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Abstract 

SRAM-Filed Programmable Gate Arrays (FPGA) have become one of the most important carriers of digital 
electronic system because of its many inborn advantages. However, as manufacture of Integrated Circuit evolves 
towards Very Deep Sub-Micron technology, FPGA designers must be careful of circuit’s Single Event Upset 
(SEU) susceptibility when used in hostile environment, such as avionics and space applications where reliability 
is vital. We proposed a SEU-fault emulation platform to evaluate circuit’s SEU mitigation performance. The 
platform does not need any external circuit or micro controller to manage fault emulation process compared with 
existing approach. Source codes of Circuit Under Test (CUT) do not need to be modified or intruded with any 
component. It is a non-intrusive testing. Communication between host-computer and emulation board is 
minimized to accelerate fault injection speed. Experimental result shows that a single fault injecting (including 
Multi-Bits-Upset) only costs 29us. A circuit state reloading technology is exploited to increase emulation 
efficiency. Moreover, in the field of evolvable hardware, genetic operations can be reconfigured and its fitness 
can be evaluated on-line using the proposed fast dynamic reconfiguration method, which is useful for 
implementing self-repair and self-evolutionary hardware. 
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1. Introduction 

With the advantages of powerful performance, flexibility and low-cost, SRAM-based FPGAs have become 
important electronic system carriers. Thanks to reprogrammable FPGAs, electronic systems can be reconfigured 
easily. However, as Integrated Circuit manufacture evolves towards 40nm technology, ICs are more susceptible 
to space or artificial radioactive impact. These failures are modeled as Single Event Upset which means one bit 
in circuit flipped. Unfortunately, SRAM-based FPGAs are more prone to SEU than Application Specified 
Integrated Circuits (ASICs). Designers must handle radiation-induced SEUs carefully in cases such as avionics 
and space electronic application where circuit faces spiteful environment and reliability is vital. (Y. Bentoutou, 
2009, p. 1843-1845). 

In electronic systems that demand high reliability, one of the most crucial problems is to evaluate design circuit’s 
SEU susceptibility, fault-tolerant ability (M. Jallouli, 2009, p. 2549-2557) and predict its failure probability (C. 
Lopez-Ongil, 2007, p. 946-950). Circuit’s SEU susceptibility evaluation is necessary and it brings the following 
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benefits. Firstly, through fault injection emulation we can find frail area and introduce harden technologies on 
the area. Secondly, we can confirm design circuit’s functionality through evaluation and find out whether the 
technologies used to harden circuit are efficient. For these purposes, we need a tool to evaluate design circuit’s 
SEU susceptibility fast and effectively. The tool could assist designers in improving design circuit’s 
dependability, accelerating design process and analyzing circuit in-depth and intensively ensuring design’s 
reliability. 

Fault injection technology was widely accepted in the analysis of IC’s SEU susceptibility. There are several 
approaches proposed. One classic fault injection way is to expose chip under artificial radioactive environment. 
FPGA was exposed to radiation by A. Ceschia (2004, p. 328-328) so as to investigate SEU susceptibility of 
configure memory cell. This approach creates an artificial radioactive environment almost the same as the real 
application circumstance, but expensive radioactive equipment and a chip with implemented design circuit are 
required. So, it is generally used to confirm hardened circuit design at the final step but not at early design phase. 
Some other approaches, such as laser fault injection and electromagnetic interference have the same problem (C. 
Lopez-Ongil, 2007, p. 252-261). 

For evaluating SEU susceptibility before circuit manufacture, E. Jenn (1994, p. 66–75) and V. Sieh (1997, p. 
32–36) exploited HDL simulator to perform a traditional software-based fault injection. Designers can scrutinize 
circuit state of every wire and every flip-flop with this method. Designers are required to inject fault by 
modifying HDL model. The modification should simulate all possible SEU faults but not change the behavior of 
original circuit. That is not an easy work. Nowadays a single FPGA contains millions of gates. If you want to get 
an overall analysis of SEU susceptibility by injecting numerous faults, software-based simulation approach is 
very time-consuming. 

