include the means to attain resilience as part of the definition. The means to achieve 
resilience span a wide array of time frames from predesign until after the system has been deployed and completed 
many missions. Accordingly, we incorporated all the time frames over which resilience should be considered into 
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our definition. To better understand the effect that time plays on engineered systems resilience, we partition these 
timeframes using the proposed Resilience Cycle into two segments: mission resilience and platform resilience.  
This definition and the associated framework allow for a better discussion of resilience, which can aid in the design, 
development, operation, and evaluation of a complex system. By considering the entire resilience cycle we can 
improve analysis and evaluation of resilience in these engineered systems. This improved analysis allows for better 
product life cycle management, which is crucial for improving the performance of new product development (NPD) 
(Tai, 2017).  
We start this paper by providing an explanation of the literature review process and a summary of the current state 
of the engineered system resilience literature in order to identify common trends. Next, we examine the various 
terminology related to resilience in order to understand their connection to resilience. We then review the existing 
definitions, explain the short-comings of these existing definitions, and propose a new definition for a resilient 
engineered system. Finally, we introduce the Resilience Cycle as a framework to better differentiate the multiple 
aspects of resilience and discuss the implications of resilience to the systems design and management process.  
2 Engineering Resilience Literature Review 
2.1 Resilience Literature Review Process 
A structured literature search was performed to identify and evaluate the proposed qualitative and quantitative 
definitions of engineered systems resilience. The literature search included peer-reviewed journal papers, 
conference papers, technical reports, and International Organization of Standardization (ISO) standards. We 
focused on the linkage between qualitative and quantitative definitions of engineering resilience and the context 
of each definition. We also considered modeling approaches and evaluation metrics used to assess engineered 
resilience.  
We conducted this literature survey in three parts. In the first part, the existing survey papers on resilience were 
reviewed to determine if a need existed to further explore engineered resilience or if it had been sufficiently 
explored. Eight survey papers were reviewed. While some specifically discussed engineering resilience, none of 
them focused on the engineering domain. These papers served as a starting point for the second part of the 
literature search, in which the citations from the survey papers were explored to find the most relevant papers for 
engineering resilience. This effort considered engineering journals, ISO standards, the Systems Engineering Body 
of Knowledge, and the International Council on Systems Engineering’s (INCOSE) Systems Engineering journal. 
We also examined recent engineering conference proceedings. The International Organization of Standardization 
does not include resilience in the systems engineering standard. The only standard reference to resilience is in 
ISO/TC 292 – Security and Resilience, which was not pertinent to engineered systems as it focuses on community 
and organizational resilience (International Organization for Standards, 2016). The final source that we reviewed 
in this portion of the literature review was the Systems Engineering Body of Knowledge (SEBoK). In addition to 
the eight survey papers on resilience, this portion of the literature review found 38 papers that provided some 
definition of engineering resilience. 
For the third part of the literature review we used a systematic literature review. Cronin et al. (2008) provide detail 
information on the systematic literature review process. Our searches included the Web of Science, ProQuest, and 
Google Scholar databases. A search was performed on the terms:  
• Resilience  
• Resilience ‘and’ Engineering 
• Engineered Resilient Systems  
For each of these search terms in each database we reviewed the 100 most relevant papers. The following criteria 
were used to determine which of these papers were relevant. The paper must: 
• be a journal or conference proceeding 
• discuss engineered resilience 
• provide a definition of resilience 
The first criterion ensures only peer-reviewed references are used. The second criterion excluded many papers that 
used resilience in reference to psychology, ecology, and socio-ecological systems. The final criterion ensured that 
a paper did not simply state that resilience was added, but actually defined resilience. Any papers that used another 
author’s definition were excluded in favor of the original source of the definition. The first two criteria were able to 
be assessed by using the meta-data for the title and the abstract. This eliminated 856 paper, leaving 44 papers. For 
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infrastructure or mechanical systems. In 2013, Reid and Botterill identified multiple meanings of resilience (Reid 
& Botterill, 2013); however, only four papers considered engineering resilience. Ryan, Jacques, and Colombi 
