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Abstract

It has been proved by several researchers that particle swarm optimization has shown better results for clustering
large datasets. In this paper we present a different approach to that of conventional particle swarm optimization
technique. We have used aiNet algorithm of Artificial Immune System(AIS) to preprocess the data i.e. generating
the antibodies with more affinity values among different datasets .The obtained result is given to PSO as
centroids to get better intra cluster distance compared to that of randomly generated centroids. The comparisons
reveal the superiority of AIS over PSO approach for data clustering.
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1. Introduction to clustering

Data clustering is a process of grouping data into clusters so that data within a cluster have high similarity in
comparison to one another but or dissimilar to data in other clusters. Clustering involves dividing a set of objects
into a specified number of clusters. The motivation behind clustering a set of data is to find inherent structure in
data and to expose this structure as a set of groups. Two basic approaches widely followed are “Partitioning
Methods” and “Hierarchal Methods”.

The partioning method partitions a collection of datasets into a set of non-overlapping groups and uses an
iterative relocation technique to improve portioning. The hierarchal method works by grouping data into a tree of
clusters. Strategies for hierarchical clustering generally fall into two types

a) Agglomerative: This is a "bottom up" approach: each observation starts in its own cluster, and pairs of clusters
are merged as one moves up the hierarchy.

b) Divisive: This is a "top down" approach: all observations start in one cluster, and splits are performed
recursively as one moves down the hierarchy.

In this paper we have chosen the partioning approach for a study. There are several evolutionary techniques like
Genetic algorithm (Bezdek et al 1994, Maulik et al 2000), Particle Swarm optimization (PSO) (Kennedy et al
1995) and the like for data clustering using partional approach. In all these techniques the initial centroids are
chosen randomly from the investigated dataset or from the minimum and maximum values of the attributes of
the dataset. These techniques are found to alleviate initial centroid choosing problem of popular K-means (Van
der Merwe et al 2003) algorithm. However, the performance of GA and PSO can improved further if some
amount of preprocessing is done while choosing the initial centroids for solving clustering problems. In this
paper we present a different approach to that of conventional particle swarm optimization clustering (De Castro,
L.N et al 2001) technique while choosing the centroids. In this, we used aiNet (De Castro et al 2002) algorithm
of artificial immune system to preprocess the data i.e. generating the antibodies with more affinity values with
different datasets .The obtained result is given to PSO as centroids so that we can obtain better intra cluster
distance compared to that of randomly generated cluster distance within the upper and lower limits of datasets
(De Castro, L.N et al 2001).The overall merit of our suggested approach can be seen in the gain in time i.e. the
results have been obtained with less number of iterations compared to conventional PSO(De Castro, L.N et al
2001).
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The rest of the paper is organized as follows. Section2 gives a brief overview of aiNet data analysis. In Section 3
the PSO algorithm is described for clustering with the suggested preprocessing. Experimental results are given in
section 4 and finally conclusion and future enhancements are briefly discussed in section 5.

1.1 aiNet- An AIS Method for Data Analysis

The human body performs a variety of effective and powerful biological functions. Computer scientists have
been exploring the mystery of these functions and they are applying their mechanism to learn algorithms. Neural
networks and genetic algorithms are two such families of algorithms. A third yet new, family of
biologically-inspired, learning algorithms, dubbed as artificial immune system(AIS)( De Castro et al 2002) has
begin to draw people’s attention.AIS are computational systems, inspired by theoretical immunology and
observed immune system functions. They have been successfully applied in various fields like engineering
optimization problems, data mining problems, intrusion detection problems, bioinformatics problems etc
(Timmis et al 2001, Knight et al 2001, De Castro et al 2002, Bezerra et al 2003, De Castro et al 2003).

The aiNet is one such algorithm to data clustering (De Castro et al 2002).For completeness, the immune system
principles involved by aiNet are first summarized in section 2.1 and aiNet algorithm in 2.2

1.1.1 Immune System principles

The immune system is a complex of cells, molecules and organs that aim to protect the body against infection. In
the presence of infection, antigens, the substances capable of simulating an immune response are generated. The
immune system usually produces a group of B cells, which secrete antibodies. These antibodies can bind
antigens and kill them. The affinity between antibody and antigen describes the strength of antibody- antigen
interaction; the tighter it is the better it can bind the antigen to the antibody. The body employs a group of
immune mechanisms that facilitate B-cell mechanism which in turn binds the antigen. The following sub
sections cover a few principles that are exploited in aiNet.

