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Abstract 
The goal of this research was to model the potential impact of climate change on food production, in the Fraser 
Valley and Peace River regions of British Columbia (BC), using historical crop yield and climate data. We 
identified eight indicator crops of importance for these regions of BC and utilized historical Census of 
Agriculture and climate data (temperature and precipitation) to model future potential impacts of climate change 
on agriculture. We developed three climate change scenarios for these eight indicators crops (extreme, moderate, 
and business as usual). Under the most extreme climate model scenario the Fraser Valley is expected to 
experience cooler summers and springs and wetter summers, with incremental increases in oat, blueberry and 
green bean yields by 2050. These same climate conditions were predicted to decrease the yields for raspberry 
crops by 2050, while barley and wheat crop yields remain steady. The business as usual scenario, where springs 
and summers are warmer and summers are wetter in the Fraser Valley, predicted increased barley, oat, wheat, and 
blueberry crop yields by 2050, while yields of raspberries were predicted to decrease and green bean yields are 
expected to be steady. Under the more conservative climate change scenario conditions, yields should remain 
steady for all crops, except green beans where yields will increase by 2050. Future climate conditions for the 
Peace River area were much different from the Fraser Valley. All three scenarios forecasted warmer and wetter 
springs and summers with decreased evapotranspiration and moisture deficits. These changes in climate 
conditions predicted declines in wheat, canola, and barley crop yields by 2050, while incremental increases in 
oat and dry pea crop yields could be expected by 2050. 
Keywords: climate change, food production, Fraser Valley, Peace River, indicator crops, crop yields 

1. Introduction 
The climate has been changing over the last three decades and is expected continue to do so regardless of any 
mitigation strategy (Barker, 2007; IPCC, 2007). Temperatures are predicted to increase about 3–5 °C by the 
middle of the 21st century, while precipitation patterns (amount, seasonality, and intensity) are predicted to shift 
(Arnell et al., 2004; IPCC, 2007). Agriculture is a climate-dependent activity and hence is highly sensitive to 
climatic change and climate variability (Lobell & Field, 2007; Rivington et al., 2013). Crop yields are vulnerable 
to these changes in climate (Rivington et al., 2013; Thornton, Jones, Ericksen, & Challinor, 2011), which can 
jeopardize food security and economic sustainability that provide the necessary input for sustaining people’s 
livelihoods (FAO, 2012; FAO, WFP & IFAD, 2012). Agriculture is a key driver of national and local economies 
and largely depends on what can be grown and how efficiently it can be done, taking into consideration 
variations in climatic trends.  

A literature review of the impact of climatic trends on crop yields (Bradshaw, Dolan, & Smit, 2004; Bryant et al., 
2000; Joshi, Maharjan, & Luni, 2011; Lobell, Field, Cahill, & Bonfils, 2006) indicated that changes in growing 
season temperature and precipitation drive annual variation in average yields (Lobell & Field, 2007; Peng et al., 
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2004). Crop yields are a function of dynamic, nonlinear interactions between climate, soil water, management, 
and the physiology of the crop (Semenov & Porter, 1995). For example, changes in the variability of temperature 
can greatly influence dry matter production as both high and low temperatures decrease the rate of dry matter 
production and, at extremes, can cause production to cease (Grace, 1988; Ingver, Tamm, Tamm, Kangor, & 
Koppel,, 2010). Likewise, water deficit occurring immediately before flowering can lead to pollen sterility and 
will result in a drastic decline in grain yield (Ingver et al., 2010; Nguyen & Sutton, 2009; Thakur, Kumar, Malik, 
Berger, & Nayyar, 2010). Previous research relating predicted climatic variations to crop response have offered 
the potential to anticipate changes in crop production early enough to adjust critical decisions (Blench, 2003; 
Hansen, 2002; Letson et al., 2001). 

