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Abstract 
We model the contiguous states (48 states and the District of Columbia) of the United States (US) as an 
undirected network graph with each state represented as a node and there is an edge between two nodes if the 
corresponding two states share a common border. We determine a ranking of the states in the US with respect to 
a suite of node-level metrics: the centrality metrics (degree, eigenvector, betweenness and closeness), 
eccentricity, maximal clique size, and local clustering coefficient. We propose a normalization-based approach to 
obtain a comprehensive centrality ranking of the vertices (that is most likely to be tie-free) encompassing the 
normalized values of the four centrality metrics. We have applied the proposed normalization-based approach on 
the US States graph to obtain a tie-free ranking of the vertices based on a comprehensive centrality score. We 
observe the state of Missouri to be the most central state with respect to all the four centrality metrics. We have 
also analyzed the US States graph with respect to a suite of network-level metrics: bipartivity index, assortativity 
index, modularity, size of the minimum connected dominating set, algebraic connectivity and degree metrics. 
The approach taken in this paper could be useful for several application domains: transportation networks (to 
identify central hubs), politics (to identify campaign venues with larger geographic coverage), cultural and 
electoral studies (to identify communities of states that are relatively proximal to each other) and etc.  
Keywords: Network Analysis, Centrality, Clique, Bipartivity, Modularity 
1. Introduction 
Network Science is one of the emerging fields of Data Science to analyze real-world networks from a graph 
theory point of view. Several real-world networks have been successfully modeled as undirected and directed 
graphs to study the intrinsic structural properties of the networks as well as the topological importance of nodes 
in these networks. The real-world networks that have been subjected to complex network analysis typically fall 
under one of these categories: social networks (Ghali et al., 2012), transportation networks (Cheung & Gunes, 
2012), biological networks (Ma & Gao, 2012), citation networks (Zhao & Strotmann, 2015), co-authorship 
networks (Ding, 2011) and etc. One category of real-world networks for which sufficient attention has not yet 
been given are the regional networks featuring the states within a country.  
In this paper, we present a comprehensive analysis of a network graph of the states within a country with respect 
to various node-level and network-level metrics typically considered in the field of Network Science and 
demonstrate the utility of information that can be obtained from the analysis. We also propose a 
normalization-based approach to obtain comprehensive centrality scores for the vertices encompassing the 
normalized individual centrality scores and illustrate the use of these comprehensive scores to obtain a ranking 
of the vertices (that is most likely to be tie-free). We also illustrate the procedure to identify the centrality metric 
whose scores and ranking are relatively the closest to the normalized comprehensive centrality scores and 
ranking.  
We opine the paper to serve as a model for anyone interested in analyzing a connected graph of the states within 
a country from a Network Science perspective. The approaches presented in this paper could be useful to 
determine the states (and their cities) that are the most central and/or influential within a country. For example, 
the ranking of the vertices based on the shortest path centrality metrics (closeness and betweenness) could be 
useful to choose the states (and their cities) that could serve as hubs for transportation networks (like road and 
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airline networks). We could identify the states that are most the central states as well as identify the states that 
could form a connected backbone and geographically well-connected to the rest of the states within a country 
and use this information to design the road/rail transportation networks. The degree centrality and eigenvector 
centrality metrics as well as the network-level metrics like minimum connected dominating set and maximal 
clique size could be useful to identify fewer number of venues (with several adjacent states to draw people) for 
political campaigns/meetings that would cover the entire country. Node-level metrics like local clustering 
coefficient could be useful to identify the states that are critical to facilitate communication between the neighbor 
states. One could develop an optimal regional classification of states for cultural studies (language accent, eating 
habits, etc) and electoral studies (like scheduling of elections) by identifying communities of states (that are 
relatively more proximal with each other) with high modularity scores.  
 
Table 1. List of Contiguous States (including DC) of the US in Alphabetical Order 

ID State/District Code ID State/District Code 
1 Alabama AL 26 Nebraska NE 
2 Arizona AZ 27 Nevada NV 
3 Arkansas AR 28 New Hampshire NH 
4 California CA 29 New Jersey NJ 
5 Colorado CO 30 New Mexico NM 
6 Connecticut CT 31 New York NY 
7 Delaware DE 32 North Carolina NC 
8 District of Columbia DC 33 North Dakota ND 
9 Florida FL 34 Ohio OH 

10 Georgia GA 35 Oklahoma OK 
11 Idaho ID 36 Oregon OR 
12 Illinois IL 37 Pennsylvania PA 
13 Indiana IN 38 Rhode Island RI 
14 Iowa IA 39 South Carolina SC 
15 Kansas KS 40 South Dakota SD 
16 Kentucky KY 41 Tennessee TN 
17 Louisiana LA 42 Texas TX 
18 Maine ME 43 Utah UT 
19 Maryland MD 44 Vermont VT 
20 Massachusetts MA 45 Virginia VA 
21 Michigan MI 46 Washington WA 
22 Minnesota MN 47 West Virginia WV 
23 Mississippi MS 48 Wisconsin WI 
24 Missouri MO 49 Wyoming WY 
25 Montana MT    

 
We choose the United States (US) as the country for analysis and build a connected network graph of the 
contiguous states (48 states and the District of Columbia, DC) of the US: each state and DC is a node (vertex) 
and there exists a link (edge) between two vertices if the two corresponding states/DC share a common border. 
Though some prior studies have been conducted on transportation networks (Cheung & Gunes, 2012) and food 
flow networks (Lin et al., 2014) in the United States, to the best of our knowledge, there has been no prior study 
of network analysis on the graph of the contiguous US states solely based on their geographical locations. In this 
paper, we have implemented the algorithms to compute several node-level metrics (such as the degree centrality, 
eigenvector centrality (Newman, 2010), betweenness centrality (Brandes, 2001), closeness centrality (Newman, 
2010), maximal clique size (Meghanathan, 2015b), eccentricity (Cormen et al., 2009) and local clustering 
coefficient) as well as several network-level metrics (such as bipartivity index (Estrada & Rodriguez-Velazquez, 
2005), modularity (Newman, 2006), minimum connected dominating set (Meghanathan, 2014b), algebraic 
connectivity (Fiedler, 1973), average path length (Cormen et al., 2009), diameter (Cormen et al., 2009), 
assortativity index (Newman, 2010) and spectral radius (Meghanathan, 2014a)) and analyze the US States 
network graph with respect to these metrics. We also analyze random network instances (generated with the 
same degree sequence using the Configuration model (Meghanathan, 2016c)) of the US States graph to study the 
correlation of the node-level metrics and proximity of values for the network-level metrics. Finally, we illustrate 
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2.7 Local Clustering Coefficient 
The local clustering coefficient (LCC) of a vertex is a measure of the probability that any two neighbors of the 
vertex are connected. For a vertex vi with ki neighbors, the maximum number of links between any two 
neighbors of the vertex is ki(ki-1)/2. The LCC of a vertex is the ratio of the actual number of links connecting 
the neighbors of the vertex to that of the maximum possible number of links between the neighbors of the vertex. 
The smaller the LCC of a vertex, the more important is the vertex for facilitating shortest path communication 
among its neighbors (as there is a good chance that the neighbors of a vertex that are connected to each other go 
through the vertex for shortest path communication). Hence, we give a higher rank to vertices having a lower 
LCC.  
 