1.1.1 a Clonal Selection & Affinity Selection

The immune system generates many B-cells. The B-cell with the highest affinity towards a particular antigen is
cloned. These cloned cells can easily bind the antigens, and are thus called memory cells. The cloning process of
generating memory cells is called clonal selection. Memory cells do not have a long life time and are useful
when infection occurs. The B-cells with lower affinity are either mutated or eliminated. Mutation process
“customizes” the bound surface of B-cell to obtain comparative high affinity. This process is known as affinity
maturation.

1.1.1 b Immune Network Theory

The immune network theory indicates that interaction occurs not only between antibodies and antigens but also
between antibodies and antibodies. Cells can connect with each other to form a network representing an internal
image of original antigens. The network can have a positive or a negative response. A positive response results in
cell proliferation. A negative response results in network suppression (De Castro et al 2002).

2. Immuned PSO approach for obtaining the optimized solution

The following set of algorithms address the problem of obtaining the optimized solution in fewer number of
iterations

2.1 The aiNet algorithm

In the aiNet (U Maulik et al 2000, J Kennedy et al 1995) algorithm, each data point is treated as an antigen. The
algorithm evolves with set of antibodies with best affinity values through a set of operations that include clonal
selection, affinity maturation and the like.

These antibodies construct a network which represents antibodies in a constructed way called aiNet model.

The procedure of evolving antibodies (Ab) to represent antigens (Ag) is explained as follows. First they
randomly generate a set of antibodies and put them in ‘M’ then follow the subsequent steps:

a) Affinity calculation: calculate the affinity between current Ag and each Ab from M

b) Clonal Selection: Select the subset of Ab’s with highest affinity and clone them. The clone size is
proportional to the affinity of Ab’s i.e. higher the affinity more the cloning.

c) Affinity maturation: Mutate each Ab toward Ag with a rate inversely proportional to affinity.

d) Reselection: Calculate each affinity between each Ab and current Ag. Reselect the subset of Ab’s with
higher affinity and discard the lower affinity ones.
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e) Network Suppression: Remove redundan Ab’s and add the resulting Ab’s into M.

f) Repeat (a)-(e) for each Ag. The memory matrix eventually contains the memory cells i.e. the Ab’s bind
the Ag.

g) Suppress M: Remove the redundant Ab’s generated.
h) Add new set of values i.e. Ab’s into M.
i) Repeat (a)-(h) until predefined number of iterations is reached.
j)  Repeat the predecessor steps for each cluster of antibodies up to » clusters
There are 4 tunable parameters of aiNet they are:
¢ ns: The number of Ab’s selected for cloning in step(b)
e os: The suppression threshold for step(e) and(g)
o (: The percentage of reselected Ab’s  for step (d)

e od: The death rate which defines the threshold to remove the low-affinity Abs after reselection of
step (d)

In sum, the aiNet constructs a network of antibodies to represent original antigens. The rate of antibody
population variation of network is proportional to the novel antibodies that are added in each iteration minus
the death of low affinity antibodies in step(e) and step(g) plus the reproduction of high affinity antibodies(step(e)
& step(g)) plus the reproduction of high affinity antibodies in step(2). The numbers of antibodies generated at the
end are provided to the PSO as the set of centroids with » clusters. Below are the brief descriptions of the above
procedures as an illustrative example.

