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Abstract 

An Electrocardiogram or ECG is an electrical recording of the heart and is used in the investigation of heart 
disease. This ECG can be classified as normal and abnormal signals. The classification of the ECG signals is 
presently performed with the support vector machine. The generalization performance of the SVM classifier is 
not sufficient for the correct classification of ECG signals. To overcome this problem the ELM classifier is used 
which works by searching for the best value of the parameters that tune its discriminant function, and upstream 
by looking for the best subset of features that feed the classifier. The experiments were conducted on the ECG 
data from the Physionet arrhythmia database to classify five kinds of abnormal waveforms and normal beats. In 
this paper a thorough experimental study was done to show the superiority of the generalization capability of the 
Extreme Learning Machine (ELM) is presented and compared with support vector machine (SVM) approach in 
the automatic classification of ECG beats. In particular, the sensitivity of the ELM classifier is tested and that is 
compared with SVM combined with two classifiers, they are the k-nearest neighbor classifier (kNN) and the 
radial basis function neural network classifier (RBF), with respect to the curse of dimensionality and the number 
of available training beats. The obtained results clearly confirm the superiority of the ELM approach as 
compared to traditional classifiers.  

Keywords: Electrocardiogram (ECG) signals classification, Feature detection, Feature reduction, Generalization 
capability, Model selection issue, Extreme Learning Machine (ELM), Support Vector Machine (SVM) 

1. Introduction 

ECG is a technique which captures transthoracic interpretation of the electrical activity of the heart over time and 
externally recorded by skin electrodes. The electrical potential generated by electrical activity in cardiac tissue is 
measured on the surface of the human body. Current flow, in the form of ions, signals contraction of cardiac 
muscle fibers leading to the heart's pumping action. It is a non persistent recording produced by an 
electrocardiographic device. The recognition and classification of the ECG beats is a very important task in the 
coronary intensive unit, where the classification of the ECG beats is essential tool for the diagnosis. ECG offers 
cardiologists with useful information about the rhythm and functioning of the heart. Therefore, its analysis 
represents an efficient way to detect and treat different kinds of cardiac diseases Up to now; many algorithms 
have been developed for the recognition and classification of ECG signal. Some of them use time and some use 
frequency domain for depiction. Based on that many specific attributes are defined, allowing the recognition 
between the beats belonging to different pathological classes. The ECG waveforms may be different for the same 
patient to such extent that they are unlike each other and at the same time alike for different types of 
beats(Osowski, S., Linh, T.H., 2001). Artificial neural network (ANN) and fuzzy-based techniques were also 
employed to exploit their natural ability in pattern recognition task for successful classification of ECG 
beats(Hu, Y.H., Palreddy, S., Tompkins, W., 1997). 

In this paper, the approach to ECG beat classification presented thorough experimental exploration of the ELM 
capabilities for ECG classification. Further the performances of the ELM approach in terms of classification 
accuracy are evaluated: 1) by automatically detecting the best discriminating features from the whole considered 
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feature space and 2) by solving the model selection issue. Unlike traditional feature selection methods, where the 
user has to specify the number of desired features, the proposed system gives a method for extraction of features 
called as “feature detection”. Feature selection and feature detection have the common characteristic of searching 
for the best discriminative features. The latter, however, has the advantage of determining their number 
automatically. In other words, feature detection does not require the desired number of most discriminative 
features from the user apriori. The detection process is implemented through AR Modeling framework that 
exploits a criterion intrinsically related to ELM classifier properties. This framework is formulated in such a way 
that it also solves the model selection issue, i.e., to estimate the best values of the ELM classifier parameters, 
which are the regularization and kernel parameters. 

The rest of the paper is organized as follows. The AR method for ECG feature extraction, the basic mathematical 
formulation of SVMs for solving binary and multiclass classification problems and the working methodology of 
ELM is given in Section III. The experimental results obtained on ECG data from the Massachusetts Institute of 
Technology–Beth Israel Hospital (MIT–BIH) arrhythmia database (R. Mark and G. Moody, 1997) are reported 
in Sections IV. Finally, conclusions are drawn in Section V. 