(2013) noted the confusion of resilience terms that included flexibility, adaptability, and robustness. Later in 
2015, Larkin et al. (2015) described how various United States governmental organizations defined and 
measured resilience and identified four resilience functions: plan, absorb, recover, and adapt. This resilience 
framework considered four different time frames: before a threat, during a threat, in the short term after a threat, 
and in the long term after a threat. Uday and Marais (2015) looked at resilience in more complex systems of 
systems (SoS). They noted that at a basic or component level, reliability and resilience are very similar, but begin 
to differ drastically with increasing complexity towards a SoS. They noted that they “were unable to find any 
published papers that provide a focused review of designing and operating resilient SoS” (p. 492). They outlined 
ten design principles that can be used to increase resilience but acknowledged there are currently no methods that 
satisfactorily evaluate resilience. A recent resilience literature survey reviewed the definitions and measures of 
system resilience and looked at 144 different sources, 12 of which were in the engineering domain (Hosseini, 
Barker, & Ramirez-Marquez, 2016). 
Based on our initial analysis of the literature, we determined that there is a need to focus on a narrower definition 
of resilience that is specific to the engineering domain in order better define the term “engineered resilience.” In 
addition to understanding the current literature on the definitions and measures of engineered resilience, this 
paper will clarify and organize several related terms in the literature 
2.3 Attributes of Engineering Resilience Literature 
In Table 1, the 44 papers with resilience definitions are classified using 9 categories (author, publication year, 
number of citations, definition, time, model, system type, methods of improvement, and application) to provide 
insights into the different attributes of each paper. The publication year and the number of times the work has 
been cited according to Google Scholar (Google, 2018) provides insight into the timeframe of the article and its 
impact on other scholarly work. Figure 5 summarizes the relative frequency of the information found in Table 1. 
The definition category had three subcategories: qualitative, conceptual framework, and quantitative. Qualitative 
definitions describe resilience. A conceptual framework provides a more complete understanding of resilience. It 
describes how resilience factors into the systems operation throughout its life cycle and how it interacts with 
other characteristics of the system. Quantitative definitions are methods that mathematically evaluate resilience. 
The quantitative definitions included area-under-the-curve analysis, network performance, and several other 
calculations that viewed resilience to be an extension of an existing concept (e.g., safety or reliability). While at 
least one of these methods of defining resilience was a requirement to be included in our literature survey, 19 
papers provided definitions that fit into two or more of these categories. Most papers contained either a 
qualitative or conceptual framework definition rather than a quantitative definition. Categorizing each paper 
revealed that most of the research on engineering resilient systems has focused on qualitative definitions (39 
papers contained qualitative definitions or conceptual frameworks while only 19 contained quantitative 
definitions). Without understanding exactly what resilience is and how to measure it, there is no way for 
managers to assess its value in the design space. 
The time category classifies each paper based on the resilient time frames. These time frames are before the 
disruption, during the disruption, short-term-after the disruption, and long-term-after the disruption. Before the 
disruption involves planning for and designing for disruptions the system might encounter. During the disruption 
involves any action while the disruption is occurring such as surviving, absorbing, resisting, avoiding, and 
repelling the threat. Short-term-after involves restoring the system after a disruption, including recovery, 
flexibility and adaptability. Long-term-after the disruption, includes flexibility, adaptability, engineering change, 
and modifying the system to better handle any new disruptions that arise. Most of the papers considered 
resilience during and in the short-term-after timeframes. This time categorization is a building block of our 
Resilience Cycle, discussed later in the paper. 
Since a quantitative model is an end goal of defining engineering resilience, the 44 papers were classified by the 
type of model used. The model categories included single objective, multiple objective, cost, or value models. 
The most complete model used a multiple objective model that included cost and value (Sitterle, Curry, Freeman, 
& Ender, 2014). The quantitative definitions typically focused on a single objective and related cost models. This 
review demonstrated an opportunity to create a more complete quantitative evaluation method that includes 
multiple objectives, value and cost models, which can be tailored to an organization’s preferences and goals.  
The next category in the table is the system level presented in the paper, with options being component, 
subsystem, or system of systems (SoS). Every paper reviewed discussed the resilience of a system; however, 