(1) Initially a set of antibodies is generated within the bound of antigens i.e. from the data set under investigation
for n clusters. Each cluster contains m attributes tantamount to referenced dataset attributes. For example in Iris
dataset each data object has 4 attributes so in our example the generated one also contains 4 attributes. The below
given data is a set of antibodies for one cluster

6.4525 4.2780 2.7039 2.2332
4.6657 2.1568 2.3824 2.3394
4.5273 2.6341 6.8972 0.6088
6.0943 2.6972 4.9693 2.3992
7.0596 3.5987 1.7726 0.3290
4.3535 2.6917 5.8187 2.4652
4.3625 3.9665 4.6647 1.4445
5.1785 3.9728 2.5530 1.9087
6.6747 2.5138 4.5525 1.5518
6.6742 2.4401 4.7556 0.5087

(2) The distance from each antigen to every antibody is calculated as per step (a) in Section 2.2

2.8755 2.7450 5.6093 43829 2.0013 5.0859 3.6012 2.1163 39010 3.8674

The above numerical values are the Euclidian distance from first antigen (i.e. objects from the dataset) to all
antibodies generated above. This is repeated for antigens.

(3) Sorting of antibodies having good values i.e. having less Euclidian distance and a subset is formed by taking
values that are >1 and less than number of antibodies. These are shown in Figure 1 and Figure 2 as obtained after
the experiments.

(4) The Cloning of antibodies in proportional to the affinity i.e. higher the affinity more the closining as per
step(b) of Section 2.2

If affinity value is 5.0859 then it is rounded to 5 and the respective antibody ( i.e. 4.3535 2.6917 5.8187
2.4652) is cloned five times. The example is shown below.

4.3535 2.6917 5.8187 2.4652
4.3535 2.6917 5.8187 2.4652
4.3535 2.6917 5.8187 2.4652
4.3535 2.6917 5.8187 2.4652
4.3535 2.6917 5.8187 2.4652
This process is repeated for all values.
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(5) Now each antibody is mutated towards antigen with the rate inversely proportional to affinity.This has been
done to assure that antigen matures as per the step © in section 2.2. For example

If antigen is: 6.4525 4.2780 2.7039 22332

and the Euclidian distance from antigen to cloned antibody say (5.1000 3.5000 1.4000 0.2000) is
2.8755. The mutation value is computed by dividing the computed affinity (i.e 2.8755) with the least
attribute value in the cloned antibody i.e 2.2. Hence the mutation value is 1.3071 for the exapmle. This value is
added to the cloned antibody to get

6.4071 4.8071 2.7071 1.5071.

This process is repeated for each antibody.

(6) Now the range of the antobody obtained using the above step is checked and restricted so that the affinity
maturation never strays off the boundary. If it crosses the maximum value it is set as maximum and if it goes
below minimum it is set as minimum value. For example if the value got is

7.963 2.563 0.0009 3.566 thenitischangedto7.900 2.563 0.010 3.566

(7) Now the process of reselection is started from (step (d) in section 2.2). In this again, the process of distance
calculation is followed by removing the lower affinity ones and then selecting the subset.

(8) In the the process of network supression from step (¢) section 2.2 the redundant antibodies are removed so
that only distinct antibodies remain. For example

If their exists

6.4071 4.8071 2.7071 1.5071.

6.4071 4.8071 2.7071 1.5071.

6.4071 4.8071 2.7071 1.5071.

The redundant ones are removed so that only one antibody exists with those values.

(9) Repeat the steps from 2-8 are repeated so that antibodies that bind the antigens are obtained.

(10) New antibodies are added until predefined number of iterations are reached .

Finally, a set of of antibodies with high affinity values is got:

5.7820 3.2731 3.4987 3.4557

6.0342 4.8285 3.4087 2.7644

7.9000 4.1222 6.4377 2.1908

7.9000 4.5430 2.7169 1.2733

4.8622 4.2202 2.1927 0.1203

6.7808 2.9623 3.2395 2.2676

7.6961 3.1376 1.1048 2.0679

4.5066 2.2163 5.1103 0.4532

4.5073 2.1521 5.2647 0.1809

6.8046 2.5308 4.6898 1.3319

6.3725 2.6894 6.2668 0.3222

5.3529 3.9726 6.8647 0.2628

7.8031 42147 6.6565 1.4516

7.7219 2.7637 2.5688 0.2466

Similarly the above set of operations are followed for each individul cluster.If there exists # clsuters i.e. n times.
2.2 Particle Swarm Optimization and clustering

Particle Swarm Optimization (PSO) is a population-based stochastic search process, modeled after the social
behavior of a bird flock (De Castro et al 2001, De Castro et al 2002). The algorithm maintains a population of
particles, where each particle represents a potential solution to an optimization problem. In the context of PSO, a
swarm refers to a number of potential solutions to the optimization problem, where each potential solution is
referred to as a particle. The aim of the PSO is to find the particle position that results in the best evaluation of a
given fitness (objective) function.

