
Computer and Information Science; Vol. 10, No. 2; 2017
ISSN 1913-8989 E-ISSN 1913-8997

Published by Canadian Center of Science and Education

Type Safe Metadata Combining
Mikus Vanags1,2 & Rudite Ceveree2

1 sia Logics Research Centre, Riga, Latvia
2 Latvia University of Agriculture, Jelgava, Latvia
Correspondence: Mikus Vanags, sia Logics Research Centre, Sterstu street 7-6, Riga, Latvia, LV 1004. Tel:
371-2667-3860. E-mail: mikus.vanags@logicsresearchcentre.com

Received: October 11, 2016 Accepted: January 21, 2017 Online Published: April 30, 2017
doi:10.5539/cis.v10n2p97 URL: http://doi.org/10.5539/cis.v10n2p97

Abstract
Type safety is an important property of any type system. Modern programming languages support different
mechanisms to work in type safe manner, e.g., properties, methods, events, attributes (annotations) and other
structures. Some programming languages allow access to metadata: type information, type member information
and information about applied attributes. But none of the existing mainstream programming languages which
support reflection provides fully type safe metadata combining mechanism built in the programming language.
Combining of metadata means a class member metadata combining with data, type metadata and constraints.
Existing solutions provide no or limited type safe metadata combining mechanism; they are complex and
processed at runtime, which by definition is not built-in type-safe metadata combining. Problem can be solved
by introducing syntax and methods for type safe metadata combining so that, metadata could be processed at
compile time in a fully type safe way. Common metadata combining use cases are data abstraction layer creation
and database querying.
Keywords: programming language syntax, type safety, metadata combining, reflection
1. Introduction
The most obvious benefit of static type checking is that it allows early detection of some programming errors.
Errors that are detected early can be fixed immediately, rather than lurking in the code to be discovered much
later, when the programmer is in the middle of something else or even after the program has been deployed.
Most of modern object oriented programming languages are strongly typed and many of them support reflection
– mechanism to access metadata.
The following C# example demonstrates reflection (Hazzard & Bock, 2012) usage in getting metadata
information about the field:

public class Person {
 public string FullName;
 ...
}
//Accessing type metadata:
Type personType = typeof (Person);
//Accessing instance field metadata using reflection in type unsafe way:
FieldInfo instanceMemberMetadata = personType.GetField("FullName");

Reflection is not type safe way to work with metadata, because a lot of configuration is done using strings
instead of programming language constructions: types, fields, properties, methods, etc...
Programming language C# 6.0 supports operator ‘nameof’ (J. Albahari & B. Albahari, 2015) which returns
construction metadata as string object. There are 2 fundamental problems with operator ‘nameof’:
It does not accept generic parameters constraining the accepting parameters and returning value types. Therefore,
it does not fully provide a type safe way to work with metadata.

97

cis.ccsenet.org Computer and Information Science Vol. 10, No. 2; 2017

It returns only type name which is a small part of the available metadata that could be returned.
Both of mentioned problems have a common cause: operator ‘nameof’ returning type is ‘string’ instead of some
specialized metadata class.
Object oriented programming languages which supports reflection, can be extended to support type safe
metadata access using operator ‘memberof’ (Vanags at. al., 2013) which is an improved version of operator
‘nameof’:
//Accessing static field metadata using operator ‘memberof’ in type safe way:
FieldInfo<Person, string> memberMetadata = memberof(somebody.FullName);
To achieve a more concise syntax, the metadata accessing operator ‘memberof’ can be renamed to “meta”. Then,
metadata accessing example could look as follows:
//Accessing static field metadata using operator ‘meta’ in type safe way:
FieldInfo<Person, string> memberMetadata = meta(somebody.FullName);
In addition to type safe metadata access, sometimes programmers need to organize metadata in some predefined
way or combine metadata with data. For example, to store data in some relational database, it is needed to know
a table name and the column names (in object oriented world they could be mapped to some class fields) and
values. Thinking more generally, it would be useful to introduce property-value (key-value) abstraction which
could contain necessary data to recognize table column (for relational database (James et.al., 2009)) or
constructions used in NoSQL data stores (Harrison, 2015). Such property-value abstraction can be called
property-constraint (Vanags at. al., 2013).
Going further, in relational databases data is stored in tables, thus querying result would be set of rows. Similarly
in NoSQL data stores, data (key-value pairs) are stored in a structured way. For example, in objects, groups, and
so on… Consequently, the general abstraction for querying data from some data source could be object set (the
same as row set) abstraction which is called meta-set (Vanags at. al., 2013).