Table 8. Ranking of the Vertices in the US States Network Graph based on Local Clustering Coefficient (LCC) 

Rank ID LCC  Rank ID LCC Rank ID LCC Rank ID LCC 
1 11 0.133  5 45 0.333 7 13 0.500 8 25 0.667 
2 24 0.222  6 3 0.400 7 22 0.500 8 29 0.667 
3 40 0.286  6 10 0.400 7 23 0.500 8 33 0.667 
3 41 0.286  6 12 0.400 7 30 0.500 8 44 0.667 
4 27 0.300  6 14 0.400 7 32 0.500 8 48 0.667 
4 31 0.300  6 19 0.400 7 42 0.500 9 8 1.000 
4 49 0.300  6 20 0.400 7 43 0.500 9 9 1.000 
5 4 0.333  6 26 0.400 7 47 0.500 9 18 1.000 
5 5 0.333  6 34 0.400 8 6 0.667 9 21 1.000 
5 16 0.333  6 35 0.400 8 7 0.667 9 38 1.000 
5 28 0.333  7 1 0.500 8 15 0.667 9 39 1.000 
5 36 0.333  7 2 0.500 8 17 0.667 9 46 1.000 
5 37 0.333           

 
Table 8 ranks the vertices in the US States graph in the increasing order of the values of the LCC. As the LCC 
values get larger, we observe a significant number of ties among the vertices. The state of Idaho (with a degree of 
6) has the lowest LCC and hence is the top ranked with respect to the LCC metric. The state of Missouri (that 
was ranked first with respect to all the four centrality metrics) is ranked second with respect to LCC. There are 
only nine unique values for the LCC metric. Figure 7-a captures the cumulative probability distribution of the 
LCC metric and we observe that only about 15% of the vertices have a LCC of 0.3 or lower, and more than half 
of these vertices have the largest values for the BWC (as observed in Figure 7-b). We observe the Spearman's 
Rank-based correlation coefficient between LCC and BWC (computed based on the rankings in Tables 4 and 8) 
to be 0.82. Figure 7-c very well captures the inverse relationship between degree and LCC. Vertices having a 
larger degree are more likely to have a lower LCC as it would be difficult to expect any two neighbors of a 
high-degree node to be directly connected to each other and are more likely to go through the vertex for 
shortest-path communication. On the other hand, vertices having a lower degree are more likely to have a larger 
LCC as it is highly possible for any two neighbors of a low-degree vertex to be directly connected to each other 
and need not go through the vertex for shortest path communication. Thus, vertices with higher degree and lower 
LCC are more likely to have a larger BWC, and vertices with a lower degree and higher LCC are more likely to 
have a smaller BWC. A plot of Closeness Centrality (ClC) vs. LCC reveals that the two metrics are almost 
independent of each other (as vertices covering the entire range of values observed for the ClC have almost the 
same LCC), leading to a Spearman's rank-based correlation coefficient of 0.52. 
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Table 9. Ranking of the Vertices in the US States Network Graph based on Eccentricity (Ecc) 
Rank ID Ecc  Rank ID Ecc Rank ID Ecc Rank ID Ecc 
1 34 5  3 31 7 4 35 8 5 42 9 
1 47 5  3 32 7 4 39 8 5 43 9 
2 8 6  3 41 7 4 44 8 5 46 9 
2 13 6  4 1 8 4 48 8 5 49 9 
2 16 6  4 3 8 5 5 9 6 2 10 
2 19 6  4 6 8 5 9 9 6 4 10 
2 21 6  4 10 8 5 17 9 6 18 10 
2 37 6  4 11 8 5 22 9 6 25 10 
2 45 6  4 14 8 5 27 9 6 33 10 
3 7 7  4 15 8 5 28 9    
3 12 7  4 20 8 5 30 9    
3 24 7  4 23 8 5 36 9    
3 29 7  4 26 8 5 38 9    

 
The distribution of the eccentricity of the vertices shows that the minimum value (also called radius): 5 is half of 
the maximum value (also called diameter): 10. Nevertheless, we observe that more than 65% of the vertices have 
an eccentricity of 8 or above (i.e., more than 65% of the vertices have a maximum path length of 8-10 to one or 
more vertices) and only 4% of the 49 vertices (i.e., just 2 vertices) incur eccentricity values corresponding to the 
radius of the graph. The two states of West Virginia and Ohio (with an eccentricity corresponding to the radius) 
are said to form the "center" of the graph (Newman, 2010); each of these two vertices are within a maximum hop 
count of 5 on a shortest path to any other vertex in the graph. Note that neither of these two vertices are among 
the vertices that are ranked in the top 3 with respect to any of the centrality metrics and local clustering 
coefficient. There are five states (Arizona, California, Maine, Montana and North Dakota) that have an 
eccentricity corresponding to the diameter of the graph. Table 9 illustrates a ranking of the vertices based on 
eccentricity (the state with the smallest eccentricity is ranked first). 
3. Network-Level Metrics 
In this section, we evaluate the following network-level metrics for the US States graph: Bipartivity Index; 
Degree Metrics - Average, Standard Deviation, Kurtosis and Spectral Radius Ratio; Algebraic Connectivity; 
Assortativity Index and Modularity. We also determine the size of the Minimum Connected Dominating Set of 
vertices based on the four centrality metrics (DegC, BWC, EVC and ClC). 
3.1 Bipartivity Index 
A graph is bipartite (a.k.a. 2-colorable) if the vertices of the graph can be partitioned to two disjoint sets such that 
all the edges in the graph are those that connect a vertex from one partition to the other partition, and there are no 
edges between vertices within a partition (Cormen et al., 2009). The two partitions are determined using the sign 
of the entries in the eigenvector corresponding to the smallest eigenvalue of the binary adjacency matrix of the 
graph (Estrada & Rodriguez-Velazquez, 2005); the positive entries are grouped into one partition and the 
negative entries are grouped into another partition. Figure 9 displays the US States graph with the states colored 
in yellow or green to represent the two partitions.  
A measure called bipartivity index (Estrada & Rodriguez-Velazquez, 2005) has been proposed in the literature to 
determine the extent of bipartivity for complex network graphs. The bipartivity index of a graph is computed 
using the eigenvalues of the binary adjacency matrix of the graph. The bipartivity index values could range from 
0 to 1; if a graph has bipartivity index of 1, it implies all the edges in the graph are only those that connect the 
vertices across the two partitions. However, there exist several real-world network graphs for which there are 
few edges (called frustrated edges) that connect the vertices within each partition (though a majority of the edges 
connect the vertices across two partitions; Estrada & Rodriguez-Velazquez, 2005). Graphs with one or more 
frustrated edges have bipartivity index less than 1 and graphs with no frustrated edges have bipartivity index 
equal to 1 (Estrada & Rodriguez-Velazquez, 2005). While graphs with no frustrated edges have been referred to 
as truly bipartite, graphs with frustrated edges have been referred to as close-to-bipartite (Estrada & 
Rodriguez-Velazquez, 2005). The bipartivity index of the US States graph has been observed to be 0.66 and the 
fraction of frustrated edges in the network is 0.32. Though the bipartivity index value is not that close to 1, it is 
still larger than the values observed for several of the real-world networks in the literature (Estrada & 
Rodriguez-Velazquez, 2005).  



cis.ccsenet.