To study the implications of climate change in British Columbia (BC) agriculture we selected eight indicator 
crops from three different food groups (grains, fruits, and vegetables). In the grains group we chose barley, 
spring wheat, oat, canola, and dry peas. Grains have been documented (Joshi et al., 2011; Subedi, Gregory, 
Summerfield, & Gooding, 1998; Thakur et al., 2010; Willenbockel, 2012) to be very vulnerable to changes in 
temperature and precipitation; therefore historical data on grain yields can serve as proxy to understand future 
effects of variable weather conditions. Likewise, fruits such as blueberries and raspberries, as well as vegetables 
such as green beans are susceptible to water deficit. When water supply is limited during the vegetative and yield 
formation periods, plant development is usually delayed, causing non-uniform growth and minimizing yield 
(Glass, Percival, & Proctor, 2005; Hall & Sobey, 2013; Petrova, Matev, & Haitova, 2012). Temporal yield data 
from fruit and vegetable crops are also used to study the relationship between climate change and agriculture in 
BC. 

1.2 Goal 

The goal of this research is to model the potential impact of climate change on BC`s food production, as 
represented by historical and future crop yield projections. To meet this goal we identify indicator crops of major 
importance for BC and utilize temporal Census of Agriculture data, available from Statistics Canada, to identify 
potential impacts of climate change on agriculture. We characterize climate relationships observed over time by 
relating archived climate information to annual agricultural yields. To reduce redundancy produced by correlated 
climate predictors, we use Principal Components Analysis (PCA) to derive a new set of uncorrelated climate 
variables. Quantitative historical values are then used to model potential future yields for 2020 and 2050 under 
different climate change scenarios. 

1.3 Study Area 
The province of BC in western Canada spans 944 735 km2 and has a diversity of landscapes, topography, 
climatic zones, and geographical features (Holland, 1976). As a result of the province's variety in landforms, 
agriculture and food industry are diverse. The province is divided into eight agricultural census regions (Figure 
1). BC possesses unique agriculture policies directly related to local food production; in particular, the 
Agricultural Land Reserve (ALR) is a province-wide land preservation policy of nearly five million hectares of 
protected farmland where farming is encouraged and non-agricultural uses are controlled (Androkovich, 
Desjardins, Tarzwell, & Tsigaris, 2008; Hanna, 1997). ALR delimitation is based on soil and climate and 
represents 5% of BC land suitable for farming, with only 1% having the best soil with the highest capability for 
growing crops.  

 
Table 1. Data summary on indicator crops 
Crop Region Years Source 
Barley 

Peace River 
Fraser Valley

1991-2009 
November 2011 Farm Survey. Statistics Canada,  Agriculture Division, 
Crops Section. 

Spring Wheat 

Oat 

Canola 
Peace River 

1991-2009 November 2011 Farm Survey. Statistics Canada,  Agriculture Division, 
Crops Section. Dry Peas 1995-2006 

Green Beans Fraser Valley 1961-2009 
Fruit and Vegetable Survey - 3407. Table 001-0013 Area, production and 
farm value of vegetables, annual. 

Blueberries 
Fraser Valley 2002-2009 

Fruit and Vegetable Survey - 3407. Table 001-0009 Area, production and 
farm value of fresh and processed fruits, by province, annual. Raspberries 
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Figure 1. Map of the agricultural regions of British Columbia and the Agricultural Land Reserve of Fraser Valley 
and Peace River, where the indicator crops are grown. 
 

1.4 Data 

The crop yield data used in this paper were provided by Statistics Canada (Table 1). Agricultural Census data 
provided information on the area of farmland under cultivation for our indicator crops. Data from the farm 
surveys were disseminated at the provincial scale with no sub-provincial data available. Census and sample 
survey data were gathered by Statistics Canada from direct questionnaires supplied to farm owners in Canada. 
Total food production for a given product over a year is calculated by Statistics Canada using extrapolated data 
from sample surveys. Crop data descriptions are as follows. 

1.4.1 Grains 

Through Statistics Canada Field Crop Reporting Series, accurate and timely estimates of seeding intentions, 
seeded and harvested area, production, yield and farm stocks of the principal field crops in Canada were 
provided at the provincial level (Statistics Canada, 2012a). Field Crop Series data reported farms producing 
grains in all non-Atlantic provinces; farms were stratified by size and randomly sampled. In BC, grain crops 
grown in Peace River (Figure 1) were reported separately from the remainder of the province and account for 90% 
of total grain production excluding forage corn. A large proportion of some grain crops (e.g., oats and barley) are 
fed to livestock. The estimated proportion of livestock grain was removed from the production data, given that it 
is not be available for human consumption (Statistics Canada, 2012b).  