emr.ccsenet.org Engineering Management Research Vol. 8 No. 2; 2019 

17 
 

many of these also considered how other levels of a system impacted, or were impacted by, the system’s 
resilience. This category proved enlightening because the way resilience applies varies at each level of the 
system. Understanding these variations is useful during new product development. The resilience of a single 
car’s engine is different than the resilience of the Humvee vehicle platform and those are both different than an 
onboard navigation system that is used across multiple vehicles and platforms. In general, the lower the level of 
the system, the easier it was to evaluate resilience. The resilience of individual components was stated to be the 
same as reliability (Shafieezadeh & Burden, 2014). Ayyub (2014) continued to evaluate resilience as an 
extension of reliability through to the system level. In his calculations, he showed each additional component 
reduces the resilience of the system as it increases the likelihood that any one component could fail. This does 
not consider the complete view of resilience which could incorporate redundancy and the specific impact of the 
component failure. Taking a limited view of resilience in the system design phase could cause significant delays 
during new product development or even worse yet, be released and provide poor functionality and reliability to 
the customer. The primary discussion of components and subsystems was how they impact the resilience of the 
system, through practices such as redundancy, flexibility, and modularity (Madni, 2012; Jin, Li, & Kang, 2017; 
Mitchell, 2007; Dinh, Pasman, Gao, & Mannan, 2012). Some authors believed that components viewed in 
isolation gave no information about resilience, and that one must evaluate the entire systems performance in 
order to make any useful claim about resilience (Park, Seager, Rao, Convertino, & Linkov, 2013; Alderson, 
Brown, & Carlyle, 2015).  
System of Systems was the final level in the category. The majority of papers that discussed SoS were 
infrastructure related. A SoS must have two primary characteristics that distinguish it from a system and 
subsystems – managerial and operational independence (Maier, 1996). This means that not only can the system 
operate without the other systems, but that it is typically operated independent of the greater coordinated SoS. 
Many of the examples and demonstrations also focused on natural disasters, as seen in the application column of 
Table 1. SoS was not always the terminology used by the author to refer to this concept. Ettouney (2014) referred 
to systems as assets and a community was a collection of interdependent related assets, which aligns with the 
definition of a SoS. These SoS cases were the most difficult to evaluate resilience in, with only one paper that 
discussed SoS providing a quantitative definition of resilience (Guariniello & DeLaurentis, 2013). 
The last two categories were methods of resilience improvement and application area. A paper was categorized 
as containing a method of improvement if it provided a means or suggestion on how to improve resilience, such 
as adding redundancy. Twenty-one of the papers discussed ways to improve resilience. While we have referred to 
these ways to improve resilience thus far as means, many of the authors refer to these as design principles. Once 
we fully define resilience and begin to quantitatively assess it, these means and principles can provide the basis 
for developing more resilient systems. These more resilient systems can contribute to better overall product 
designs. The application category was used to identify the application domain. The most frequent applications 
were for generic engineered systems and infrastructure. 
While these are the common attributes we identified and discuss, it is important to note that the literature 
discusses other important resilience constructs. This includes operational resilience, proactive, and reactive 
resilience. 
2.4 Literature Trends 
Qualitative definitions of resilience were the most common as it is difficult to discuss a concept without 
providing at least a basic description of that concept. Many of these definitions were variations on the traditional 
(material-science) definition of resilience referencing how much energy could be absorbed and elastically 
released upon unloading to create no permanent deformation (Callister, 2017). This definition is only concerned 
with the during and short-term-after time periods, which are the most commonly discussed time frames, both 
appearing in over eighty percent of the papers. Only three papers discussed neither the during or short-term-after 
time frames. The remaining two time frame categories took a wider view of resilience noting that actions could 
be taken before a disruption ever occurs to impact resilience, and well after the disruption has been resolved but 
before the next disruption arrives. Generally, both of these timeframes can be thought of as planning. Nineteen 
papers recognized this need to include planning when considering resilience. 
Just under half of the models had no consideration of cost. Only one paper used a cost model without a 
corresponding single or multiple objective value/performance model. Value was only modeled four times and 
three of those were in conjunction with a cost model. This cost and value pairing is a useful method to make 
design trade-offs and decisions for large complex systems. 