 

3.2 Degree
From Figu
corroborat
of the two
(all indica
Nevzorov,
1998). For
or below 3
spectral ra
the graph a
node degr
metric is 1
node degre
not as clos
network w
variation d
3.3 Algebr
The algebr
value of th
network. T
matrix of 
low value 
entries in t





=jiL ),(

3.4 Assorta
The assort
graph is a 
(Newman,
product-m
the edges i
(Newman,
graph hav
assortative

org 

Figure 9. On t

e Metrics 
ure 2, we obse
te this assertion
o peak degree v
ating that the 
 2003). Kurtos
r normal distrib
3 are said to b

adius ratio for 
and the averag
ee is a measur

1.0 and farther 
ee. Though the
se to 1 (Megha

with a unimoda
due to the bi-m
raic Connectiv
raic connectivi
his metric from
The algebraic 
the graph [24]
indicates that

the Laplacian m

  if            a-
if    idegree

ij

)(

ativity 
tative index o
measure of th

, 2010). Asso
moment correla

in the graph. L
, 2010). If the A
ve similar valu
e index value 

the Bipartivity 

erve that the d
n, we observe 
values of 3 an
degree distrib

sis is a measur
bution, the exp
be fat-tailed a
node degree (

ge node degree
re of the varia
the value of th

e spectral radiu
anathan, 2014
al Poisson deg

modal degree d
vity 
ity of a graph 

m 0, the larger i
connectivity o
]. We determin
t (though the 
matrix of a gra





≠
=

j  i
j  i f  where

f the edges (w
he extent of sim
ortative index
tion coefficien

Like correlatio
Assortative ind
ues (or dissim
closer to 1 ar

Computer an

of the US Stat
Bipartiv

degree distribu
the average d

nd 5), with a st
bution is clos
re of the "tailed
pected value f
and thin-tailed
(defined as the
e; Meghanathan
ation in node 
he spectral rad
us ratio for nod
a) as observed
ree distributio
istribution of t

is a measure o
is the robustne

of a graph is c
ne the algebra
entire graph i

aph are defined

e aij is an entry

with respect to
milarity (with 
x with respec
nt values (with
on coefficient, 
dex value is cl

milar values) 
re said to be m

nd Information S

65 

tes Network G
vity Index: 0.6

 

ution of the v
degree of the ve
tandard deviat
se to being a 
dness" of a pro
for the Kurtosi
d respectively 
e ratio of the p
n, 2014a) is ob
degree of the 

dius ratio for no
de degree valu
d for the US F
n of the vertic
the vertices. 

of the robustne
ess of the graph
omputed as th

aic connectivity
is connected), 
d (Fiedler, 197

y (0 or 1) in the

o a particular 
respect to the

ct to a partic
h respect to the
the values for 
lose to 1 (or -1
for the partic

more assortativ

Science

Graph (48 Cont
66 

vertices is Pois
ertices to be 4
tion and Kurto

normal/Poisso
obability distrib
s is 3; distribu
(Balanda & M

principal eigen
bserved to be 1
vertices; the m
ode degree fro

ue of 1.24 is no
Football netwo
ces; the value o

ess of the grap
h with respect 

he second sma
y of the US S
the robustnes

73) as follows:

e adjacency ma

node-level me
e metric) betwe
cular metric 
 metric in cons
the Assortativ

1), it implies th
cular metric in
ve and value 

 

tiguous States 

sson and bi-m
.37 (roughly c

osis of 1.72 an
on distribution
bution (Baland

utions with Ku
MacGillivray, 
nvalue of the a
1.24. The spec
minimum poss

om 1, the large
ot much larger 
ork (Girvan & 
of 1.24 could b

h (Fiedler, 197
to the overall 
llest eigenvalu
tates graph to 

ss of the graph

atrix for vertic

etric like centr
een the end ve
is computed 

sideration) for
ve index could
he end vertices
n consideratio
closer to -1 ar

Vol. 10, No. 1;

and DC) 

modal in nature
close to the ave
d 2.75 respect
n; Balakrishna
da & MacGilli

urtosis values a
1998). Further

adjacency matr
ctral radius rati
sible value for

er is the variati
than 1, the val
Newman, 200
be attributed t

73). The farthe
connectivity o

ue of the Lapla
be 0.0973. Su

h is very low.

es i and j.  

rality metrics)
ertices of the g

as the Pear
r the end vertic
d range from -1
s of the edges i
on. Networks 
re said to be 

2017 

e. To 
erage 
tively 
an & 
ivray, 
above 
r, the 
rix of 
io for 
r this 
on in 
lue is 
02): a 
o the 

er the 
of the 
acian 
uch a 
 The 

 in a 
graph 
rson's 
ces of 
1 to 1 
in the 
with 

more 



cis.ccsenet.

 

dissortativ
value is cl
respect to 
closer to 0
We condu
metrics (D
DegC-base
index: 0.2
observe th
with respe
LCC. 
 
Table 10. 
(using the 

 
3.5 Modul
We used th
into comm
were a tota
closely r
(http://ww
communiti

Figure 10

 

org 

ve with respect
loser to 0, it i
the particular

0 for any node-
uct an assortat
DegC, EVC, BW
ed Assortativit

23; (iv) ClC-ba
he US States g
ect to DegC an

Partitioning o
Louvain Algo

1 
ID State 
1 AL 
3 AR 
9 FL 
10 GA 
17 LA 
23 MS 
32 NC 
39 SC 
41 TN 
42 TX 
  

larity 
he Louvain alg

munities. The m
al of 6 commu
resemble the

ww2.census.gov
ies with differe

0. Communitie

t to the node-le
mplies the val

r metric in con
-level metric (M
tivity analysis 
WC and ClC) 
ty index: 0.23
ased Assortati

graph to be rela
nd BWC; also,

of the Vertices
orithm; Blonde

 2 
 ID State 
 2 AZ 
 4 CA 
 5 CO 
 11 ID 
 15 KS 
 27 NV 
 30 NM 
 35 OK 
 36 OR 
 43 UT 
 46 WA 

gorithm (Blond
modularity scor
unities of the ve
e nine reg
v/geo/pdfs/map
ent colors (one

es of Vertices i
Louv

Computer an

evel metric in c
lues for the en
nsideration. R
Meghanathan, 
of the edges 
and local clus
; (ii) EVC-bas
ivity index: 0.
atively more a
, the US State

s of the Conti
el et al., 2008)

 3 
 ID Stat
 25 MT
 26 NE
 33 ND
 40 SD
 49 WY
   
   
   
   
   
   

del et al., 2008
re (in a scale o
ertices (see Ta

gional divisio
ps-data/maps/r
e color per com

in the US State
vain Algorithm

nd Information S

66 

consideration (
nd vertices of 
andom networ
2016a). 
in the US St

tering coeffici
sed Assortativ
.65 and (v) LC
assortative with
s graph is neit

iguous States 

4
te ID St

T 6 C
 18 M

D 20 M
28 N

Y 31 N
38 R
44 V
 
 
 
 

8) to determine
of 0 to 1; Newm
able 10 and Fig
ons used b
reference/us_r
mmunity) usin

es Graph (48 C
m (Modularity 

Science

(Meghanathan
f the edges are
rks are expect

tates graph wi
ient (LCC) and
vity index: 0.62
CC-based Ass
h respect to E
ther assortative

Graph (48 Sta

5
tate ID

CT 7 
ME 8 
MA 19
NH 29
NY 37
RI 45
VT 47

 
 
 
 

e an optimal pa
man, 2006) wa

gure 10). We ob
by the Un
regdiv.pdf). F
g the map from

Contiguous Sta
Score: 0.586)

n, 2016a). If the
e independent 
ted to have an

ith respect to 
d observe the f
2; (iii) BWC-b
sortativity inde

EVC and ClC a
e nor dissortat

ates and DC) 

5  
State  ID 
DE  12 
DC  13 
MD  14 
NJ  16 
PA  21 
VA  22 
WV  24 
  34 
  48 
   
   

artitioning of t
as observed to
bserve the ver

nited States 
Figure 10 d
m http://www.t

 
ates and DC) D

Vol. 10, No. 1;

e Assortative i
of each other 

n Assortative i

the four centr
following valu
based Assortat
ex: -0.03. We 
and less assort
tive with respe

into Commun

6 
State 
IL 
IN 
IA 
KY 
MI 
MN 
MO 
OH 
WI 
 
 

the US States g
 be 0.586 and 

rtex communiti
Census Bu

displays the 
thecolor.com.