1.4.2 Fruits and Vegetables 

We used data from the annual Spring and Fall Survey of Fruits and Vegetables, conducted by Statistics Canada. 
Through stratified random samples this survey collected data to provide estimates of the total cultivated area, 
harvested area, total production, marketed production, and farm gate value of selected fruits and vegetables 
grown in Canada. The survey excluded farms producing only mushrooms, potatoes, and greenhouse vegetables, 
as well as farms that were on Indian reserves; likewise, small operations with less than one acre of fruit and less 
than one acre of vegetables were left out. Annual totals of production and planted area for all fruits, vegetables, 
and potatoes are released by Statistics Canada each year (Statistics Canada, 2012c; 2012d). Fruits and vegetables 
in BC are mostly grown in the Lower Mainland-Southwest area (Lower Mainland and Fraser Valley) (Figure 1). 

1.4.3 Climate Data: 

We used high spatial resolution topographically corrected climate information for BC sourced from the Climate 
Western North America database version 4.60 (CWNA) (Wang, Hamann, & Spittlehouse, 2010). CWNA utilizes 
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the Parameter-elevation Regressions on Independent Slopes Model (PRISM) approach (Daly et al., 2008; 
Oregon State University, 2011) and uses up-sampling of climate models employing topography, climate stations, 
wind patterns, and rain shadow information to provide a continuous coverage of climate data for the province. 
Four datasets were used. The 49-year data spanning 1961-2009 was used to represent current climate. The three 
future climate scenarios were based on the Canadian Centre for Climate Modelling and Analysis (CCCma) B1, 
A1B, and A2 scenarios for the years 2020 and 2050. The future scenario B1 (AR4 – R4) represents the least 
extreme scenario, A1B (AR4 – R4) represents the business as usual scenario, and A2 (AR4 – R4) represents the 
most extreme scenario. Model selection was based on using the full range of possible scenarios that were 
available from respected institutions and were recommended by the Pacific Climate Impacts Consortium 
(Murdock & Splittlehouse, 2011). 

2. Method 
2.1 Climate variables 

Selected temperature-based variables consisted of Spring and Summer mean temperature, Spring and Summer 
mean maximum temperature, and Spring and Summer mean minimum temperature. Hybrid climate metrics 
consisted of Spring and Summer climate moisture deficit and evapotranspiration. Finally, precipitation variables 
were Spring and Summer mean precipitation. 

2.2 Principal Component Analysis 

Climate variables such as temperature, precipitation, and evapotranspiration are highly correlated (Trenberth, 
2005), leading to problems when applying regression techniques. After testing for correlation between the 12 
climatic variables selected for this study, we used Principal Components Analysis (PCA) to derive a new set of 
uncorrelated climate variables in order to reduce the redundancy created by correlated predictors. PCA is a 
classical technique used to reduce the dimensionality of a dataset by transforming input data based on a 
correlation matrix into a set of linear uncorrelated eigenvalues, or principal components (PCs), equal to the 
number of input variables and accounts for the total variance present in the input data (Jolliffe, 2002). PCs are 
uncorrelated and ordered such that the kth PC has the kth largest variance among all PCs. The kth PC can be 
interpreted as the direction that maximizes the variation of the projections of the data points such that it is 
orthogonal to the first k −1 PCs (Abdi & Williams, 2010; Saporta & Niang, 2010). While the first few PCs 
account for the greatest proportion of the data variance, the last PCs may be as interesting as the first 
components, since the type or the direction of the shifts are a priori unknown (Abdi & Williams, 2010; Jolliffe, 
2002; Saporta & Niang, 2010). PCA was conducted using climate variables from the Fraser Valley and Peace 
River regions. A total of twelve PCs were derived from climate variables in each region. 

2.3 Generalized Linear Models 

The principal component scores were employed as inputs in generalized linear models (GLMs) with a gamma 
distribution (Husak, Michaelsen, & Funk, 2007), which were used to predict future crop yields in the Fraser 
Valley and Peace River regions under different climate scenarios. The gamma distribution was chosen because it 
is bounded at zero and this takes into account that crops are always present.  