FPGA-based fault injection emulation has been used to accelerate fault injection experiments recently. FPGAs 
can be used for large scale circuit fault injection emulation since a single FPGA contains millions of logic gates. 
FPGA-based emulation includes the following steps: generate faults, inject faults, monitor the response of 
Circuit Under Test, classify faults and collect experimental results. 

FPGA-based emulation has two methods for fault injection. 

1) Modify Circuit Under Test and add additional logic as a tool to change the value of memory cells which are 
needed to inject fault. The process of circuit modification is named instrumentation and the additional added 
component is instrument (Mohammad, 2008, p. 143-149). 

2) Reconfigure FPGA partially or as a whole to change the Circuit Under Test to a fault state (M. Lanuzza, 
2009, p. 74-84). Some register value represents a certain state. SEU faults are emulated by changing the register 
value and monitoring circuit’s response. 

Intensive communication, however, is needed between emulation board and host computer during emulation 
process in both the two methods (A. Ejlall, 2008, p. 319-328). Host computer manages injection process and 
evaluate every fault. The intensive communication between host computer and emulation board brings a 
bottleneck in performance. These FPAG-based emulations could not make full use of its speed advantage. P. 
Civera (2001, p. 9-13) exploited the first method that additional combinational and sequential circuit were used 
to implement fault injection. This method performs relatively fast. Extra chip area is required because additional 
flip-flops are used at every place where fault injection will perform. It works in an intrusive way that the original 
circuit codes are modified. Transient fault injection was supported in (L. Antoni, 2002, p. 245-253). This 
scenario was based on a FPGA reconfiguration for every fault. It resulted as a time-consuming method. P. 
Kenterlis (2006, p.235-241) proposed an automated low cost hardware/software platform for performing fault 
emulation experiments targeting SEUs in the configuration bits of FPGA devices. A method for reducing the 
fault list by removing the faults on unused LUT bit positions was presented. Experiment result showed that 
FPGA-based emulation performs at least two orders of magnitude faster than simulation. XHWIF interface port 
and external SelectMAP configuration port were required to perform fault injection in this platform. Our 
approach, however, does not need external controller to manage SelectMAP port or XHWIF port (M. Berg, 2008, 
p. 2259-2266). It is a succinct platform that all components are in side a single FPGA to run high performance 
fault injection emulation. 

This study introduces a low cost, non-instructive, fully automated platform for efficiently fault injection 
emulation. FPGA and its Internal Configuration Access Port (ICAP) technology are exploited to implement the 
platform. It is characterized with the following features. 

1) Fast and efficient fault emulation. Functions of fault generation, fault injection, circuit’s response 
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monitoring and fault classification are all performed in emulation board. Experiment results are sent to host 
computer only at the end of emulation. Communication between host computer and emulation board decreases 
significantly, which greatly accelerates the emulation speed. 

2) Low cost platform. Emulation controller and fault injection management are implemented in a FPGA. No 
extra Micro-processor and its concomitant circuit are needed. 

3) It is a non-destructive and non-intrusive evaluation for Circuit Under Test. There is no need to modify the 
original codes of Circuit Under Test and that leads to a straightforward emulation. In intrusive method, designers 
must be careful to avoid the added fault injection logic code changing the behavior of the Circuit Under Test. 
That may leads to a deviated evaluation. 

2. Architecture and Fault Model of FPGA 

In this section, we will describe the general architecture model of SRAM-FPGA and have an overview of its 
internal resources. Based on this model we will discuss how SEU that occurs in FPGA configuration memory 
affects routing and logic resource. 

2.1 FPGA Architecture 

Configurable Logic Blocks (CLBs) are main resources for implementing sequential circuit and combinational 
logics. Different functional designs can be implemented by selectively interconnecting CLBs which contain 
configurable switch matrix, logic function generator (Look-Up Table LUT), arithmetic logic, carry logic and 
memory logic. Besides sequential and combinational logic, CLB also can be configured as distributed RAM and 
ROM. FPGA’s floor layout is made up of CLB matrix with many IO Blocks locating around. 