Detected using 

2017 

index 
with 

index 

rality 
ues: (i) 
tivity 
thus 

tative 
ect to 

nities 

graph 
there 
ies to 
ureau 

six 

the 



cis.ccsenet.

 

Figure 11.

3.6 Conne
A connect
either in th
minimum 
(e.g., New
heuristic p
node-level
the node-l
neighbor n
proceeds i
included to
by nodes a
either in th
Any node-
node-level
smallest si
cover seve
MCDS of 
States grap
both the M
of vertices
network g
MCDS, bu
4. Normal
As there a

org 

(a) Degree C

(c) Eigenvecto
. Approximatio

ected Dominati
ted dominating
he CDS or is 
connected dom

wman, 2006; M
proposed by M
l metric. The i
level metric in
nodes are said
in iterations; 
o the CDS as l
already includ
he CDS or is co
-level metric c
l metric used.
ize (Newman, 
eral other nod
the US States

ph to comprise
MCDSs are the
s (22 and 23 v
graph (vertices
ut covered by a
lization-based
are ties among

entrality-based

or Centrality-b
ons to the Min

the US S

ing Set 
g set (CDS) of
a neighbor of 
minating set (
Meghanathan, 
Meghanathan 
idea behind th
n consideration
d to be cover
in each iterati
long as the cov
ded to the CDS
overed by a no
could be used 
 Traditionally
2006; Meghan

des. In this pap
s graph of 49 v
e of the same m
e same. We ob
vertices respect
s that are part 
at least one no
d Comprehens
g the vertices 

Computer an

d MCDS    

based MCDS 
nimum Connec
States Graph (

f a graph is a 
f a node in the
MCDS) is NP
2014b) availa
(2014b) to de

he MCDS-heur
n to be part o
ed and are co
ion, a covered
vered node has
S. The iteratio
ode in the CDS
to approximat

y, the degree c
nathan, 2014b)
per, we indeed
vertices has on
minimum numb
bserve the EVC
tively). Figure
of the MCDS

de in the MCD
sive Centralit
when ranked 

nd Information S

67 

      (b) Be

         (d
cted Dominatin
(48 Contiguous

 

subset of the 
e CDS (Corme
P-hard (Corme
able in the lit
etermine an a
ristic is to pre
of the CDS; o
onsidered for 
d node with t
s at least one u
ons are continu
S).  
te a MCDS; h
centrality metr
) as a high-deg
d observe the 
nly 17 vertices

mber of vertices
C and ClC-bas
es 11-(a) throug
S are colored 
DS are colored
ty Scores 
with respect t

Science

etweenness Ce

d) Closeness C
ng Set (MCDS
s States and D

vertices such 
en et al., 2009
en et al., 2009)
erature to app

approximate M
efer to include 
once a node is
possible inclu
the largest val

uncovered neig
ued until all n

however, the si
ric has been o
gree node inclu

above asserti
s; we also obs
s (i.e., 17 vertic
sed MCDSs to
gh 11-(d) pres
in green and 

d in yellow). 

to a particular

entrality-based

Centrality-based
) based on Cen
C) 

that every ver
). The problem
) and there are
proximate a M
MCDS with re

nodes with th
s included is t
usion to the C
lue for the no

ghbor node tha
nodes are cove

ize of the MC
observed to re
uded to the CD
ion to be true 
erve the BWC
ces) and the co

o incur a relativ
sent the MCDS
vertices that 

r centrality me

Vol. 10, No. 1;

d MCDS 

d MCDS 
ntrality Metric

rtex in the gra
m of determin
e several heur

MCDS. We us
espect to a ch
he largest valu
to the CDS, a

CDS. The heu
ode-level metr
at is not yet cov
ered (i.e., a no

DS varies wit
eturn CDSs o

DS is more like
as a degree-b

C-MCDS of th
onstituent state
vely larger nu
Ss of the US S
are not part o

etric, we propo

2017 

cs for 

aph is 
ing a 
istics 
e the 
hosen 
ue for 
all its 
uristic 
ric is 
vered 
ode is 

h the 
f the 

ely to 
based 
e US 
es for 
mber 

States 
of the 

ose a 



cis.ccsenet.

 

normalizat
states netw
normalized
metric wh
could iden
compute th
of ranking
could be a
Renyi, 195
 
Table 11. N

Ra
1 
2 
3 
4 
5 
6 
7 
8 
9 
10
11
12
13

 12-(a): N

 12-(b): N

org 

tion-based app
work graph. I
d values are r

hose ranking o
ntify such cent
hese centrality
g the vertices 
applied for any
59; Barabasi &

Normalized Co
ank ID NC

24 0.3
16 0.2
41 0.2
11 0.1
37 0.1
26 0.1
14 0.1
45 0.1
35 0.1

0 3 0.1
 5 0.1

2 40 0.1
3 47 0.1

Node-Level Dis

Node-Level Dis

proach to obta
In addition to
relatively the c
f the vertices 
trality metrics

y metric(s) and
rather than in

y real-world n
& Albert, 1999)

omprehensive 
CC  Rank

3454  14 
2595  15 
2485  16 

900  17 
896  18 
732  19 
721  20 
692  21 
684  22 
681  23 
649  24 
606  25 
578   

stribution and D

stribution and 

Computer an

ain a potentiall
o the above o
closest to the 
matches relati
 with a lower

d consider the r
ndividually co
etwork or synt
).  

Centrality (NC
k ID NCC

34 0.155
12 0.155
31 0.139
49 0.127
15 0.126
30 0.123
27 0.119
43 0.116
19 0.115
10 0.110
13 0.109
2 0.108
  

Distribution of

Distribution o

nd Information S

68 

ly tie-free com
objective, we 

NCC values a
ively closest to
r root mean sq
ranking based 
mputing the v
thetic network

CC)-based Ran
C Rank
56 26 
55 27 
94 28 
72 29 
66 30 
30 31 
97 32 
69 33 
51 34 
07 35 
99 36 
82 37 

 

f the Sorted Va

f the Sorted Va

Science

mprehensive ra
seek to ident
as well as we 
o the ranking 
quare differenc
on these metri
various centra
ks generated fr

nking of Vertic
ID NCC
32 0.1062
42 0.1032
23 0.1027
1 0.0974
22 0.0965
20 0.0884
48 0.0856
17 0.0789
25 0.0731
36 0.0728
33 0.0691
4 0.0682
  

alues for Degr

Values for EVC

anking of the 
tify the centra

intend to ide
based on the N

ce (RMSD) va
ic(s) as a comp
lity metrics. A
rom theoretica

ces in the US S
Rank ID
38 4
39 7
40 2
41 8
42 2
43 2
44 4
45 6
46 3
47 9
48 3
49 1
  

ree and NCC (R

C and NCC (RM

Vol. 10, No. 1;

vertices in th
ality metric w
ntify the centr
NCC values. I
alue, we could
prehensive mea
A similar appr
al models (Erd

States Graph
D NCC 

44 0.0639
7 0.0624
28 0.0608
 0.0601

29 0.0594
21 0.0582
46 0.0576
6 0.0568

9 0.0546
9 0.0527

8 0.0376
8 0.0267

 

RMSD = 0.027

MSD = 0.047)

2017 

e US 
whose 
rality 
If we 
d just 
asure 
roach 

dos & 

 

7)  

 

 



cis.ccsenet.