First presented by Nelder and Wedderbum (1972), GLMs are a flexible generalization of ordinary linear 
regression, allowing the linear model to be related to the response variable via a link function and the magnitude 
of the variance of each measurement to be a function of its predicted value (Gotway & Stroup, 1997; Nelder & 
Wedderburn, 1972). GLMs permit analyzing data from non-normal distributions and account for non-linear 
relationships. In this study, the final GLM for each crop was chosen using stepwise model selection based on the 
second-order Akaike's information criterion (AICc), which includes a bias-correction term to account for a small 
sample size relative to the number of model parameters (Anderson, Burnham, & Thompson, 2000; Burnham & 
Anderson, 2002). The model with the lowest AICc score was considered the most parsimonious, thus minimizing 
estimate bias and optimizing precision (Burnham & Anderson, 2002). Significant PCs retained in final GLMs 
were assessed to determine which climate variables were influential in the prediction of future crop yields. 
Forecast of future crop yields for the Fraser Valley and Peace River regions were calculated using the climate 
scenarios B1, A1B, and A2 and values associated with the 90% confidence interval (CI) are presented as Kg/ha. 

3. Results 
3.1 Principal Component Analysis 

Twelve PCs were drawn from the PCA for each region (Fraser Valley and Peace River). It should be noted that a 
common rule of thumb for selecting the quantity of PCs is to choose the smallest number of PCs such that a 
chosen percentage of total variation is exceeded. For the Fraser Valley data, the first 5 PCs cover more than 93% 
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of the total variation in the data, while for the Peace River dataset the first 4 PCs account for over 92% of the 
total variation. However, if only four or five components had been chosen, it would have had a detrimental effect 
on the regression model given that final PCs often represent stable linear relationships between predictor 
variables that are of interest in climate modelling.  

3.2 Generalized Linear Models 

The overall variability in crop yields was high and the mean was relatively low, with a positively skewed gamma 
distribution. Out of the several models generated for each crop and region, a total of eleven models were selected 
based on their AICc. AICc values and the number of parameter (Ki) per model are reported in Table 2. The 
reported AICc corresponded to the lower value attained with K parameters, allowing us to determine which 
model among a set of models was most parsimonious.  

 
Table 2. AICc-selected models for eight different crops in the regions of Fraser Valley and Peace River. CI 
represents the 90% confidence intervals of the predictions in Kg/ha. 