Routing resources connect all components in FPGA. They are divided into four categories according to their 
technology, length, width and located area. The first is global routing resource used for global clock and global 
set/reset signal. The second is long-line resource used for high speed signal between banks and second global 
clock. The third is short-line used for basic logic element interconnecting or routing. The last is distributed 
routing resource used for dedicated clock, reset and control signal. SRAM-based programmable technology 
employs static RAM cells to control switches or multiplexers and uses Programmable Interconnect Points (PIPs) 
to interconnect or cut wires. 

2.2 SEU Fault Model 

Effect of SEU on SRAM-FPGA has been explored by radioactive exposure. P. Bernardi (2004, p. 115-120) 
analyzed exposure experimental result together with the meaning of every bit in FPGA’s configuration. SEU was 
found to destroy configuration both in logic block and switch block. One configuration bit may control two or 
more routing resources in some parts of FPGA. Therefore, when a SEU occurs it may change two or more 
routing sections, which leads to multiple errors. Two kinds of fault location should be considered when handling 
SEUs in SRAM-FPGA. 

(1) Bit-flips exist in Flip-Flops. 

(2) Upsets exist on configuration memory that control routing, combinational and sequential logic (LUTs, 
multiplexers, initial bit in Flip-Flops) (P. Kenterlis, 2006, p.235-241). 

It may upset the earlier stored value when a radioactive particle bombs a Flip-Flop or its input control signal. If 
the upset propagates to other components, it may damage the system. For instance, when a state register of a 
finite state machine upsets, the error will propagate and the work of the whole system will be disarranged.  

Besides, if a SEU exist in a configuration SRAM cell it will change the function of the configured circuit 
permanently. Hitting of a LUT configuration bits by a radioactive particle will change the output of function 
generator into another logic gate (or gate combination). See figure 1. 

A SEU changes an OR gate into a XOR gate, as the description of figure 1. Such fault models are gate-level 
models. But it is not realistic to consider all the SEUs occur in FPGA to be structural faults, such as stuck-at and 
transition faults. These memory cells that control configuration of CLBs are independent of those control routing 
resources in SRAM-FPGA. As SEUs are the dominant faults in SRAM-FPGA, attempt to model all LUT faults 
as equivalent gates and inject stuck-at faults will not produce the real faulty effect. So the existing fault 
simulators using structural fault models is not suitable for simulating SEUs effect in SRAM-FPGA (P. Kenterlis, 
2006, p.235-241). 
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3. Implementation of the Emulation Platform 

3.1 Architecture of the Platform 

The architecture of our proposed fault injection emulation platform is presented in figure 2. The emulation board 
contains a FPGA, a local RAM and a communication interface between the board and host computer. The FPGA 
acts as a central component of the fault emulation system. Besides a Circuit Under Test (CUT), the FPGA also 
contains a test vectors input module, a ICAP-based fault injection module, a fault classification module and a 
controller managing emulation process.  

(1) Fault emulation controller: It manages the whole process of fault injection and emulation, including 
initializing circuit, loading input test vectors, faults injection, comparing expected output with actual response of 
faulty circuit. The emulation controller is implemented by a Microblaze soft-core processor. 

(2) Circuit Under Test (CUT): It is the circuit to be evaluated. In our project, the CUT is a totally independent 
component and it can be any designed digital circuit. The CUT could be a simple gate combinational circuit or a 
complex system including multi-cores, IP cores and memory. Both the CUT and the fault emulation system are 
implemented in the top module of FPGA. A tool named floorplan is used to place the CUT module and 
emulation system module at assigned locations separately. Because fault injection execution is location-based, 
locations of the two modules must not overlap each other. 

(3) ICAP: ICAP is a novel Internal Configuration Access Port integrated in Xilinx FPGA. Run-time partial 
reconfiguration can be performed through the internal interface without assistance of any other external circuit. It 
is different from the traditional reconfiguration method using external controller and operating through 
SelectMAP port. In the proposed platform, for purpose of fault injection, all configuration frames related to CUT 
are readable and writeable through ICAP. 

(4) A local RAM is used to store emulation results during experiment. All the collected data is sent back to host 
computer for further analysis when emulation ends. By doing this, the fault emulation process is significantly 
accelerated because there is no need for communication between emulation board and host computer during 
emulation. 

