Research on Decision Forest Learning Algorithm

Limin Wang, Xiongfei Li

Abstract


Decision Forests are investigated for their ability to provide insight into the confidence associated with each prediction, the ensembles increase predictive accuracy over the individual decision tree model established. This paper proposed a novel “bottom-top” (BT) searching strategy to learn tree structure by combining different branches with the same root, and new branches can be created to overcome overfitting phenomenon.


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Computer and Information Science   ISSN 1913-8989 (Print)   ISSN 1913-8997 (Online)
Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.