2. Literature Survey 

In the literature survey, several methods have been proposed for the automatic classification of ECG signals. 
Among the most recently published works are those presented as follows 

L. Khadra et.al,(L. Khadra, A. S. Al-Fahoum, and S. Binajjaj, 2005) proposed a high order spectral analysis 
technique for quantitative analysis and classification of cardiac arrhythmias. The algorithm is based upon 
bispectral analysis techniques. Autoregressive model is used to estimate the bispectrum, and the frequency 
support of the bispectrum is extracted as a quantitative measure to classify a trial and ventricular 
tachyarrhythmias. A significant difference in the parameter values for different arrhythmias is observed in the 
result. Furthermore, the bicoherency spectrum shows different bicoherency values for normal and tachycardia 
patients. The bicoherency indicates in particular that phase coupling decreases as arrhythmia kicks in. The 
simplicity of the classification parameter and the obtained sensitivity and specificity of the classification scheme 
reveal the importance of higher order spectral analysis in the classification of life threatening arrhythmias. 

F. de Chazal et.al,(F. de Chazal and R. B. Reilly, 2006) investigates the design of an efficient system for 
recognition of the premature ventricular contraction from the normal beats and other heart diseases. This system 
comprises three main modules: denoising module, feature extraction module and classifier module. In the 
denoising module it has proposed the stationary wavelet transform for noise reduction of the electrocardiogram 
signals. In the feature extraction of the ECG module a proper combination of the morphological-based features 
and timing interval-based features are proposed. As the classifier, a number of supervised classifiers are 
investigated; they are: a number of multi-layer perceptron neural networks with different number of layers and 
training algorithms, support vector machines with different kernel types, radial basis function and probabilistic 
neural networks. Also, for comparison the proposed features, the author has considered the wavelet-based 
features. It has done comprehensive simulations to achieve a high efficient system for ECG beat classification 
from 12 files obtained from the MIT–BIH arrhythmia database. Simulation results show that best results are 
achieved about 97.14% for classification of ECG beats. 

R. V. Andreao et.al,(R. V. Andreao, B. Dorizzi, and J. Boudy, 2006) proposed a novel embedded mobile ECG 
reasoning system that integrates ECG signal reasoning and RF identification together to monitor an elderly 
patient. As a result, this proposed method has a good accuracy in heart beat recognition, and enables continuous 
monitoring and identification of the elderly patient when alone. Moreover, in order to examine and validate this 
proposed system, the author proposes a managerial research model to test whether it can be implemented in a 
medical organization. The results prove that the mobility, usability, and performance of author’s proposed 
system have impacts on the user's attitude, and there is a significant positive relation between the user's attitude 
and the intent to use the proposed system. 

S. Mitra et.al, (S. Mitra, M. Mitra, and B. B. Chaudhuri, 2006) puts forth a three stage technique for detection of 
premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a 
feature extraction module, a denoising module and a classification module. In the first module the author 
investigates the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram 
(ECG) signals. The feature extraction module finds out 10 ECG morphological features and one timing interval 
feature. Then a number of MLP (multilayer perceptron) neural networks with different number of layers and nine 
training algorithms are designed. The network’s performance for speed of convergence and accuracy 
classifications are evaluated for seven files from the MIT–BIH arrhythmia database. Among the various training 
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algorithms, the resilient back-propagation (RP) algorithm illustrated the best convergence rate and the 
Levenberg–Marquardt (LM) algorithm achieved the best overall detection accuracy. 

Sheng-Wu Xiong et.al.,(Sheng-Wu Xiong, Hong-Bing Liu and Xiao-Xiao Niu, 2005) proposed in their paper 
that fuzzy support vector machines based on fuzzy c-means clustering. They apply the fuzzy c-means clustering 
method to each class of the training set. At the time of the clustering with a suitable fuzziness parameter q, the 
much important samples, such as support vectors, become the cluster centers respectively. 