Figure 1. Meta-set physical structure represented in UML class diagram

Meta-sets can be used to support data querying. Ability to define meta-sets in general purpose programming
languages means bringing abstract data querying language integration in general purpose programming
languages. The aim of this paper is to cover data and metadata combining abstractions and to define them in type
safe manner.
2. Metadata and Data Organization in Abstractions
Working with data requires information about data structure – metadata (NISO, 2010). Querying data from some
data store requires not only metadata, but also constraint values (James et.al., 2009). Therefore, data querying
combines metadata with data.
2.1 Property-Constraint Abstraction
Working with relational databases requires knowledge about needed tables and column names. Working with
object data stores requires knowledge about types (classes) and class fields. Similar requirements exist for
manipulations of other kind of NoSQL data. Thus, indivisible data element in data store querying should be a
property-value (key-value) abstraction which is called “property-constraint”. In case of relational databases, the
property part should point to appropriate column and the value part should constrain returning values from that
column, but in case of NoSQL databases, property part should point to appropriate keys (in object database it

98

cis.ccsenet.org Computer and Information Science Vol. 10, No. 2; 2017

would be appropriate class fields) and value part should constrain the value range which are expected in result.
Class member metadata can be interpreted as property part in the property-constraint data structure. For example,
in .NET Framework, such class member metadata type is MemberInfo class. To form property-constraint
instances in more concise way, the frameworks should support relational operators <,>,<>,==, != overriding in
class member metadata type. Such relational operators as input can accept metadata instance (MemberInfo) and
some value of corresponding type. Result of such relational operator is property-constraint instance. Here are
some proposed signatures for operator overloading and new method introduction:

//C#
public partial class MemberInfo<TContainer, TMember> {
 public static PropertyConstraint operator ==
 (MemberInfo<TContainer, TMember> property, TMember value) {
 if (property != null) {
 return new PropertyConstraint(property.Name, value);
 }
 return null;
 }
 public static PropertyConstraint operator !=
 (MemberInfo<TContainer, TMember> property, TMember value) {...}
 public static PropertyConstraint operator >
 (MemberInfo<TContainer, TMember> property, TMember value) {...}
 public static PropertyConstraint operator <
 (MemberInfo<TContainer, TMember> property, TMember value) {...}
 public static PropertyConstraint operator >=
 (MemberInfo<TContainer, TMember> property, TMember value) {...}
 public static PropertyConstraint operator <=
 (MemberInfo<TContainer, TMember> property, TMember value) {...}

 public PropertyConstraint Contains(TMember value) {...}
}
Having improved member metadata type, the type safe way to define the property-constraint structure is as
follows:
MemberInfo<Person, int> ageProperty = meta(Person.Age);
PropertyConstraint youngerThan30 = ageProperty < 30;
Property-constraint can be defined in one line and it can take advantage of implicitly typed local variable ‘var’ as
demonstrated in the following example:
var youngerThan30 = meta(Person.Age) < 30;
2.2 Meta-Sets Abstraction
Combining together one or more property-constraints with metadata - basic information about data structures
(table name for relational databases, type name for object databases, etc.) leads to new abstraction definition –
data query abstraction called “meta-set”. Meta-set is an object set abstraction – it describes a set of data records
(rows, objects, etc., depending on data store architecture). Meta-set does not contain real objects, but it contains
all necessary information to generate query to data store. Therefore, meta-set can be interpreted also as data
query abstraction.
Meta-set physical structure (Vanags at. al., 2013) is used as basis for type safe meta-set declaration syntax:

99

cis.ccsenet.org Computer and Information Science Vol. 10, No. 2; 2017

var metaSetVariable = metaset
 [Type1 Selector1, Selector2,..., Type2 Selector3, Selector4,...]
 [not TypeNot1, TypeNot2...]
 [where constr1, constr2...]
 [where not constrNot1, constrNot2...]
 [different metaDifferent1, metaDifferent2...]
 [intersect metaIntersect1, metaIntersect2...]
 [equal metaEqual1, metaEqual2...]
 [subset metaSubset1, metaSubset2...]
 [isSubsetOf metaIsSubsetOf1, metaIsSubsetOf2...]
 [notEqual metaNotEqual1, metaNotEqual2...]
 [notSubset metaSubset1, metaSubset2...]
 [isNotSubsetOf metaNotSubsetOf1, metaNotSubsetOf2...]
Content included in square parenthesis are optional.
2.3 Type-Constraints
In defining meta-set, type constraints can be specified first, then, field selectors (optional part). In case of
relational databases, type-constraints point to specified table. In case of object database, type-constraints
constrain object type. Type constraints can be declared in 2 different lists:

1) Type constraints without applied operator NOT:
var metaCats = metaset Cat;

2) Meta-set ‘metaCats’ points to the set consisting of all the Cats.
Type constraints with applied operator NOT – are declared after keyword ‘not’:
var metaAnimalNotDogCat = metaset Animal not Dog, Cat;

Meta-set ‘metaAnimalNotDogCat’ points to set of all Animals who are not Dogs and not Cats. In object oriented
world, it means instances of all class Animal subclasses which are not Dog and not Cat.
Type constraints list should contain types which are expected types of resulting object set. Type constraints can
also contain interfaces.
2.4 Property-Constraints
Property-constraints specify value range limitation for the properties. In defining the meta-set, the
“property-constraints” should be listed after keyword “where”. Metaset defining the female persons younger
than 33 years can be defined as follows:
var metaYoungFemalePersons = metaset Person
 where Age < 33, Sex == Gender.Female;
Relational database query generated from meta-set instance ‘metaYoungFemalePersons’ will be as follows:
SELECT * FROM Persons WHERE Age < 33 AND Gender = 'female'
Meta-set ‘metaYoungFemalePersons’ construction can be explained by defining property-constraints using
operator ‘meta’ as follows:
var metaYoungPersons = MetaSet of Person
where meta(Person.Age) < 33,
 meta(Person.Sex) == Gender.Female;
This is not a type-safe meta-set declaration example, because it allows declaring property constraints using types
that may not be contained in type-constraints list. But it is good for explaining how meta-sets are constructed. In
this example, type Person is used 3 times and all 3 times meaning is the same, because we are accessing
members of the same type. Therefore, meta-set definition syntax allows property-constraint declaration omitting
type information. In such cases, type information will be kept only in type constraints list.

100

cis.ccsenet.org Computer and Information Science Vol. 10, No. 2; 2017

Type constraint list can contain more than one type constraint. If property-constraint definition is unambiguous
then type name in the property-constraint definitions still can be omitted as demonstrated in the following
example:
var ievasWithBigSalaries = MetaSet of IPerson, IEmployee
 where Name=="Ieva", Salary > 500;
Previous example is equivalent to the following type-unsafe example:
var ievasWithBigSalaries = MetaSet of IPerson, IEmployee
 where meta(IPerson.Name) =="Ieva",
 meta(IEmployee.Salary) > 500;
Property-constraints with applied logical NOT operator follows operator “wherenot”. Following example
demonstrates usage of “wherenot” operator:
var catFemaleNot6YearsOld = MetaSet of Dog
 where Sex == Gender.Female
 where not Age == 6;
2.5 Set-Constraints
Operators: different, intersect, equal, subset, isSubsetOf, notEqual, notSubset and isNotSubsetOf are
set-constraints that allows to define relations with other meta-sets. Example of set-constraint ‘different’ usage is
shown in the following example:
var metaYoungCatsDifferentThanBlackCats = metaset Cat where Age < 2
 different metaset Cat where Color == Colors.Black;
When meta-set containing set-constraints will be processed, it will involve set-operations. Equivalent SQL query
is following:
SELECT * FROM Cats WHERE Age < 2
EXCEPT
SELECT * FROM Cats WHERE Color = Colors.Black;
The same result can be achieved using property-constraints:
var metaYoungCatsDifferentThanBlackCats = metaset Cat where Age < 2, Color != Colors.Black;
Set-constraint ‘different’ will expect that the intersection of the meta-set declared before operator ‘different’ with
the meta-set(s) declared immediately after operator ’different’, is empty set. If the intersection is not empty set,
then from the first meta-set will be extracted all meta-sets following immediately after operator ‘different’.
Relationships of object sets are always defined between two sets represented by meta-sets: the first is meta-set
containing object set constraints list (context meta-set) and the second is meta-set used as an object set constraint.
In cases where it is necessary to define relationships between more than two meta-sets, it is possible to add more
object set constraints.
SetsRelationship can be one of 8 supported meta-set relationship forms: Different, Intersect, Equal, NotEqual,
Subset1, NotSubset1, Subset2, NotSubset2 (Vanags at. al., 2013).
Another way on how to add meta-set constraints is by using Meta-Set instance methods as demonstrated in
following example:
var metaYoungCats = metaset Cat where Age < 2;
var metaBlackCats = metaset Cat where Color == Colors.Black;
var metaYoungCatsDifferentThanBlackCats = metaYoungCats.Different(metaBlackCats);
2.6 Selector Support
Efficient querries do not request data which will not be used in the software. Selectors are the way how to
specify which columns data should be loaded.
The example of selector usage is following:

101

cis.ccsenet.org Computer and Information Science Vol. 10, No. 2; 2017

var youngCat = metaset Cat {Name, Age}
 where Age < 2
In static object oriented languages, the selector can be described as one of 2 options:

a) When working with types specified in type-constraints, but from database loading only fields specified
in selector declaration. If selector is not specified, then loading all data.

b) When automatic type generation with subset of properties specified in selector. Using the complex
property-constraint there might be difficulties to compare seemingly equal types with different
selectors.

