Medical Images Compression Using Modified SPIHT Algorithm and Multiwavelets Transformation

Muna F Al-sammaraie

Abstract


Recently, the wavelet transform has emerged as a cutting edge technology within the field of image compression research. Wavelet methods involve overlapping transforms with varying-length basis functions. This overlapping nature of the transform alleviates blocking artifacts, while the multi-resolution character of the wavelet decomposition leads to superior energy compaction and perceptual quality of the decompressed image. Over the past decade, the success of wavelets in solving many different problems has contributed to its unprecedented popularity. Due to implementation constraints scalar wavelets do not posses all the properties which are needed for better performance in compression. New class of wavelets called ‘Multiwavelets’ which posses more than one scaling filters overcomes this problem. The objective of this paper is to develop an efficient compression scheme and to obtain better quality and higher compression ratio through multiwavelet transform and embedded coding of multiwavelet coefficients through Set Partitioning In Hierarchical Trees algorithm (SPIHT) algorithm. A comparison of the best known multiwavelets is made to the best known scalar wavelets. An adaptive image-coding algorithm for compression of medical images in the wavelet domain is presented. Both quantitative and qualitative measures of performance are examined for Medical images. The objective (based on PSNR) and subjective (perceived image quality) results of these simulations are presented.


Full Text: PDF DOI: 10.5539/cis.v4n6p2

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Computer and Information Science   ISSN 1913-8989 (Print)   ISSN 1913-8997 (Online)
Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.