C.-K. Siew et.al.,(C.-K. Siew and G.-B. Huang, 2005) gives an idea on ELM. In this paper they presented 
Extreme Learning Machine (ELM) for Single-hidden Layer Feed-forward Neural-networks (SLFNs) which 
randomly chooses hidden nodes and analytically determines the output weights of SLFNs. The ELM avoids 
problems like improper learning rate, local minima and over fitting commonly faced by iterative learning 
methods and completes the training very fast. The author have evaluated the multi-category classification 
performance of ELM on five different data sets related to bioinformatics namely, the Breast Cancer Wisconsin 
data set, the Pima Diabetes data set, the Heart-Statlog data set, the Hepatitis data set and the Hypothyroid data 
set. A detailed analysis of different activation functions with unreliable number of neurons is also carried out 
which concludes that Algebraic Sigmoid function outperforms all other activation functions on these data sets. 
The evaluation results indicate that ELM provides better classification accuracy with reduced training time and 
implementation complexity compared to earlier implemented models. 

Nazmy et al, (T. M. Nazmy, H. El-Messiry and B. Al-bokhity, 2009) presents a novel ECG classification 
approach. This is an intelligent diagnosis system using hybrid approach of adaptive neuro-fuzzy inference 
system (ANFIS) model for classification of Electrocardiogram (ECG) signals. Feature extraction using 
Independent Component Analysis (ICA) and Power spectrum, together with the RR interval then serve as input 
feature vector, this feature were used as input of ANFIS classifiers. Six types of ECG signals they are normal 
sinus rhythm (NSR), premature ventricular contraction (PVC), atrial premature contraction (APC), Ventricular 
Tachycardia (VT), Ventricular Fibrillation (VF) and Supraventricular Tachycardia (SVT). The proposed ANFIS 
model combined the neural network adaptive capabilities and the fuzzy inference system. The results indicate a 
high level of efficient of tools used with an accuracy level of more than 97%. This section presented the 
literature survey on the previous ECG classification techniques. 

3. Methodology 

3.1 Feature extraction 

Automatic ECG beat recognition and classification (Hee-Soo Park, Soo-Min Woo, Yang-Soo Kim, Bub-Joo 
Kang And Sang-Woo Ban, 2009) is performed in the part either by the neural network or by the other 
recognition systems relying in various features, time domain representation, extracted from the ECG beat (Hu, 
Y.H., Palreddy, S., Tompkins, W, 1997), or the measure of energy in a band of frequencies in the spectrum 
(frequency domain representation) [10]. Since these features are very at risk to variations of ECG morphology 
and the temporal characteristics of ECG, it is difficult to distinguish one from the other on the basis of the time 
waveform or frequency representation. In this paper three different classes of feature set are used belonging to 
the isolated ECG beats including; third-order cumulant, auto-regressive model parameters and the variance of 
discrete wavelet transform detail coefficients for the different scales (1–6 scales). 

3.1.1 Wavelet transformation 

Physiological used for diagnosis are frequently characterized by a non-stationary time behavior. For such 
patterns, time and frequency representations are desirable. The frequency characteristics in addition to the 
temporal behavior can be described with respect to uncertainty principle. The wavelet transform can represent 
signals in different resolutions by dilating and compressing its basis functions. While the dilated functions adapt 
to slow wave activity, the compressed functions captures fast activity and sharp spikes. The most favorable 
choice of types of wavelet functions for pre-processing is problem dependent. In this paper Daubechies wavelet 
function (db5) which is called compactly supported orthonormal wavelets (Daubechies, I., 1998). By making 
discretization the scaling factor and position factor the DWT is obtained. For orthonormal wavelet transform, 
x(n) the discrete signal can be expanded in to the scaling function at j level, as follows: 

 
(1) 

where Dj,k represents the detailed signal at j level. Note that j controls the dilation or contraction of the scale 
function (t) and k denotes the position of the wavelet function (t), and n represents the sample number of the 
x(n). Here nZ represents the set of integers. The frequency spectrum of the signal is classified into high 
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frequency and low frequency for wavelet decomposition as the band increases (j = 1, . . . , 6). Wavelet transform 
is a two-dimensional timescale processing method for non-stationary signals with adequate scale values and 
shifting in time (Thakor, N.V., 1993). 