Region Model AICc 
Scenario A2 ScenarioA1B Scenario B1 

CI 2020 CI 2050 CI 2020 CI 2050 CI 2020 CI 2050 

Fraser 

Valley 

Barley 308.12 
2730.46 

1946.16 
 

3286.22 

2013.67 

3283.37 

1958.96 

5175.11 

1897.92 

2549.75 

1838.76 

2894.78 

1931.5 
 

Blueberr

y 
154.79 

8277.11 

4972.32 
 

11152.66 

5887.77 

11340.34 

6020.75 

19767.94 

6817.69 

8070.06 

5507.2 

9606.16 

5787.11 
 

Green 

Beans 
662.82 

6515.77 

4991.5 
 

6816.78 

6310.15 

6940.28 

6478.13 

7205.26 

6632.8 

6999.72 

6527.3 

7828.04 

6785.83 
 

Oat 306.44 
1958.47 

1138.05 
 

2321.59 

1240.06 

2241.29 

1221.11 

3543.06 

1445.43 

1695.69 

1011.7 

1964.69 

1140.27 
 

Raspberr

ies 
157.78 

6705.09 

4906.72 
 

6687.44 

4080.86 

7490.87 

4163.05 

8353.57 

1826.83 

7165.34 

5145.11 

7478.56 

4727.45 
 

Wheat 303.02 
3187.07 

2242.4 
 

3296.26 

2214.27 

3213.95 

2235.79 

4165.57 

1943.45 

3008.59 

2277.15 

3086.12 

2264.57 
 

Peace 

River 

Barley 306.45 
4192.23 

2412.04 
 

4872.51 

2552.77 

3458.75 

2183.94 

3251.29 

2027.28 

5828.67 

2522.36 

4221.64 

2452.89 
 

Canola 277.12 
2043.51 

807.86 
 

2452.29 

460.14 

2430.58 

741.19 

2336.92 

144.72 

2346.43 

371.7 

2313.05 

213.47 
 

Dry Peas 204.44 
2416.11 

1698.82 
 

2901.51 

1698.19 

2632.67 

1496.62 

3294.33 

974.29 

2768.15 

1573.33 

2881.91 

1777.48 
 

Oat 295.41 
2902.79 

1847.08 
 

3756.58 

2064.55 

3101.85 

1751.02 

3499.09 

1464.07 

2834.79 

1763.66 

3143.49 

1894.42 
 

Wheat 291.97 
3643.01 

2364.98 
 

4113.9 

2254.54 

3315.72 

2053.81 

3232.31 

1721.37 

4508.41 

2455.48 

3653.59 

2121.15 
 

 
 Table 3. Future trends in climate variables under different emission scenarios 
Scenario A2 

Region 
Climate change between 2009 and 2020 
Tmax
_sp 

Tmax_
sm 

Tmin
_sp 

Tmin_
sm 

Tave_
sp 

Tave_
sm 

PPT_
sp 

PPT_
sm 

Eref_
sp 

Eref_
sm 

CMD
_sp 

CMD_
sm 

Fraser 
Valley 

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↑ ↓ 

Peace 
River 

↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ 

Scenario A1B 
Region Climate change between 2009 and 2020 
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Tmax
_sp 

Tmax_
sm 

Tmin
_sp 

Tmin_
sm 

Tave_
sp 

Tave_
sm 

PPT_
sp 

PPT_
sm 

Eref_
sp 

Eref_
sm 

CMD
_sp 

CMD_
sm 

Fraser 
Valley 

↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ 

Peace 
River 

↑ ↑ ↑ ↑ ↑ ↑  -- ↑ ↑ ↓ ↑ ↓ 

Scenario B1 

Region 
Climate change between 2009 and 2020 
Tmax
_sp 

Tmax_
sm 

Tmin
_sp 

Tmin_
sm 

Tave_
sp 

Tave_
sm 

PPT_
sp 

PPT_
sm 

Eref_
sp 

Eref_
sm 

CMD
_sp 

CMD_
sm 

Fraser 
Valley 

↑ ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↓ -- ↓ 

Peace 
River 

↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ 
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Figure 2. Past and predicted crop yields for the Fraser Valley area. Yield projections for six crops represent 

scenarios A2, A1B and B1. Colour lines represent upper and lower limits of a 90% confidence interval 
 

Models of climate change showed different trends for the Fraser Valley and Peace River BC under three 
emission scenarios (Table 3). The most extreme climate model scenario (A2) foresees, for the Fraser Valley, 
cooler summers and springs and wetter summers, predicting increments in oat, blueberry and green bean yields 
by 2050 (Figure 2). The same climate conditions are expected to affect raspberry crops by decreasing yields by 
2050, while barley and wheat crop yields remain steady through time. The business as usual scenario (A1B), 
where spring and summers are warmer, and summers are wetter in the Fraser Valley, predicted increased barley, 
oat, wheat, and blueberry crop yields by 2050, while yields of raspberry crops were predicted to decrease and 
green bean crop yields were expected to remain stable. The more conservative climate change scenario, the B1 
model, forecasts warmer and wetter springs and cooler and dryer summers for the Fraser Valley area. Crop yield 
predictions under the B1 scenario were all crops have steady yields, except for green bean yields, which would 
increase by 2050.  

Future climate conditions for the Peace River area were different from the Fraser Valley (Table 3). The three 
scenarios (A2, A1B, B1) forecasted warmer and wetter springs and summers for the three emission scenarios, 
with decreased evapotranspiration and moisture deficits. These changes in climate conditions predicted declines 
in wheat, canola, and barley crop yields by 2050, with an increment in oat and dry pea crop yields (Figure 3). 
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Figure 3. Past and predicted crop yields for the Peace River area. Yield projections for six crops represent 
scenarios A2, A1B and B1. Colour lines represent upper and lower limits of a 90% confidence interval 

 

4. Discussion 
As a result of a high correlation between our climate variable data, we generated twelve uncorrelated PCs to 
decrease the redundancy product of highly correlated predictors. The development of relationships between the 
PCs and historical dataset of crop yields allowed us to create a predictive model of yields based on future climate 
conditions. Despite the fact that it was hard to interpret the directionality of the relationships in our final GLM 
model coefficients due to the conversion of all climate variables into PCs, overall, the PCs explained a good 
proportion of the variance in the temperature and precipitation data. Previous studies (e.g., Challinor & Slingo, 
2003) incorporating precipitation data in PCs have been found to correlate well with crop yields in other regions.  