 

 12-(c): N

 12-(d): N
Figure 1

 
We norma
and comp
normalized
NCC value
part of the
that are u
comprehen
metric as l
the four ce
to the cent
the vertex
vertices co
obtain the 
with respe
ranking w
above four
In Figures
individual 
the four ce
the largest
values to b
Figure 12-
normalized
the norma
above and 

org 

Node-Level Dis

Node-Level Dis
12. Node-Leve

Centrality S

alize the centra
pute a normal
d values of the
es if and only 
e NCC formul
used to compu
nsive centrality
long as the sum
entrality metric
trality metric, w

x. One can obs
ould be done 
top three rank

ect to each of 
with respect to 

r centrality me
s 12-(a) throug
normalized ce

entrality metri
t to the smalle
be lower than 
-d); whereas, w
d betweenness
alized compreh

below the dia

stribution and D

stribution and 
el Distribution 
Scores for the I

ality values for
ized compreh

e centrality me
if the correspo
ation. In this p
ute the NCC 
y score involv
m of the weigh
cs that we use
we propose tha
serve in Table
without any t

king with resp
f the four cent

the NCC sco
etrics.  
gh 12-(d), we
entrality value
ics vis-a-vis th
est). For a maj

that of norma
we observe the
s centrality val
hensive centra

agonal line (see

Computer an

Distribution of

Distribution o
of the Normal

Individual Met

r each of the fo
hensive centra
etrics. There co
onding vertices
paper, we assi
values. In ge

ving any numb
hts is 1.0. Sinc

e to compute th
at the larger th
e 11: the NCC
ties. ThisWe o
ect to NCC. A
trality metrics
ores and this s

e compare the 
es as well as il
he normalized 
ority of the ve

alized degree (
e normalized c
lues (see Figu
ality and the 
e Figure 12-b).

nd Information S

69 

f the Sorted V

f the Sorted V
lized Compreh
trics: (a) Degre

four metrics: de
ality (NCC) o
ould be a tie be
s incur identic
ign equal weig
eneral, this id
ber of centrali
ce larger the v
he NCC), the h
he NCC value f
C values are u
observe the st
At least two of
. We observe 
state also obta

normalized c
llustrate the di
comprehensiv

ertices: we obs
(see Figure 12
comprehensive

ure 12-b). On t
normalized ei
. 

Science

alues for BWC

Values for ClC
hensive Centra
ee, (b) EVC, (c

egree, eigenve
f the vertices
etween two or 
al values for th
ghts (0.25 each
dea could be 
ity metrics an

value for an ind
higher is the ra
for a vertex, th
unique for the
tates of Misso
f these three st

the state of M
ained the botto

comprehensive
stribution of th

ve centrality va
serve the norm

2-a) and closen
e centrality va
the other hand
igenvector cen

C and NCC (R

and NCC (RM
lity Scores and
c) BWC and (d

ector, betweenn
s as a weight

more vertices
he four central
h) for the four
used to comp
d with differe
dividual centra
anking of the v
he higher is the
e vertices and 
uri, Kentucky
tates obtain th
Maine to obta
ommost rankin

e centrality va
he normalized
alue (each sho

malized compr
ness centrality 
alues to be larg
d, we observe 
ntrality to be 

Vol. 10, No. 1;

RMSD = 0.077)

MSD = 0.047)
d the Normaliz
d) ClC 

ness and close
ted average o
 with respect t
lity metrics tha
r centrality me
pute a norma

ent weight for 
ality metric (fo
vertex with re
e overall rankin
the ranking o

y and Tenness
e top three ran

ain the bottom
ng for three o

alues to that o
d values for ea
own in the ord
rehensive centr

metric values
ger than that o
the data point
evenly distrib

2017 

)  

 
 

zed 

ness, 
f the 
to the 
at are 
etrics 
alized 

each 
or all 
spect 
ng of 

of the 
ee to 
nking 

mmost 
of the 

f the 
ch of 

der of 
rality 
s (see 
of the 
ts for 
buted 



cis.ccsenet.

 

Figure 13.
and the 

 
We compu
four centra
observe th
BWC-NCC
combo inc
be the cent
Similar to 
relatively 
plots of th
all the fou
are also m
ranking ob
the lowest
degree cen
of values [
Table 12 
individual 
the actual 
value base
On the oth
vertices an
incurs the 
eigenvecto
normalized
matches to
network gr

org 

13-(a): Degree

13-(c): BW
 Distribution o
Normalized C

uted the root m
ality metrics. T
he degree cen
C combo incu
cur RMSD valu
trality metric w
the approach 

the closest to 
he numerical ra
ur centrality me
more likely to 
btained with N
t RMSD value
ntrality-NCC c
[1...9] for node
summarizes t
centrality sco
scores themse

ed on the norm
her hand, the b
nd the largest 

second larges
or centrality m
d centrality sco
o the normaliz
raph. 

e vs. NCC: RM

WC vs. NCC: 
of the Ranking

Centrality Score

mean squared d
The RMSD va
ntrality-NCC 
ur relatively t
ue of 0.047 ea
whose normali

taken above, 
the ranking o

anking of the v
etrics, we noti
receive a hig

NCC and each 
e of 7.7, close
combo incurred
e degree and th
the RMSD va
res and the no

elves (Figures 
malized centrali
betweenness ce
RMSD value 
st RMSD valu
metric (EVC), 
ores and the ra
zed comprehen

Computer an

MSD = 23.1  

RMSD = 7.7
g of the Vertice
es for the Indiv

difference (RM
alues are show
combo to hav

the largest RM
ach. Thus, for t
ized values are
we identify th

of the vertices 
vertices based 
ce vertices tha

gher rank with
of the four ce

ely followed b
d the largest R
he broader rang
alues obtained
ormalized com
12-a through 1
ity scores and 
entrality metric
based on the n

ue based on th
which incurs

anking of the v
nsive centrality

nd Information S

70 

           

         13
es based on the
vidual Metrics

MSD) between 
wn along with t

ve relatively 
MSD value (0
the US States n
e relatively the
he centrality m
based on NC
on each of the

at were ranked
h respect to N
entrality metric
by the EVC-N
RMSD value o
ge of values [1

d for the rank
mprehensive cen
12-d). The deg
the largest RM
c incurs the lo
normalized cen
he ranking of t
s the second l
vertices, could 
y (NCC) valu

Science

13-(b): EVC 

-(d): ClC vs. N
e Normalized C
s: (a) Degree, (

the NCC valu
the charts in F
the lowest R

0.077). The EV
network graph

e closest to the 
metric whose 

CC. In Figures 
e four centralit
d high (i.e., low
NCC. We comp
cs. We observe

NCC combo (w
f 23.1, primari
1...49] for the N
king of the ve
ntrality scores

gree cenntrality
MSD value bas
owest RMSD v
ntrality scores
the vertices. C
lowest RMSD
be claimed as

ues computed f

vs. NCC: RM

NCC: RMSD =
Comprehensiv
(b) EVC, (c) B

ues and the val
igures 12-(a) t

RMSD value 
VC-NCC com

h, the degree c
NCC values. 
ranking for th
13-(a) throug

ty metrics vis-
wer numerical 
puted the RM
e the BWC-NC

with a RMSD 
ily attributed t
NCC.  
ertices based 
 (Figures 13-a

y metric incurs
sed on the rank
value based on
s. The closenes
Considering al

D value with r
s the centrality 
for the vertice

Vol. 10, No. 1;

SD = 8.1 

= 9.6 
ve Centrality Sc
BWC and (d) C

lues for each o
through 12-(d)
(0.027), while

mbo and ClC-N
entrality appea
 

he vertices ma
gh 13-(d), we 
a-vis the NCC
value for the r

MSD values fo
CC combo to 
value of 8.1).

to the narrow r

on the norma
a through 13-d
s the lowest RM
king of the vert
n the ranking o
ss centrality m
ll of the above
respect to both

metric that clo
es of the US S

2017 

 

 

cores 
ClC 

of the 
). We 
e the 
NCC 
ars to 

tches 
show 

C. For 
rank) 

or the 
incur 
. The 
range 

alized 
) and 
MSD 
tices. 