emr.ccsenet.org Engineering Management Research Vol. 8 No. 2; 2019 

18 
 

Table 1. Analysis of engineering resilience literature 
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Richards 1996 3 ● ● ● Space Transportation System

Bruneau et al. 2003 1624 ● ● ● ● ● Infrastructure Systems: Seismic 
Resilience

Brizon et al. 2006 6 ● ● ● ● ● Systems
Mitchell et al. 2007 4 ● ● ● ● Material Resiliency

Kahan et al 2009 110 ● ● ● ● ● ● ● ● Homeland Security
Madni et al. 2009 256 ● ● ● ● ● Engineering general

Richards et al. 2009 56 ● ● ● ● ● ● Systems Engineering
Erol et al. 2010 4 ● ● ● ● ● Systems

Henry et al. 2010 1 ● ● ● ● ● Systems
Aven et al. 2011 192 ● ● ● ● Systems Engineering

Hollnagel et al. 2011 176 ● ● Systems
Vurgin et al. 2011 31 ● ● ● ● ● ● Infrastructure assessment

Youn et al 2011 57 ● ● ● ● ● ● ● ● ● ● Simplified Aircraft Control 
Actuator Design

Dinh et al. 2012 97 ● ● ● ● Flammable Materials
Mackenzie et al. 2012 16 ● ● ● Electric Power Outage

Madni et al. 2012 41 ● ● ● ● ● Platform Based Engineering
Urken 2012 19 ● ● Evolvable Systems

Alderson et al. 2013 24 ● ● ● ● ● ● Networks
Guarinello et al. 2013 19 ● ● ● ● System of Systems

Jackson et al. 2013 65 ● ● ● ● ● ● ● ● ● Systems
Linkov et al. 2013 74 ● ● ● ● ● ● Systems
Neches et al. 2013 62 ● ● ● Systems

Park et al. 2013 214 ● ● ● ● ● ● ● River Flooding Management

The National Academies 2013 79 ● ● ● ● ● ● ● ● Infrastructure to Natural 
Disasters

Ayyub 2014 136 ● ● ● ● ● ● ● ● Systems
Balchanos et al. 2014 3 ● ● ● ● ● UAV

Ettouney 2014 116 ● ● ● ● ● ● ● ● ● ● ● Infrastructure
Goerger et al 2014 53 ● ● ● ● ● Department of Defense

Han 2014 2 ● ● ● ● ● ● ● Naval Ship and Air 
Transportation

Ross et al. 2014 203 ● ● ● ● ● ● ● ● Systems Engineering

Shafieezadeh et al. 2014 31 ● ● ● ● ● ● ● ● Infrastructure: Seismic 
Resilience of Seaports

Tokgoz et al. 2014 2 ● ● ● ● ● ● Buildings During Hurricanes
Alderson et al. 2015 42 ● ● ● ● ● ● ● ● Infrastructure
Franchin et al. 2015 37 ● ● ● ● ● ● ● Infrastructure to Earthquakes

Henderson et al. 2015 1 ● ● ● ● ● ● ● ● ● Computer IT Enterprise Systems

Lundberg 2015 33 ● ● ● ● ● ● ● Systems: SyRes model
McDermott et al. 2015 0 ● ● ● ● ● Sociotechnical Systems

Sikula et al. 2015 15 ● ● ● ● ● ● Systems: Military Installation 
Resilience Assessment Model

Sitterle et al. 2015 10 ● ● ● ● ● ● ● ● ● ● ● ● ● Defense
Teodorescu et al. 2015 6 ● ● ● ● ● Large Scale Systems

Jackson 2016 1 ● ● ● ● ● ● Systems
Cai 2017 1 ● ● ● ● ● ● Power Grid

The National Acadamies 2017 3 ● ● ● ● ● ● National Electric System
Jin et al. 2017 1 ● ● ● ● ● ● Networks