Multi resolution decomposition can efficiently provide simultaneous characteristics, in term of the representation 
of the signal at multiple resolutions corresponding to different time scales. Feature vectors are constructed by the 
normalized variances of detail coefficients of the DWT which belongs to the related scales. 

3.1.2 Higher-order statistics and AR modeling 

The main problem in automatic ECG beat recognition and classification is that related features are very 
susceptible to variations of ECG morphology and temporal characteristics of ECG. In the study (Osowski, S., 
Linh, T.H., 2001) the set of original QRS complexes typical for six types of arrhytmia taken from the MIT/BIH 
arrhytmia database, there is a great variations of signal among the same type of beats belonging to the same type 
of arrhytmia. Therefore, in order to solve such problem, the author will rely on the statistical features of the ECG 
beats. In this paper for this aim, third-order cumulant has been taken into account, which can be determined (for 
zero mean signals) as follows  

 
(2)

(3)

 

 

(4)

Where E represents the expectation operator, and k, l, and m are the time lags. In this paper, third-order cumulant 
of selected ECG beats is used. Normalized ten points represents the cumulant evenly distributed with in the 
range of 25 lags. Each succeeding samples of a signal as a linear combination of previous samples, that is, as the 
output of an all-pole IIR filter is modeled by linear prediction. This process locates the coefficients of an nth 
order auto-regressive linear process that models the time series x as 

 (5) 

where x represents the real input time series (a vector), and n is the order of the denominator polynomial a(z). In 
the block processing, autocorrelation method is one of the modeling methods of all-pole modeling to find the 
linear prediction coefficients. This method is as well called as the maximum entropy method (MEM) of spectral 
analysis. 

3.2 Support Vector Machines 
SVM is usually used for classification tasks introduced by Vapnik (Vladimir N. Vapnik, 1995). For binary 
classification SVM is used to find an optimal separating hyper plane (OSH) which generates a maximum margin 
between two categories of data. To construct an OSH, SVM maps data into a higher dimensional feature space. 
SVM performs this nonlinear mapping by using a kernel function. Then, SVM constructs a linear OSH between 
two categories of data in the higher feature space. Data vectors which are nearest to the OSH in the higher 
feature space are called support vectors (SVs) and contain all information required for classification. In brief, the 
theory of SVM is as follows (Vladimir N. Vapnik, 1995). 

Consider training set  with each input n i x  Rn and an associated output yi{ -1, +1}. Each 
input x is firstly mapped into a higher dimension feature space F, by z=φ (x) via a nonlinear mapping φ: Rn →F. 
When data are linearly non-separable in F, there exists a vector w  F and a scalar b which define the separating 
hyper plane as: 

 (6)

Where ( 0) are called slack variable. The hyper plane that optimally separates the data in F is one that 

 

(7)

Where C is called regularization parameter that determines the tradeoff between maximum margin and minimum 
classification error. By constructing a Lagrangian, the optimal hyper plane according to (7) may be shown as the 
solution of 
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(8) 

Where 1,…..,L is the nonnegative Lagrangian multipliers. The data points i x that correspond to i>0 are SVs. 
The weight vector w is then given by 

 

(9) 

For any test vector x ∈ Rn , the classification output is then given by 

 

(10) 

To build an SVM classifier, a kernel function and its parameters need to be chosen. So far, no analytical or 
empirical studies have established the superiority of one kernel over another conclusively. The kernel K(·,·) must 
satisfy the condition stated in Mercer’s theorem so as to correspond to some type of inner product in the 
transformed (higher) dimensional feature space Φ(X) (Vapnik, 1998). A typical example kernels used is 
represented by the following Gaussian function: 

 
(11) 

Where γ is a parameter which is inversely proportional to the width of the Gaussian kernel. 