of the 
metric 
e, the 
h the 
osely 

States 



cis.ccsenet.org Computer and Information Science Vol. 10, No. 1; 2017 

71 
 

Table 12. Root Mean Square Difference (RMSD) Values obtained for the Node-Level Distribution of the 
Normalized Centrality Scores and the Ranking of the Vertices based on the Normalized Scores vis-a-vis the 
Normalized Comprehensive Centrality (NCC) Scores 
Centrality Metric-NCC 
Combo 

Node-Level Distribution of the 
Normalized Values  

Ranking of the Vertices based on the 
Normalized Values 

Degree-NCC 0.027 23.1 
Eigenvector-NCC 0.047 8.1 
Betweenness-NCC 0.077 7.7 
Closeness-NCC 0.047 9.6 
 
5. Configuration Model-Based Analysis 
Given the degree sequence of a real-world network, the Configuration model could be used to generate a random 
network whose degree sequence is also the same as that of the real-world network (i.e., the random network 
could even have a non-Poisson degree distribution if the corresponding real-world network has one; 
Meghanathan, 2016c). In this paper, we use the Configuration model to study whether the degree sequence of the 
US States network graph (a real-world network) would be sufficient to generate a random network whose 
node-level metrics and network-level metrics exhibit strong correlation or proximity with the values incurred for 
these metrics in the corresponding real-world network.  
Let N and L be respectively the number of nodes and edges in the chosen real-world network of study (like the 
US States network graph). Given the degree sequence (D) for the chosen real-world network, we simulate the 
generation of a random network per the configuration model as follows: We create a list LD (of length 
corresponding to the sum of the node degrees): the list is initialized with node IDs and the number of instances a 
node ID appears in the list corresponds to the degree of the node in D. The list LD is shuffled. We then proceed 
in iterations (to generate the random network), traversing the list LD in the reverse direction (i.e., with index j 
from |LD| to 2). In each iteration: we generate an edge (for the random network) involving the vertex at index j 
in the list LD to a vertex at a randomly chosen index i (i < j) when the following conditions are met: (i) the two 
entries are not -1, (ii) the two vertices are not the same (to avoid self-loop) and (iii) there does not exist already 
an edge involving the two vertices in the random network. The entries at both the indexes i and j are then set to 
-1.  
 
Table 13. Correlation of the Node-Level Metrics for the US States Network Graph and its 100 Instances of 
Random Networks (with the same Degree Sequence) Generated using the Configuration Model 

Node-Level Metric Correlation Coefficient Value Level of Correlation 
Degree Centrality 0.99 Very Strongly Positive 
Closeness Centrality 0.99 Very Strongly Positive 
Eigenvector Centrality 0.76 Strongly Positive 
Betweenness Centrality 0.72 Strongly Positive 
Eccentricity 0.48 Moderately Positive 
Maximal Clique Size 0.38 Weakly Positive 
Local Clustering Coefficient 0.33 Weakly Positive 

 
Table 14. Correlation of the Node-Level Metrics for the US States Network Graph and its 100 Instances of 
Random Networks (with the same Degree Sequence) Generated using the Configuration Model 

Network-Level Metric Real-World Network 
(US States Network Graph)

Random Network  
(Configuration Model) 