Lewis 2017 0 ● ● ● ● ● ● ● ● ● ● Acquisition System and Mass 
Transit System

Baroud 2018 0 ● ● ● ● ● River Navigation System
TOTAL 46 38 13 19 23 38 40 15 16 7 12 4 17 8 11 21
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in both short-term-after and long-term-after time frames. Leveson et al. (2006) used prevent, adapt, and recover, 
an example of before, during, and short-term-after, while Youn, Hu, and Wang (2011) described resilience by 
using anticipate, reorganize, and learn, which were means that occur in the before, short-term-after, and 
long-term-after time periods. Another definition that focused on the during and short-term-after time frames is 
presented in a critical infrastructure resilience definition: “Critical infrastructure resilience is a concept that 
describes the ability of infrastructure systems to absorb, adapt, and recover from the effects of a disruptive event” 
(Vugrin & Camphouse, 2011). Respond, monitor, anticipate, and learn provided means that covers all of the time 
frames except during the threat (Hollnagel, 2011). Kahan, Allen and George (2009) defined a difference between 
soft and hard resilience. Hard resilience aligned closely with engineering resilience and referred to the qualities, 
capabilities, capacities, and functions of institutions and infrastructure. They believed that the objectives (or end 
states) of resilience were resistance, absorption, and restoration, however, we can see that these are in fact means 
to achieve resilience. These four time frames were perhaps most fully incorporated by the National Academy of 
Science in 2013 when they defined resiliency as the ability to plan and prepare for, absorb, recover from, and 
adapt to adverse events (National Academies, 2013).  
A majority of the papers focused on describing specific means to accomplish resilience, such as anticipating, 
preparing, adapting, withstanding and recovering rapidly (Sikula, Mancillas, Linkov, & McDonagh, 2015). 
Others focused on the methods to improve resilience. Jackson detailed 14 sub-principles and how each 
contributed to the different resilience phases (Jackson & Ferris, 2013). Resilience was improved by adding 
redundancy and increasing flexibility (Youn et al., 2011). Dinh et al. (2012) improved resilience through 
controllability, flexibility, and capacity. They also discussed resilience strategies: minimize the probability to 
failure, minimize the consequences, and minimize the restoration and recovery time, early detection, flexibility, 
controllability, limitation of effects, administrative controls, and procedures. Prevention and learning were 
long-term-after means discussed for improving resilience, whereas protection and vigilance were the during 
means that contributed to resiliency (Brizon & Wybo, 2006). All of these are options for improving resilience 
and should be considered when looking to improve resilience during product developments or updates. A 
complete definition of resilience needs to be able to accommodate all of these means and many more. 
To better understand the difference between objectives and means and the importance of specifying objectives 
rather than means, let us consider an example of a drone. When focusing on the means, we would claim that for 
a drone to be resilient it must be able to absorb the impact from a collision. The system performance and 
objective could be equally well served by withstanding the collision, avoiding the collision, or having a 
redundant capability to replace the function damaged in the collision. All of these are resilient options that 
operate across different time frames to accomplish similar results. Claiming that the system must absorb the 
impact would be the specifying the means rather than identifying the objective. Using a means-based definition 
limits the design solutions available to handle potential disruptions to an engineered system, which could likely 
result in higher cost, lower performance, or both. Several definitions from the literature are shown in Table 2 
with the means underlined and objectives bolded to demonstrate this means-versus-ends concept. The ideal 
definition must be written in such a way that it can be widely accepted in order to create a standard definition. 
Engineering definitions should not include the means. For example, reliability is “the probability of a system or 
system element performing its intended function under stated conditions without failure for a given period of 
time” (SEBoK Authors, 2019). The definition does not include the possible means to make a system reliable. 
Table 2 presents a range of definitions to demonstrate the difference between means, which are underlined and 
are not desirable in an engineering definition and objectives, which are bolded and should compose the definition 
of a technical term such as resilience. 
 
Table 2. Engineering resilience definitions: means vs. objectives 

Source Definition 
Kahan et al. 2009 "The objectives (or end states) of resilience that underpin our approach are 

resistance, absorption, and restoration." 
"a basic tenet of our approach to resilience is to maintain the key functions of 
critical systems, both human and technical, pending restoration." 