Underestimation of the uncertainty of a forecast can lead to excessive responses that are inconsistent with a 
decision maker’s risk tolerance, while overestimating uncertainty leads to under confidence and lost opportunity 
to prepare for adverse conditions or to take advantage of favourable conditions. Specifically for our model, 
climate variability and crop yield data errors were the major sources of uncertainty in yield forecasting. Likewise, 
the datasets used in this study showed a lot of variability in year to year crop yields, but less variability with the 
climate data, creating uncertainty in the long-term forecasting, especially since some of the yield/climate sample 
sizes were quite small. However, by using GLM as a predictive modeling technique, we were able to forecast 
yields using less data than what traditional techniques would require. GLMs tend to be more robust than other 
predictive modeling techniques and are less susceptible to the over-fitting that may occur with small datasets 
(McCullagh & Nelder, 1989).  

Due to confidentiality procedures with the Census of Agriculture, it was not possible to obtain the exact location 
of farms (Statistics Canada, 2012c). With no spatially identifiable agricultural operations and yields available, 
the spatial distribution of crop yields (response variable) was not comprehensive. This poses a problem when 
associating yield data to climate variables in heterogeneous areas. For defining the relationships between climate 
and crop yields we utilized mean seasonal (spring and summer) values from 1961 to 2009. The use of these 
datasets in large areas such as the province of BC brings the uncertainty entailed in dynamical downscaling from 
coarse to fine resolution. This uncertainty in the regional climate response has been documented in numerous 
contexts (Christensen et al., 2007; Elía et al., 2008). With respect to modelling and statistical downscaling, 
uncertainties are also associated with imperfect knowledge and/or representation of physical processes, 
limitations due to the numerical approximation of the model's equations, simplifications and assumptions in the 
models, and/or approaches and internal model variability (Mearns et al., 2012). Likewise, it is essential to 
acknowledge that the observed regional climate is sometimes characterized by a high level of uncertainty due to 
measurement errors and sparseness of stations, especially in remote regions such as northern BC and in regions 
of complex topography.  
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Similar to Challinor, Slingo, Wheeler, Craufurd, and Grimes (2003), our models showed that much of the 
inter-annual variability in crop yields can be explained simply using temperature and precipitation, and that this 
relationship is demonstrated at a regional scale. For most of the crops, the percent of deviance explained was 
over 45%. Where crops had lower deviance (e.g., Fraser Valley Green Beans, Wheat, Barley, and Oats) it is 
possible that they responded more to factors other than climate such as soil conditions and/or available 
carbon/nitrogen. Previous authors (Moen, Kaiser & Riha, 1994; Reilly et al., 2003) found that increasing 
within-year temperature variability had the greatest impact on yields if the growing season temperature is outside 
the optimum for growth. For BC it would be possible to examine whether years of low/high crop yields correlate 
with low/high temperature and precipitation. 

Conclusion 
We predicted future crop yields for eight indicator crops under three future climate change scenarios for the 
Fraser Valley and Peace River regions of BC. In the Fraser Valley, the three climate scenarios predicted different 
trends in temperature and precipitation, resulting in a range of predicted crop responses. In the most extreme 
scenario, cooler springs and summers along with wetter summers should result in increased yields of oats, 
blueberries, and green beans, with decreased raspberry yields. In contrast, the three climate scenarios all 
predicted warmer and wetter springs and summers for the Peace River region, resulting in predictions of 
increased yields for oat and dry pea crops, with decreased yields of wheat, canola, and barley crops. Our results 
have important implications for policy as it is easier to mitigate the potential impacts of climate change on crop 
yields by instituting policy on farming reform or adaptations at a regional level rather than at the local scale. 
Using GLMs to model future crop yields allowed us to overcome issues with small sample sizes.  
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