Responsibility to handle type generations should be on ORM side and not on querying language side. Option (a)
is the simplest way to implement. Option (b) needs more research to understand how to implement it better. One
solution could be multiple class inheritance, but many of modern mainstream programming languages do not
allow multiple class inheritance.
3. Advanced Examples
Comparison operators cannot represent aggregation functions or value containment check. MemberInfo instance
level methods can be used to represent value containment check and aggregation functions. Metadata declaration
using value containment check in type safe way is demonstrated in the following example, and support for
aggregation functions can be added similarly:
var metaPersonsWhoLikeNumber6 = metaset Person
 where FovouriteNumbers.Contains(6);
The same can be expressed in more verbose, but type-unsafe way as follows:
var metaPersonsWhoLikeNumber6 = MetaSet of Person
 where meta(Person.FovouriteNumbers).Contains(6);
Property-value constraints can be not only simple value constraints, but also complex constraints indicating the
type of the property and values of its properties. These complex constraints can be built as another meta-set
containing desired type constraint, property-value constraints and even set-constraints. The next example shows
how to declare complex meta-set which represents set of persons having (meaning: property Pets contains) at
least one trained dog. Example of such complex property-constraint is demonstrated in following example:
var trainedDogOwners = metaset Person
 where Pets.Contains(metaset Dog where Trained == true);
Summary
Existing programming languages allow creation of complex data structures by combining smaller pieces of data.
Some programming languages allow the gathering of metadata, which can be fully or partially combined into
more complex data structures. But the problem is that none of the existing programming languages offer
language built in support for combining metadata and data in a type safe way.
The result of combining metadata and data is abstraction of property-constraint. The result of combining
property-constraints with metadata is meta-set – abstraction of data query. Meta-sets contain neither real objects,
nor references to real objects; meta-sets can contain only constraints which can be used to generate database
query and retrieve set of objects. Therefore, first class meta-set support is a feature which can bring type safe
querying language into other programming languages.
Further, meta-sets can be used in rule based engines increasing reuse of existing meta-sets and transforming data
query building process into rule declaration process. It means transformation from query building process to
expert system and transformation from 4th generation programming languages to 5th generation programming
languages (Vanags at. al., 2013).
References
Albahari, J., & Albahari, B. (2015). C# 6.0 in a Nutshell: The Definitive Reference. O'Reilly Media.
Harrison, G. (2015). Next Generation Databases: NoSQLand Big Data, Apress.
Hazzard, K., & Bock, J. (2012). Metaprogramming in .NET. Manning. Manning Publications Co.
James, R. G., Paul, N. W., & Andrew, J. O. (2009). SQL: The Complete Reference, 3rd Edition, McGraw-Hill

102

cis.ccsenet.org Computer and Information Science Vol. 10, No. 2; 2017

Education.
NISO Press. (2010). Understanding Metadata. Retrieved from

http://www.niso.org/publications/press/UnderstandingMetadata.pdf
Vanags, M., Licis, A., & Justs, J. (2013). Meta-set calculus as mathematical basis for creating abstract, structured

data store querying technology. 20th International Conference on Applications of Declarative Programming
and Knowledge Management (INAP 2013), 2013. p. 299-313. Retrieved from
https://www.dcc.fc.up.pt/~ricroc/homepage/publications/2013-INAP.pdf

Vanags, M., Licis, A., & Justs, J. (2013). Strongly typed metadata access in object oriented programming
languages with reflection support, Baltic J. Modern Computing, Vol. 1 (2013), No. 1, 77-100. Retrieved
from http://www.bjmc.lu.lv/fileadmin/user_upload/lu_portal/projekti/bjmc/Contents/1_1-2_6_Vanags.pdf

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/4.0/).

103

	Mikus Vanags1,2 & Rudite Ceveree2
	2.2 Meta-Sets Abstraction
	2.3 Type-Constraints
	2.5 Set-Constraints
	2.6 Selector Support
	3. Advanced Examples
	Summary
	References
	Copyrights