Madni et al. 2009 "In our view, resilience is a multi-faceted capability of a complex system that 
encompasses avoiding, absorbing, adapting to, and recovering from disruptions" 
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Neches 2011 “A resilient system is trusted and effective out of the box in a wide range of 
contexts, easily adapted to many others through reconfiguration or replacement, 
with graceful and detectable degradation of function.” 

Neches et al. 2013 "the ability of a system to adapt affordably and perform effectively across a wide 
range of operational contexts" 

Linkov et al. 2013 Resilience is the ability to prepare and plan for, absorb, recover from, and more 
successfully adapt to adverse events. 

Alderson et al. 2015 "the ability to prepare for and adapt to changing conditions and withstand and 
recover rapidly from disruptions. Resilience includes the ability to withstand and 
recover from deliberate attacks, accidents, or naturally occurring threats or 
incidents." 

 
3.3 Proposed Definition 
At the beginning of the literature review, we presented several apparently conflicting definitions of resilience. 
Further examination reveals that the definitions were not conflicting, but rather contained overlapping 
terminology as discussed in the previous section. This conflict was caused not by the definitions themselves, but 
rather by the scope of the definitions. Several of the definitions focused on a specific application area or used 
means instead of providing a broad translatable definition. Our proposed definition refined from (Anonymous) 
focuses on the objectives of resilience rather than the means and can be applied to any engineered system. It also 
includes current and future uses.  
An engineered resilient system is a system that is able to successfully complete its planned mission(s) in the face 
of disruption(s) (environmental or adversarial), and has capabilities allowing it to successfully complete future 
missions with evolving threats.  
This definition spans all of the definitions surveyed in this literature search. A mission is a generic term used for 
whatever the system needs to accomplish. For a running watch, that mission could be tracking time on a run, 
while a future mission could be tracking time during a swim. While the watch that one consumer purchased may 
not be able to adapt to the new mission, the watch platform as a whole could be improved to handle it. This new 
mission also has the added threat to the system of operating under water. A military system could have been 
designed to repel small arms fire in the jungle but is later retasked to a dessert environment where IEDs are a 
new threat that the platform would need to handle. 
The means to complete a mission may be to repel, resist, or absorb (or any other means discussed in the literature) 
the threat to prevent the deterioration of any mission critical functions. Be it activity tracking in the watch, or 
mobility and safety in the military vehicle. 
In the face of a disruption, the system or its operators/users will respond in some way; it may be an active 
response such as avoiding the disruption (e.g., going around a storm) or a passive response of simply absorbing 
or resisting the disruption (e.g., a system that is waterproof will be unharmed by the rain). If the threat does 
cause a deterioration of the function, there needs to be a means of recovering those functions to the required 
minimum levels. Here again the design decision to include distributed capacity, redundancy, flexibility, or any 
other method will affect the resilient responses. After the specific disruption has ended and the mission is 
complete, the system should then be able to adapt and be modified to improve its response to similar threats in 
the future. This extends its lifecycle instead of requiring an entirely new system to handle the disruption. While 
keeping these concepts in mind, it is important to plan and prepare for threats and responses in advance during 
the system design phase because as noted by Dinh et al. (2012) how fast and effective this response is will 
depend not only on recovery plans, but also on the system design itself. Kahan, Allen, and George (2009) also 
stated that resilience needs to be planned in advance—before systems are damaged and undesired consequences 
occur. This “in advance” time period can occur at a variety of times throughout the system’s life cycle since there 
are many threats that the system will likely encounter. 
It is important to note that this is not a new definition for resilience. Standard dictionaries and international 
organizations already define resilience. For example, the SEBoK defines resilience as the “ability to maintain 
capability in the face of adversity (SEBoK Authors, 2019).” Our proposed definition builds upon this idea and 
provides more clarity for engineered systems. The proposed definition more clearly defines what the resilient 
engineered system should achieve and under what system specific conditions.  
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slope in the system recovery stage. This attribute is sometimes referred to as the systems rapidity (Bruneau et al., 
2003). A third adjustment would be a change to the system that would allow it to reduce the disrupted time, by 
reducing the amount of time between when the disruptive event has finished (td) and when the recovery begins 