3.2 Fault Injection Emulation Flow 

Two independent modules (a CUT and a fault emulation system) are contained in FPGA top module. The two 
modules are implemented into a single bit stream file. Once FPGA is configured and initialized, we can start 
fault injection flow, as figure 3 describes. 

Fault injection emulation flow includes the following steps: 

(1) Initialize the fault injecting emulation platform: including board power up, configure FPGA, boot fault 
emulation controller and initialize its memory, initialize control program. If the CUT contains a processor or 
memory, initialize them. 

(2) The CUT performs a golden run (a fault free emulation). Response of the golden CUT is stored in fault 
classification module as a standard reference for sorting each injected fault. 

(3) Generate location and time for current fault injection. There are two modes for generating fault injection 
place and clock number. One mode performs carpet fault injecting into every configuration bit at every clock 
time from the first to the last. The other performs fault injection at locations and clocks randomly generated, until 
the execution times are statistically enough. After that, a configuration frame is read back from the assigned 
location. One bit or multi-bits of the data frame are setup to simulate a SEU or Multi-bits Upset SEU. Then reset 
the CUT. 

(4) The CUT pause when the assigned fault injection clock arrives. Faulty configuration frame is injected in to 
the assigned location through ICAP immediately. Resume operation of the CUT. 

(5) Monitor response of the CUT and compare it with the stored golden run response. Once a disagreement is 
found, a fault injection error is recorded. 

(6) All emulation result data is sent back to host computer for further analysis when the experiment ends. 

4. Fault Emulation Results and Analysis 

The fault injection emulation system is implemented in a single device. There are some details that need to be 
noticed when the system is under design. When commercial EDA tools are used to implement the system, 
designer should keep module’s hierarchy during synthesis process and preserve hierarchy on sub-module during 
translation process because these modules will be assigned to dedicated locations by a tool named floorplan. 
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Fault emulation system module must not be placed at the location assigned to the CUT, otherwise the system 
may corrupt during injection. Actually, there may be some redundant circuits in design. So designers should not 
share resources during synthesis process. Table 1 lists the resources occupied in Xilinx V2P30 device after 
implementation. 

Although the proposed fault emulation platform has powerful performance and works flexibly, it utilizes a small 
share of device resources. Rest resources of the device all can be used to implement the CUT. Even for a very 
complex large scale CUT which overflows V2P30, we can transplant the hardware and software of the platform 
to another FPGA with more capability easily, almost without any modification. 

For an overall evaluation of circuit’s SEU susceptibility, designer need inject fault into every configure point at 
every clock. If there are N configure points in the CUT and its work lasts L clocks, N×L faults injection is 
required. L clocks are needed for a single fault classification. There are totally N×L×L clocks are needed for the 
emulation process. For complex circuit which has large N and L, it is a quite long time (C. Lopez-Ongil, 2007, p. 
252-261). Circuit state reloading strategy is exploited to reduce emulation time. Figure 4 describes the emulation 
process of a certain configure point. Figure 5 depicts the scenario under circuit state reloading strategy. 

When you want to inject a fault into the CUT at a later state, you have to let the CUT perform a fault-free run 
until it gets the expected state. That seriously decreases the emulation efficiency. We put the fault-free state of 
the circuit at every clock stored in a memory. Then we can recovery the CUT to any state immediately using 
partially reconfiguration technology. Once the cost of fault-free run exceed the cost of partially reconfiguration, 
we just reload the expect circuit state. In figure 5, the blank area represents the time saved by using circuit state 
reloading strategy. It saves about 50% emulation time when it is used in long clock time CUTs. 

For validating efficiency of the proposed platform, several design circuits were implemented for SEU fault 
injection emulation. In these experimental cases, there are VHDL modules designed by our team (UART, FIR, 
Counter modules) and module generated by commercial IP tool (CORDIC). The characteristics of the designed 
circuit are listed in table 2. 

According to the responses of CUT, the injected faults are divided into three categories. Failed: CUT tells wrong 
answer when fault injected and it can not recover the error. Transient error: CUT tells wrong answer when fault 
injected but it recovers immediately. Silent: CUT works normally without the effect of fault injection during the 
whole work process. Fault injection emulation results of these CUTs are listed in Table 3. 