As described before, SVMs are intrinsically binary classifiers. But, the classification of ECG signals often 
involves the simultaneous discrimination of numerous information classes. In order to face this issue, a number 
of multiclass classification strategies can be adopted (F. Melgani and L. Bruzzone, 2004), (C.-W.Hsu and C.-J. 
Lin, 2002). The most popular ones are the one-against-all (OAA) and the one-against-one (OAO) strategies. The 
former involves a reduced number of binary decompositions (and thus, of SVMs), which are, however, more 
complex. The latter requires a shorter training time, but may incur conflicts between classes due to the nature of 
the score function used for decision. Both strategies generally lead to similar results in terms of classification 
accuracy. In this paper, the OAA strategy is considered. Briefly, this strategy is based on the following 
procedure. Let Ω = {1, 2, . . . , T } be the set of T possible labels (information classes) associated with the 
ECG beats that desired to classify. First, an ensemble of T (parallel) SVM classifiers is trained. Each classifier 
aims at solving a binary classification problem defined by the discrimination between one information class ωi(i 
= 1, 2, . . . , T) against all others (i.e., Ω − {i}). Then, in the classification phase, the new rule is used to decide 
which label to assign to each beat which is “winner-takes-all” rule. This represents that the winning class is the 
one that corresponds to the SVM classifier of the ensemble that shows the highest output (discriminant function 
value). 

3.3 Extreme Learning Machine 

A new learning algorithm called the Extreme Learning Machine for Single-hidden Layer Feed forward neural 
Networks (SLFNs) supervised batch learning. The output of an SLFN with ~N hidden nodes (additive or RBF 
nodes) can be represented by 

 

(12) 

where  and  are the learning parameters of hidden nodes and i is the weight connecting the ith hidden 
node to the output node. G(ai,bi,X) is the output of the ith hidden node with respect to the input x. For the additive 
hidden node with the activation function g(x):RR (e.g., sigmoid or threshold), G(ai,bi,X) is given by 



www.ccsenet.org/cis                  Computer and Information Science                Vol. 4, No. 1; January 2011 

Published by Canadian Center of Science and Education 47

   
(13) 

Where  represents the weight vector connecting the input layer to the ith hidden node and bi is the bias of the 
ith hidden node. ai.x denotes the inner product of vectors ai and x in Rn. For an RBF hidden node with an 
activation function g(x):RR(e.g., Gaussian), G(ai,bi,X) is given by  

  
(14) 

Where ai and bi are the ith RBF node’s center and impact factor. R+ indicates the set of all positive real values. 
The RBF network is a special case of the SLFN with RBF nodes in its hidden layer. Each RBF node has its own 
centroid and impact factor and output of it is given by a radially symmetric function of the distance between the 
input and the center. 

In the learning algorithms it uses a finite number of input-output samples for training. Here, N arbitrary distinct 
samples are considered (xi,ti)Rn x Rm, where xi is an n x 1 input vector and ti is an m x 1 target vector. If an 
SLFN with  hidden nodes can approximate N samples with zero error, it then implies that there exist i, ai, 
and bi such that 

 

(15) 

Equation () can be written compactly as 

     (16) 

Where 

  =  

 

(17) 

 and      

(18) 

H is called the hidden layer output matrix of the network (F. Melgani and L. Bruzzone, 2004); the ith column of 
H is the ith hidden node’s output vector with respect to inputs x1, x2,…, xN and the jth row of H is the output 
vector of the hidden layer with  respect to input xj. 