(ts). A platform resilience change could also be made to increase the final value of φ(tt), allowing it to better 
recover from a disruption. A platform resilience change could also be made that would increase the initial 
performance φ(t0). This would allow the system to better complete its mission and deal with additional 
disruptions, thus increasing the performance at every step along the resilience curve. It is worth noting that this is 
a simplified figure. Any system could have numerous performance measures each with its own unique curve. 
Furthermore, none of the sections need be made of simple line segments. They may be curved or made of 
multiple segments. Lastly, the system performance does not always begin or end at optimal performance. 
In relation to the multiple performance curves, the effect of stresses and disruptions on one part of the system 
can affect the ability of other systems to withstand stresses (Mitchell, 2007). This emphasizes the need for 
high-quality modeling and simulation that captures the complete interactions between components, and systems 
in a SoS context.  
6. Implications  
In order to effectively incorporate resilience into a system design, engineering managers need to understand 
resilience and what can be done to improve resilience throughout the systems life cycle. Disruptions and system 
failures are inevitable for any engineering system. Copper states “A key challenge faced by new product 
development is how to acquire and manage sources of uncertainty in order to reduce the risk of failure of either 
the project or the resulting product” (Cooper, 2003) Resilience provides a way to deal with those disruptions and 
uncertainty in the most effective way. Robustness and resilience could be considered insurance policies against 
risk and uncertainty in long-term-after plans and designs, especially where technological, budget or even focus 
shifts are likely (Richards, 1996). Resilient engineered systems have the ability to extend the service life of a 
system or a platform and significantly increase the value provided over the life of the system. Thought of another 
way, the impact that research and development and manufacturing costs have on the total cost of the system is 
reduced as the service life extends. Resilience is quickly becoming an important consideration due to the 
increasing complexity of engineered systems, rapidly developing technology, and an ever-increasing set of 
possible disruptions from the environment, technological malfunctions, human error, and malicious activity. As 
complexity of systems has increased, so too have cost overruns; engineering more resilient systems is a way to 
combat this trend (Roberts, Mazzuchi, & Sarkani, 2016). The definition and framework provided in this paper 
will help retain the focus of the value of resilience. It also demonstrates the various points in a systems life cycle 
that resilience can be incorporated and that it is not just an upfront investment, but can continually be improved 
with intelligent design and careful planning.  
7. Summary and Future Work 
In this paper we reviewed the engineered systems resilience literature. We found no standard definition of 
resilience and the definitions found included a variety of means in their definitions of resilience while not 
including the objectives over the full life cycle. This paper provides a new definition of a resilient engineered 
systems that includes the objectives of resilience without dictating the means to achieve them - An resilient 
engineered system is a system that is able to successfully complete its planned mission(s) in the face of 
disruption(s) (environmental or adversarial), and has capabilities allowing it to successfully complete future 
missions with evolving threats. This definition is useful because it encompasses the totality of what resilience 
means and enables more meaningful conversations about how to improve the system resilience during new 
product/system development. We also developed the resilience cycle which separates mission resilience (short 
term) and platform resilience (long term). An understanding of engineered systems resilience can help 
engineering managers, designers, and other engineered system stakeholders evaluate resilient options to improve 
the affordability and value provided to the customer over the product/system life cycle. 
Much of the current work on quantifying resilience is focused on mission resilience. Future work should build 
upon the definition presented in this paper to incorporate platform resilience as well. There is also a need for 
more in-depth and comprehensive modeling efforts for effectively incorporating resilience in tradespace analysis, 
improving the evaluation of the usefulness of various system resilience options, and assessing platform resilience, 
as seen in the literature search results. The lack of value models, specifically using multiple performance 
measures, in the literature make it difficult to develop tradespace analysis methods. Additionally, the literature 
search demonstrates resilience research opportunities in the development of techniques, principles, and etc. 
during the long-term time frame of resilience. A more in-depth analysis of resilience terminology will help 
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improve resilience research. This includes categorizing resilience terminology by proactive and reactive. 
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