Average Path Length 3.93 2.61
Diameter 10.00 5.28
Bipartivity Index 0.66 0.85
Algebraic Connectivity 0.097 0.645
Spectral Radius 1.24 1.19
Modularity Score 0.58 0.88
Edge Assortativity (Degree) 0.23 0.23
Edge Assortativity (EVC) 0.63 0.17
Edge Assortativity (BWC) 0.23 0.16
Edge Assortativity (ClC) 0.65 0.18
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We generate 100 instances of random networks for the US States network graph according to the Configuration 
model and measure the following node-level metrics: (i) Degree Centrality, (ii) Eigenvector Centrality, (iii) 
Betweenness Centrality, (iv) Closeness Centrality, (v) Maximal Clique Size, (vi) Local Clustering Coefficient 
and (vii) Eccentricity; and network-level metrics: (i) Assortativity Index of the edges based on each of the four 
centrality metrics, (ii) Spectral Radius Ratio for Node Degree, (iii) Average Path Length, (iv) Diameter, (v) 
Bipartivity Index, (vi) Algebraic Connectivity and (vii) Modularity score determined using the Louvain 
algorithm. In the case of the node-level metrics, we measured the Pearson's product-moment correlation 
coefficient (Triola, 2012) between the values incurred for the nodes in each of the 100 instances of the random 
networks and the actual real-world network and averaged the correlation coefficient values (shown in Table 13 in 
the decreasing order of the correlation coefficient values).  
We adapt the range of correlation coefficient values (rounded to two decimals) proposed in the literature (Evans, 
1995) to decide on the level of correlation. We observe a very strong positive correlation (range: 0.80...1.00) in 
the case of the degree centrality (as expected) and closeness centrality metrics, and a strongly positive correlation 
(range: 0.60...0.79) in the case of the eigenvector centrality and betweenness centrality metrics. On the other 
hand, we observe a moderately positive correlation (range: 0.40...0.59) in the case of eccentricity, and a weakly 
positive correlation (range: 0.20...0.39) in the case of maximal clique size and local clustering coefficient.  
For each network-level metric, we averaged the results obtained with the 100 instances of the random networks 
and compared this average value with the value incurred for the actual US States network graph (shown in Table 
14). For none of the network-level metrics (other than degree-based edge assortativity and spectral radius ratio 
for node degree), we observe the average values obtained for the random networks generated using the 
configuration model to be closer to the values obtained for the actual US States network graph. We observe the 
random network instances to be relatively more bipartite, more robust to disconnection and more modular. We 
also observe the random network instances to have a relatively smaller diameter and a smaller average path 
length between any two nodes. As expected of a random network, we also observe the edges to be very weakly 
assortative with respect to all the four centrality metrics for the random networks generated using the 
configuration model; on the other hand, we observe the edges to be strongly assortative with respect to the 
eigenvector and closeness centrality metrics for the actual US States network graph. 
Thus, based on the results obtained for the node-level metrics, we could conclude that the degree sequence of the 
US States network graph would be sufficient to generate random network instances that exhibit strong-very 
strong positive levels of correlation with respect to all the four centrality metrics. On the other hand, with respect 
to the other node-level metrics (like Eccentricity, Maximal Clique Size and Local Clustering Coefficient) as well 
as for all the network-level metrics (other than Degree centrality and Spectral radius ratio for node degree), we 
could conclude that the degree sequence of the US States network graph would alone not be sufficient to 
generate random network instances that exhibit comparable values for these metrics. 
6. Related Work 
Very few works have been conducted on network graphs related to the US. We review these works below: 
Fogarty et al. (2008) conducted a network analysis-based study on the hurricanes that made landfalls in the US 
from 1851 to 2008. A set of 23 non-overlapping regions (nodes) of the US that were affected with at least one 
hurricane were identified; two nodes were linked with an edge if at least one hurricane impacted the regions 
corresponding to both of them. One of the interesting conclusions from this study was that regions (like 
Louisiana) with a high occurrence rate of hurricanes had a low connectivity with the rest of the regions; on the 
other hand, regions with high connectivity (like Virginia) had a low occurrence rate. Several similarities have 
been observed between the hurricane landfall network by Fogarty et al (2008) and the US states network graph 
studied in this paper. For both the networks, the betweenness centrality metric exhibited a power-law distribution 
and the closeness centrality metric exhibited a uniform distribution with narrow range of values. While the 
average local clustering coefficient of the nodes in the landfall network was 0.46, the average local clustering 
coefficient of the nodes in the US states network graph is slightly larger (0.52). The diameter values for the 
network graphs are proportional: we observe a diameter of 10 for the US states network graph of 49 nodes and a 
diameter of 5 for the landfall network of 23 nodes. However, the two networks differ with respect to the degree 
centrality metric: we observe a clear bi-modal degree distribution for the US states network graph and no such 
distinct distribution could be attributed for the degree centrality metric in the landfall network. Though the 
hurricane landfall network and the US States network shared several similarities (as mentioned above), it must 
be remembered that the hurricane landfall network was constructed by cumulatively considering the landfall of 
hurricanes over a longer period of time (for about 150 years). We anticipate the results for the node-level and 
network-level metrics to appreciably differ for the two networks if the landfall network is constructed for a 
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particular year or over a shorter time period.  
Lin et al. (2014) conducted a network analysis of food flows within the US and had the following results: The 
distributions for the degree centrality and betweenness centrality were observed to be normal and Weibull 
(Balakrishnan, & Nevzorov, 2003) in nature. A power-law relationship (Balakrishnan, & Nevzorov, 2003) 
existed between the degree centrality and betweenness centrality metrics, indicating a vulnerability to the 
disturbance of key nodes. On the other hand, we did not observe a power-law relationship between degree and 
betweenness centrality for the US States network graph; even vertices with moderate-high degree had a low 
betweenness centrality. Lyte et al. (2015) conducted a citation network-based analysis of the different sections 
that fall under the 52 titles of United States Code; each section is a node and there exists a directed edge from 
one section to another section if the former cites the latter. The betweenness and eigenvector centrality metrics 
were used in this study to identify major pathways of references from one section to another. The 
modularity-based Louvain community detection algorithm (Blondel et al., 2008) was used to identify 
communities of sections that had similarities with respect to concepts and codes. It was observed that though 
sections under two or more related titles formed a single community, most of the communities detected were a 
collection of sections under a particular title. For the US States network graph, the communities detected using 
the Louvain algorithm were similar to the regional divisions used by the United States Census Bureau. 
Cheung and Gunes (2012) conducted a complex network analysis study of the US air transportation network as 
of 2011 and compared it with the networks that existed in 1991 and 2001. Their study revealed no major changes 
in the features (like centrality and connectivity of the airports) of the air transportation networks that evolved 
with time (with increase in the number of airports and flight connections). A critical finding from the study was 
that the US air transportation network of 2011 has been identified to be more vulnerable to airport closures than 
it was in the past. The degree distribution of the 2011 US air transportation network only follows a partial 
Power-law (i.e., the distribution exhibited Power-law only after a degree value > 1), unlike the world-wide air 
transportation network that follows Power-law starting from degree value of 1 (Guimera, 2005). Random 
network instances (generated using the configuration model) of the US States network graph exhibited strong 
positive correlation with respect to the centrality metrics, but were observed to be relatively more bipartite, 
modular and robust to disconnection.  
7. Summary and Conclusions 
Our high-level contribution in this paper is to illustrate complex network analysis of a connected graph of the 
states within a country at node-level and network-level as well as propose a normalization-based approach to 
comprehensively rank the vertices (more likely to be tie-free) in a network graph based on the centrality metrics. 
We implemented the algorithms to compute a suite of node-level and network-level metrics and ran them on the 
US States network graph. We summarize the results and key observations as follows: (i) The state of Missouri is 
the top-ranked node with respect to all the commonly studied centrality metrics such as degree, betweeenness, 
closeness and eigenvector centralities. This is vindicated with several airlines (like American Airlines, Southwest 
Airlines, etc) choosing the city of Missouri as one of their primary hubs over the past two decades. (ii) The 
degree distribution appears to mimic a bi-modal Poisson distribution, while the betweenness centrality (BWC) 
exhibits a Power-law style distribution. (iii) There exists a maximum clique of size 4 involving the states of 
Arizona, Colorado, New Mexico and Utah; the rest of the states (except Maine) are part of maximal cliques of 
size 3. (iv) The state of Idaho has the lowest non-zero local clustering coefficient, indicating that the state is the 
most critical state with respect to facilitating communication between its neighboring states. (v) The radius, 
diameter and average path length are 5, 10 and 3.94 respectively. The states of Ohio and West Virginia form the 
"center" of the graph with an eccentricity corresponding to the radius of the graph (these states are at most 5 
hops away from any other state in the graph). The states of Arizona, California, Maine, Montana and North 
Dakota have an eccentricity corresponding to the diameter of the graph (these states could be as large as 10 hops 
away to one or more states in the graph). More than 65% of the vertices have an eccentricity of 8 or above. (vi) 
The bipartivity index of the graph is 0.66 with 32% frustrated edges. (vii) The algebraic connectivity of the 
network graph is 0.0973 (indicating low robustness) and the spectral radius ratio for node degree is 1.24 
(moderately high for a Poisson network, vindicating the bi-modal degree distribution of the vertices). (viii) The 
modularity score of the graph is 0.58 with a total of six non-overlapping communities of states, closely 
resembling the regional classification of the states. (ix) The network has been observed to be relatively more 
assortative with respect to eigenvector and closeness centralities; whereas the degree-based and BWC-based 
approximations to the minimum connected dominating sets are of the smallest size. (x) The Configuration 
model-based study of the US States network graph indicated that the degree sequence alone was sufficient to 
generate random network instances that exhibited strong-very strong levels of positive correlation for the 
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centrality metrics, but the degree sequence was not sufficient to observe such a strong correlation for the other 
node-level metrics and comparable values for the network-level metrics. The random network instances of the 
US States network graph were observed to be relatively more robust to network disconnection, more bipartite 
and more modular. Thus, even though it might look like some states may have a common border by chance 
(especially, if the common border is over a smaller area), the above results (especially those from assortativity 
analysis and the configuration model-based study) indicate that the network of US states is very much different 
from a random network.  
We have also proposed a normalization-based approach to arrive at a (possibly tie-free) ranking of the vertices 
based on their comprehensive centrality scores determined as a weighted average of the normalized scores of the 
individual centrality metrics. We also show how to identify the centrality metric whose normalized 
individualized scores and ranking of the vertices is relatively the closest to the normalized comprehensive 
centrality (NCC) scores and the ranking of the vertices based on the NCC scores. Considering the results plotted 
in Figures 12-(a) through 12-(d) and Figures 13-(a) through 13-(d), it appears that the Eigenvector Centrality 
metric (that consistently incurs the second smallest RMSD values with respect to both the normalized centrality 
scores and the numerical ranking of the vertices) could be relatively the best metric that could be used to obtain a 
comprehensive centrality-based ranking of the vertices in the US States network graph. A similar approach could 
be used to identify a centrality metric that could be considered the candidate metric to claim a comprehensive 
centrality-based ranking of the vertices in other real-world network graphs and synthetic graphs generated from 
theoretical models. 
To the best of our knowledge, we have not come across a paper that comprehensively analyzes a suite of 
node-level and network-level metrics for any real-world network and one especially based on the states within a 
country. The approach taken and the metrics evaluated in this paper could have several applications: For example, 
we could identify the states that are most the central states as well as identify the states that could form a 
connected backbone and geographically well-connected to the rest of the states within a country and use this 
information to design the road/rail transportation networks; we could identify the states that could be clustered to 
a particular geographical region within a country and use this information for region-based analysis and etc. For 
countries with a reasonably larger area and an appreciable number of states, each state (except those in the 
corners of the country) typically shares border with a similar number of states. Hence, we anticipate the 
distribution of values for the node-level metrics to be about the same for several other countries too. We thus 
opine the paper to serve as a model for anyone interested in analyzing a connected graph of the states within a 
country from a Network Science perspective.  
Acknowledgments 
The research is financed by the NASA EPSCoR sub award (#: NNX14AN38A) from University of Mississippi. 
References 
Balakrishnan, N., & Nevzorov, V. B. (2003). A Premier on Statistical Distributions. (1st ed.) Wiley-Interscience. 
Balanda, K. P., & MacGillivray, H. L. (1998). Kurtosis: A Critical Review. The American Statistician, 42(2), 

111-119. http://dx.doi.org/10.2307/2684482. 
Barabasi, A. L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. 

http://dx.doi.org/10.1126/science.286.5439.509. 
Benson, S. J. (2008). Explorer's Guide The Four Corners Region: Where Colorado, Utah, Arizona & New 

Mexico Meet: A Great Destination. (1st ed.) Countryman Press. 
Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast Unfolding of Communities in Large 

Networks. Journal of Statistical Mechanics: Theory and Experiment, P10008, 1-11. 
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008. 