In real applications, the number of hidden nodes, , will always be less than the number of training samples, N, 
and, hence, the training error cannot be made exactly zero but can approach a nonzero training error. The hidden 
node parameters ai and bi (input weights and biases or centers and impact factors) of SLFNs need not be tuned 
during training and may simply be assigned with random values according to any continuous sampling 
distribution. Equation (18) then becomes a linear system and the output weights are estimated as 

   
(19) 

Where the Moore-Penrose is generalized inverse (F. Melgani and L. Bruzzone, 2004) of the hidden layer 
output matrix H. The ELM algorithm which consists of only three steps, can then be summarized as 

ELM Algorithm: Given a training set 

 activation function g(x), and hidden node number , 

1) Assign random hidden nodes by randomly generating parameters (ai,bi) according to any continuous sampling 
distribution, i=1,….,  

2) Calculate the hidden layer output matrix H. 

3) Calculate the output weight:    
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The universal approximation capability of ELM has been analyzed by Huang et al. (C.-W.Hsu and C.-J. Lin, 
2002) using an incremental method and it shows that single SLFNs with randomly generated additive or RBF 
nodes with a wide range of activation functions can universally approximate any continuous target functions in 

any compact subset of the Euclidean space Rn.  is the sigmoidal function used as activation 

function in ELM. 

4. Experimental Results 

4.1 Dataset Description 

The experiment conducted on the basis of ECG data from the Physionet database (R. Mark and G. Moody, 
1997). In particular, the considered beats refer to the following classes: normal sinus rhythm (N), atrial 
premature beat (A), ventricular premature beat (V ), right bundle branch block (RB), left bundle branch block 
(LB), and paced beat (/). The beats were selected from the recordings of 20 patients, which correspond to the 
following files: 100, 102, 104, 105, 106, 107, 118, 119, 200, 201, 202, 203, 205, 208, 209, 212, 213, 214, 215, 
and 217. In order to feed the classification process, in this paper, the two following kinds of features are adopted: 
1) ECG morphology features and 2) three ECG temporal features, i.e., the QRS complex duration, the RR 
interval (the time span between two consecutive R points representing the distance between the QRS peaks of 
the present and previous beats), and the RR interval averaged over the ten last beats (F. de Chazal and R. B. 
Reilly. 2006). In order to extract these features, first the QRS detection is performed and ECG wave boundary 
recognition tasks by means of the well-known ecgpuwave software available on 
(http://www.physionet.org/physiotools/ecgpuwave/src/). Then, after extracting the three temporal features of 
interest, normalized to the same periodic length the duration of the segmented ECG cycles according to the 
procedure reported in (J. J. Wei, C. J. Chang, N. K. Shou, and G. J. Jan, 2001). To this purpose, the mean beat 
period was chosen as the normalized periodic length, which was represented by 300 uniformly distributed 
samples. Consequently, the total number of morphology and temporal features equals 303 for each beat.  

In order to obtain reliable assessments of the classification accuracy of the investigated classifiers, in all the 
following experiments, three different trials are performed, each with a new set of randomly selected training 
beats, while the test set was kept unchanged. The results of these three trials obtained on the test set were thus 
averaged. The detailed numbers of training and test beats are reported for each class in Table 1. Classification 
performance was evaluated in terms of four measures, which are: 1) the overall accuracy (OA), which is the 
percentage of correctly classified beats among all the beats considered (independently of the classes they belong 
to); 2) the accuracy of each class that is the percentage of correctly classified beats among the beats of the 
considered class; 3) the average accuracy (AA), which is the average over the classification accuracies obtained 
for the different classes; 4) theMcNemar’s test that gives the statistical significance of differences between the 
accuracies achieved by the different classification approaches. This test is based on the standardized normal test 
statistic(A. Agresti, 2002) 

 

(20)

where Zij measures the pair wise statistical significance of the difference between the accuracies of the ith and jth 
classifiers. fij stands for the number of beats classified correctly and wrongly by the ith and jth classifiers, 
respectively. Accordingly, fij and fji are the counts of classified beats on which the considered ith and jth 
classifiers disagree. At the commonly used 5% level of significance, the difference of accuracies between the ith 
and jth classifiers is said statistically significant if |Zij | > 1.96. 