Each particle represents a position in Ny dimensional space, and is: “flown” through this multi-dimensional search
space, adjusting its position toward both

. the particle's best position found thus far. and

. the best position in the neighborhood of that particle.
Each particle i maintains the following information:

. X; : The current position of the particle;

. V; : The current velocity. of the particle;
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. Y; :The personal best position of the particle.
Using the above notations, a particle’s position is adjusted according to
A
Vi (1) = wyy () + Cl"l,k(f)(yi,k(f)—xi,k(f))+ car () v (0) =i 4 (1) )
x;(t+1)=x;(t)+v; (£ +1) @)

n,;(thr, j()~U(01) andk=1...... Ny

where W is the inertia weight, ¢q1,C9 are the acceleration constants

The velocity is thus calculated based on three contributions: (1) a fraction of the previous velocity, (2) the
cognitive component which is a function of the distance of the particle from its personal best position, and (3) the
social component which is a function of the distance of the particle from the best particle found thus far (i.e. the
best of the personal bests)

The PSO is usually executed with repeated application of equations (1) and (2) until a specified number of

iterations have been exceeded. Alternatively, the algorithm can he terminated when the velocity updates are close

to zero over a number of iterations.

In the context of clustering, a single particle represents the N cluster centroid vectors. That is, each particle

X; is constructed as follows:

Xi= ( mil,...,mij‘.....miNc) (3)

where Mii refers to the j-th cluster centroid vector of the i-th particle in cluster Cj. Therefore, a swarm
represents a number of candidate clusters for the current data vectors. The fitness of particles is measured using

the intra cluster distance values. The lower the intra cluster distance, the fitter the particle.

2.3 PSO Cluster Algorithm
Using the standard gbest PSO, data vectors can be clustered as follows:

1) Each particle is initialized to contain N . randomly selected cluster centroids.

Xi X2 Xz ------- X ----- Xim
X1 X2 Xz ------- Xpjm === - - Xom
X3 X Xy ------- Xy === - - Xim
! | I |- |
! | I |- |
Xl X Xpg ------- Xp= == === Xom

2) For 1= 110 tmazdo
(a) For each particle i do

(b) For each data vector z p

i) The Euclidean distance is calculated as d (Z P>, j) to all cluster centroids C'

i) z p is assigned to a cluster Ciiwith smallest Euclidean distance.

iii) The fitness (i.e. intra cluster distance) is calculated

(¢) The global best position and personal best position are updated
(d) The cluster centroids are updated using equations (1) and (2)
where ¢,,, i1s the maximum number of iterations.

The population-based search of the PSO algorithm reduces the effect that initial conditions have, as opposed to
the K-means algorithm by searching for multiple positions in parallel. However, it has been seen that the time
taken to converge to optimal solution is very large and often it is trapped in local optima values. To overcome

Published by Canadian Center of Science and Education 167



www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 1; January 2011

these two difficulties a new approach of initializing the particles in Step 1 of PSO cluster Algorithm with aiNet
approach has been suggested. In this approach, the initialization of particles is the output of the aiNet processing
(as described in previous section). Due to the antibody effect to immunization the particles often initialized to
better centroids as compared to conventional PSO clustering algorithm. The aiNet is used as a pre-processing
step for PSO clustering.

The results of a comparison of fitness values of various approaches in the next section demonstrate the
effectiveness of our suggested approach on different datasets.

3. Experimental Results

Experiments are conducted on various data sets namely iris, blood transfusion, breast cancer, all collected from
UCI machine repository. The details of these datasets are presented in table 1. The whole experiment is carried
out in two phases. In phase one the aiNet is applied to each dataset to find out the set of antibodies with best
affinity values and the second phase the PSO clustering technique is applied, taking these antibodies as initial
cluster centroids in the population of particles. For comparison purpose, only PSO for clustering has been
simulated. Table 2 shows the fitness comparison in terms of intra cluster distances for all datasets taking only
PSO and AIS-PSO into account.