Brandes, U. (2001). A Faster Algorithm for Betweenness Centrality. The Journal of Mathematical Sociology, 
25(2), 163-177. http://dx.doi.org/10.1080/0022250X.2001.9990249. 

Cherven, K. (2015). Mastering Gephi Network Visualization. (1st ed.) Packt Publishing. 
Cheung, D. P., & Gunes, M. H. (2012). A Complex Network Analysis of the United States Air Transportation. 

Paper presented at the IEEE/ACM International Conference on Advances in Social Networks Analysis and 
Mining, Istanbul, Turkey. http://dx.doi.org/10.1109/ASONAM.2012.116. 

Chung, L. L. F. (2006). Complex Graphs and Networks. (1st ed.) American Mathematical Society.  



cis.ccsenet.org Computer and Information Science Vol. 10, No. 1; 2017 

75 
 

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms. (3rd ed.) MIT 
Press.  

Daniel, W. W. (2000). Applied Nonparametric Statistics. (2nd ed.) Cengage Learning.  
Ding, Y. (2011). Scientific Collaboration and Endorsement: Network Analysis of Coauthorship and Citation 

Networks. Journal of Informetrics, 5(1), 187-203. http://dx.doi.org/10.1016/j.joi.2010.10.008. 
Erdos, P., & Renyi, A. (1959). On Random Graphs I. Publicationes Mathematicae, 6, 290-297.  
Estrada, E., & Rodriguez-Velazquez, J. A. (2005). Spectral Measures of Bipartivity in Complex Networks. 

Physical Review E, 72(4), 046105. https://doi.org/10.1103/PhysRevE.72.046105. 
Evans, J. D. (1995). Straightforward Statistics for the Behavioral Sciences. (1st ed.) Brooks Cole Publishing 

Company. 
Fiedler, M. (1973). Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal, 23(2), 298-305. 
Fogarty, E. A., Elsner, J. B., Jagger, T. H., & Tsonis, A. A. (2008). Network Analysis of U. S. Hurricanes. 

Springer Hurricanes and Climate Change, 153-167. http://dx.doi.org/10.1007/978-0-387-09410-6_9. 
Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph Drawing by Force-Directed Placement. Software - 

Practice & Experience, 21(11), 1129-1164. 
Ghali, N., Panda, M., Hassanien, A. E., Abraham, A., & Snasel, V. (2012). Social Network Analysis: Tools, 

Measures and Visualization. Computational Social Networks, 3-23. 
http://dx.doi.org/10.1007/978-1-4471-4054-2_1. 

Girvan, M., & Newman, M. E. J. (2002). Community Structure in Social and Biological Networks. Proceedings 
of the National Academy of Sciences of the United States of America, 19(12), 7821-7826. 
http://dx.doi.org/10.1073/pnas.122653799. 

Guha. S., & Khuller, S. (1998). Approximation Algorithms for Connected Dominating Sets. Algorithmica, 20(4), 
374-387. http://dx.doi.org/10.1007/PL00009201. 

Guimera, R., Mossa, S., Turtschi, A., & Amaral, L. A. N. (2005). The World-Wide Air Transportation Network: 
Anomalous Centrality, Community Structure, and Cities’ Global Roles. Proceedings of the National 
Academy of Sciences, 102(22), 7794-7799. http://dx.doi.org/10.1073/pnas.0407994102. 

Lay, D. C., Lay, S. R., & McDonald, J. J. (2015). Linear Algebra and its Applications. (5th Ed.) Pearson. 
Lin, X., Dang, Q., & Konar, M. (2014). A Network Analysis of Food Flows within the United States of America. 

Environmental Science & Technology, 48(10), 5439-5447. http://dx.doi.org/10.1021/es500471d. 
Lyte, A., Slater, D., & Michel, S. (2015). Network Measures of the United States Code. Technical Report, 

MITRE.  
Ma, X., & Gao, L. (2012). Biological Network Analysis: Insights into Structure and Functions. Briefings in 

Functional Genomics, 11(6), 434-442, November 2012. https://doi.org/10.1093/bfgp/els045. 
Meghanathan, N. (2014a). Spectral Radius as a Measure of Variation in Node Degree for Complex Network 

Graphs. Paper presented at the 3rd International Conference on Digital Contents and Applications, Hainan, 
China. http://dx.doi.org/10.1109/UNESST.2014.8. 

Meghanathan, N. (2014b). Centrality-based Connected Dominating Sets for Complex Network Graphs. 
International Journal of Interdisciplinary Telecommunications and Networking, 6(2), 1-19. 
http://dx.doi.org/10.4018/ijitn.2014040101. 

Meghanathan, N. (2015a). Exploiting the Discriminating Power of the Eigenvector Centrality Measure to Detect 
Graph Isomorphism. International Journal in Foundations of Computer Science and Technology, 5(6), 1-13. 
http://dx.doi.org/10.5121/ijfcst.2015.5601. 

Meghanathan, N. (2015b). Distribution of Maximal Clique Size of the Vertices for Theoretical Small-World 
Networks and Real-World Networks. International Journal of Computer Networks and Communications, 
7(4), 21-41. http://dx.doi.org/10.5121/ijcnc.2015.7402. 

Meghanathan, N. (2016a). Maximal Assortative Matching for Complex Network Graphs. Journal of King Saud 
University: Computer and Information Sciences, 28(2), 230-246. 
http://dx.doi.org/10.1016/j.jksuci.2015.10.004. 

Meghanathan, N. (2016b). On the Conduciveness of Random Network Graphs for Maximal Assortative or 



cis.ccsenet.org Computer and Information Science Vol. 10, No. 1; 2017 

76 
 

Maximal Dissortative Matching. Computer and Information Science, 9(1), 21-30. 
http://dx.doi.org/10.5539/cis.v9n1p21. 

Meghanathan, N. (2016c). On the Sufficiency of using the Degree Sequence of the Vertices to Generate Random 
Networks Corresponding to Real-World Networks. Polibits: Research Journal on Computer Science and 
Computer Engineering with Applications, 53(1), 5-21. http://dx.doi.org/10.17562/PB-53-1. 

Newman, M. (2006). Modularity and Community Structure in Networks. Proceedings of the National Academy 
of Sciences, 103(23), 8577-8582. http://dx.doi.org/10.1073/pnas.0601602103. 

Newman, M. (2010). Networks: An Introduction. (1st ed.) Oxford University Press.  
Pattabiraman, B., Patwary, M. A., Gebremedhin, A. H., Liao, W-K., & Choudhary, A. (2013). Fast Problems for 

the Maximum Clique Problem on Massive sparse Graphs. Paper presented at the 10th International 
Workshop on Algorithms and Models for the Web Graph, Cambridge, MA, USA. 
http://dx.doi.org/10.1007/978-3-319-03536-9_13. 

Triola, M. F. (2012). Elementary Statistics. (12th ed.) Pearson. 
Zhao, D., & Strotmann, A. (2015). Analysis and Visualization of Citation Networks. (1st ed.) Morgan & Claypool 

Publishers. 
 
Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/4.0/). 