4.2 Experimental Scheme 

The proposed experimental framework was performed around the following five main experiments. The first 
experiment aimed at assessing the effectiveness of the SVM approach in classifying ECG signals directly in the 
whole original hyper dimensional feature space (i.e., by means of all the 303 available features). The total 
number of training beats was fixed to 500, as reported in Table 1. For comparison purpose, two other reference 
nonparametric classification approaches are implemented, namely, the k-nearest neighbor (kNN) and the radial 
basis function (RBF) neural network classifiers. In the second experiment, it was desired to explore the behavior 
of the SVM classifier (compared to the two reference classifiers) when integrated within a standard classification 
scheme based on a AR feature reduction. In particular, the number of features was varied from 10 to 50 with a 
step of 10 so as to test this classifier in small as well as high-dimensional feature subspaces. The third 
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experimental part had for objective to assess the capability of the proposed ELM classification system to boost 
further the accuracy of the SVM classifier. The fourth experiment was devoted to analyze the generalization 
capability of the SVM, the kNN, and the RBF classifiers with and without feature reduction, and of the ELM 
classification system by decreasing/increasing the number of available training beats. This analysis was done 
through two experimental scenarios, which consisted in passing from 500 to 250 and 750 training beats, 
respectively. Finally, in the fifth experiment, the sensitivity of the ELM classification system is analyzed.  

4.3 Experimental settings 

In the experiments, the nonlinear SVM is considered based on the popular Gaussian kernel (referred to as 
SVM-RBF or simply SVM). The related parameters γ and C for this kernel were varied in the arbitrarily fixed 
ranges [10−3 , 200] and [10−3 , 2] so as to cover high and small regularization of the classification model, and 
fat as well as thin kernels, respectively. In addition, for comparison purpose, in the first experiment, the SVM 
classifier with two other kernels are implemented, which are the linear and the polynomial kernels, leading thus 
to two other SVM classifiers termed as SVM-linear and SVM-poly, respectively.  

The polynomial kernel’s degree d was varied in the range [2,5] in order to span polynomials with low and high 
flexibility. The K value and the number of hidden nodes (h) of the kNN and the RBF classifiers were tuned in 
the arbitrarily fixed intervals [1,15] and [10,60], respectively. The other RBF parameters, which include the 
center and the width of each RBF (kernel), were computed by applying the K-means clustering algorithm 
separately to each class.  

In this experiment, the SVM classifier is trained based on the Gaussian kernel, which proved in the previous 
experiments to be the most appropriate kernel for ECG signal classification, in feature subspaces of various 
dimensionalities. The desired number of features varied from 10 to 50 with a step of 10, namely, from small to 
high-dimensional feature subspaces. Feature reduction was achieved by the traditional AR modeling, commonly 
used in ECG signal classification. In particular, it can be seen that for all feature subspace dimensionalities 
except the lowest (i.e., 10 features), the ELM classifier maintains a clear superiority over the other two. Its best 
accuracy was found using a feature subspace made up of the first 30 components. The corresponding OA and 
AA accuracies were 89.74% and 89.78%, respectively. Comparing these results with those achieved with the 
SVM classifier based on the Gaussian kernel in the original feature space (i.e., without feature reduction), a 
slight increase of 1.98% in terms of OA and 2.30% in terms of AA was obtained which is represented in table2. 
From this experiment, three observations can be made: 1) the SVM classifier shows a relatively low sensitivity 
to the curse of dimensionality as compared to the kNN and the RBF classifiers 2) the SVM classifier still 
preserve its superiority when integrated in a feature reduction-based classification scheme; and 3) though the 
SVM performs well in the whole original feature space, its accuracy can still be improved provided that a 
subspace of higher generalization capability can be found. 