In aiNet by varying the four tunable parameters (ns,0s,(,6d) discussed in section 2.2 the best parameter
setting for aiNet PSO has been obtained. The most essential parameter os controls final network size and is
responsible for network plasticity. The ns and { can adjusts the network size to a degree based on the selected os
and makes the final network as small as possible. od is responsible for eliminating the antibodies with low
antigenic affinity. It is clearly seen from the table 2 that the clustering results are significantly improved in aiNet
applied PSO (preprocessed data). The gain in maximum iteration in AIS-PSO is due to availability of better
centroids in the initial population of PSO.The following three graphs (Fig 3-5) show the fitness in terms of intra
cluster distance using our suggested AIS-PSO approach.

3.1 Conclusion and Future Enhancement

This paper presents an approach for data clustering based on aiNet(an immune system base approach) for data
analysis.By using this algorithm we refine the data by eliminating redundancy and noise.Hence this approach
produces a set of antibodies(centroids in PSO) with high affinity.These antibodies is thus capable of obtaining
better clustering results than directly clustering the raw datasets.Our proposed approach also is computaionaly
faster in terms of maximum iterations needed to cluster for investigated dataset in comparison to PSO approach
alone .

As further enhancement, we would like to study various other hybrid approach with variants of PSO models
and we would also like to investigate if this preprocessing approach can be suitable to find better performance
with other swarm intelligence algorithms.
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Table 1. Information about datasets

DataSet

Total no of
records

No of
Attributes

clusters

Iris

150

4

Blood Transfusion

748

4

\9)

Breast Cancer

685

9

Table 2. Fitness Comparisons

Dataset

Maximum Iteration

Intracluster distance

PSO

AIS-PSO

PSO

AIS-PSO
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300

20

96.12
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Blood Transfusion

400

100

139.23
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Breast cancer
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50
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Figure 1. Represents sorted in accordance with affitinity values
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2.3761  2.3855  2.5902  3.2560
2.6647  2.7394  2,9118  3.6592
1.4464  2.2666  2.6265  3.2648
1.6031  1.9595  2.3219  3.2622
1.7531  1.9750  2.5656  2.9173
1.9974  2.0364  2.6676  2.8057
1.3766  1.9018  2.3537  2.8374
1.9320  1.9888  2.8915  2.7976
1.6780  2.0061  2.6496  2.6697
1.8616  1.9823  2.56407  Z.6665
2.4094  2.5813  2.9283  3.3058
1.7607  1.9808  2.3118  2.6072
1.9538  2.2756  2.5245  2.8778%
2.1556  2.1923  2.4519  3.0159
1.8826  2.0776  2.4558  2.7313
1.8865  2.0622  2.7286  2.7852
1.9113  2.1385  2.7154  2.8530
2.1573  2.4027  2.5057  3.0961
2.1755  2.3240  2.4892  3.0775
1.6950  1.9396  2.5738  2.5862
1.9586  2.0968  2.7569  3.1393
1.7174  2.0986  2.5976  3.2269
z.2448  2.2846  2.595%  3.1302
2.1784  2.3193  2.6786  3.1093
1.6377  2.1947  2.7600  2.8721
2.2448  2.2846  2.5958  3.1302
2.4581  2.5554  2.7698  3.4570
1.9926  2.0887  2.6627  2.8607
2.1008  2.1156  2.8920  2.9023
2.3192  2.7233  2.9090  3.6651
2.3860  2.6282  2.7336  3.3882
1.6960  2.0868  2.3566  2.5692
1.6549  1.9753  2.4626  2.6235
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Figure 2. Represents subset in sorted value

EiET

EERS

ars|

a7 26

o

iterations

Figure 3. Fitness curve for Iris data
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Figure 4. Fitness curve for Blood Transfusion data
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Figure 5. Fitness curve for Breast cancer data
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