As the emulation results listed above demonstrate, the proposed emulation platform is able to inject SEU faults 
into circuit under test efficiently. The time needed for a single One Bit SEU or Multi-Bits SEU fault injection 
was precisely measured. Experimental result showed that it cost only 29us/fault. Whereas instrumented circuit 
technique (P. Civera, 2001, p. 2210-2216) has given rates ranging from 100 us/fault and 830 us/fault for short 
testbenches (less than 1,000 cycles) and long fault lists (100,000 faults). The latter requires an intensive 
communication between the host computer and the FPGA for every fault emulated. 

In this study, response of both failed faults and transient error faults are classified into error response when we 
calculate response error rate. From the experimental data, the response error percentages of UART, FIR, Counter 
and CORDIC are 9.24%, 12.62%, 8.46% and 15.60%, respectively. These response error percentages provide 
precise SEU susceptibility of CUTs to system designers. The designer must make a case-to-case decision to 
determine whether the CUT is reliable. If it satisfies the reliability request, the designer just integrate the CUT 
into system. If it does not, other technologies, such as circuit redundancy or scrubbing technology, must be used 
to harden the CUT (D. R. Blum, 2009, p. 1618-1628), (R. L. Shuler, 2009, p. 214-219). 

5. Conclusion 

A FPGA-based SEU fault injection emulation platform is introduced to evaluate circuit’s SEU susceptibility. 
FPGA Internal Configuration Access Port is utilized to perform fault injection and external controller is not 
needed any more, which reduces the complexity and cost of the system. The emulation works in a convenient 
and non-intrusive way. Designers do not need to intervene original codes of Circuit Under Test. The automated 
emulation platform significantly decreases communication between the board and host computer. Efficiency of 
fault injection increased and experimental result showed that a single fault injection costs only 29us. Several 
circuit fault emulations were performed to demonstrate the validity of the platform. Apart from the use of 
evaluating digital circuit’s SEU susceptibility, the proposed platform can also be applied to the field of evolvable 
hardware (EHW). Evolvable hardware focuses on development of automated electronic circuit design, or a 
system capable of adaptive alteration according to environment. EHW can be used in fields such as design 
automation, controllers for autonomous mobile robots, and wireless sensor network nodes (Y. Aihong, 2008, p. 
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436-441). Self-evolutionary hardware completes genetic operations and fitness evaluation in an on-chip 
processor. The on-chip processor in the proposed platform can perform these tasks and evolvable hardware is 
generated on the same device. Based on the fast dynamic reconfiguration technology presented in the paper, 
processor can execute evolvement arithmetic and configure the generated chromosomal encoding of circuits into 
hardware efficiently. Consequently, fitness evaluation can be performed on-line which is quite helpful for 
self-repair or self-adaptive hardware. 
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Table 1. Resources Used by Emulation System 

 Slices Flip Flops 4- LUTs MULT18X18s 

Number 1536 out of 13696 1776 out of 27392 2436 out of 27392 17 out of 136 

Percentage 11% 6% 8% 2% 

 

Table 2. Characteristics of the Designed Circuit 

Circuit Input Output Slice Flip-Flop 4-LUT 

UART 2 1 100 121 173 

FIR 9 8 17 23 16 

Counter 1 4 20 31 11 

CORDIC 50 33 699 1,176 1,270 

 

Table 3. Circuit Emulation Results 

Circuit Injected 

faults 

Failed Transient 

Errors 

Silent 

UART 90,376 3,243 5,104 82,029 

FIR 13,904 1,264 1,376 11,273 

Counter 20,856 965 799 19,092 

CORDIC 611,776 35,724 59,714 516,338 

 

Figures: 

 

Figure 1. SEU Effect on Configuration Bits 
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Figure 2. Architecture of Fault Emulation Platform 

 
Figure 3. Fault Injection Emulation Flow 
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Figure 4. General Emulation Process of a Configure Point 

 
Figure 5. Emulation Process in Circuit State Reloading Scenario 
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Figure 6. Response Error Rate of CUTs 

 

 

 