The Figure 1 gives the comparison of the accuracy of classifying the ECG signals by using SVM and ELM. This 
shows that ELM gives much better accuracy for all datasets given as input. In which RB dataset achieves the 
maximum accuracy of 97.69%.  

As described before, the proposed ELM classification system aims at enhancing the SVM classification process 
from two different viewpoints: 1) by automatically detecting a feature subspace of higher generalization 
capability in order to deal in a more effective way with the curse of dimensionality, instead of reducing the 
dimension of the original feature space basing on reduction algorithm and 2) by passing from an empirical tuning 
of the value of the two SVM parameters to their automatic optimization. This experiment is aimed at assessing 
the effectiveness of this methodological enhancement. To this purpose, the ELM classifier is applied to the 
available training beats.  

At convergence of the optimization process, the ELM classifier’s accuracy on the test samples assessed. The 
achieved overall and average accuracies were 89.74% and 89.78% corresponding to substantial accuracy gains 
are higher as compared with SVM combined with various kernel functions. Its worst class accuracy was obtained 
for normal beat (N) (89.69%), while that of the SVM and the ELM classifiers was for ventricular premature 
beats (V ) as they were (81.48%) and (85.18%), respectively. This shows the capability of the ELM classifier to 
reduce the gap between the worst and the best class accuracies while keeping OA at a high level.  

Table 3 shows the number of features detected automatically to discriminate each class from the others. The 
average number of features required by the ELM classifier is 47, while the minimum and maximum numbers of 
features were obtained for the ventricular premature (V) and normal (N) classes with 32 and 68 features, 
respectively. 
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5. Conclusion 

In this paper, a novel ECG beat classification system using ELM is proposed and applied to MIT/BIH data base. 
The wavelet transforms variance and AR model parameters have been used for the features selection. From the 
obtained experimental results, it can be strongly recommended that the use of the ELM approach for classifying 
ECG signals on account of their superior generalization capability as compared to traditional classification 
techniques. This capability generally provides them with higher classification accuracies and a lower sensitivity 
to the curse of dimensionality. The results confirm that the ELM classification system substantially boosts the 
generalization capability achievable with the SVM classifier, and its robustness against the problem of limited 
training beat availability, which may characterize pathologies of rare occurrence. Another advantage of the ELM 
approach can be found in its high sparseness, which is explained by the fact that the adopted optimization 
criterion is based on minimizing the number of SVs. It can also be seen that ELM accomplishes better and more 
balanced classification for individual categories as well in very less training time comparative to SVM. In future 
some advanced neural network techniques can be used to train the ELM classifier and it may enhance the 
classification accuracy of the ECG and reduce the training time. 
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Table 1. Numbers of Training and Test Beats Used In the Experiments 

 

Class N A V RB / LB Total 

Training 
beats 

150 100 100 50 50 50 500 

Test beats 24000 245 3789 3893 6689 1800 40416 

 

Table 2. Overall (OA), Average (AA), and Class Percentage Accuracies Achieved on the Test Beats with the 
Different Investigated Classifiers with a Total Number of 500 Training Beats 

 

 

Table 3. Number of Features Detected For Each Class with the ELM Classification System Trained On 500 
Beats 

 

 

 

 

 

Method OA AA N A V RB / LB 

SVM-linear 79.65 79.87 82.89 80.25 78.84 82.53 81.79 72.58 

SVM-poly 85.25 85.75 85.74 83.19 84.48 92.03 79.11 89.94 

SVM-rbf 87.76 87.48 88.69 87.39 81.48 95.98 83.47 87.49 

RBF 82.74 81.78 87.69 88.96 86.18 77.69 75.58 82.36 

kNN 82.63 80.25 81.56 62.76 75.65 94.65 73.98 94.22 

ELM  89.74 89.78 89.69 88.96 85.18 97.69 86.58 
    
89.74 

Class N A V RB / LB AVERAGE 

#Detected Features 68 49 32 50 47 41 47 
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Figure 1. Comparison of SVM and ELM accuracy for different datasets 

 

 


