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Abstract 
This paper proposes a transmission capacity model with an overlaid regime that models the cognitive radio 
technology. We study a case of two coexisting wireless networks (the primary (PR) network and the secondary 
(SR) network) operating in the same geographical region and sharing the same spectrum and define the 
transmission capacity as a product of three signal propagation parameters: the density of transmission, the 
transmission rate and successful transmission probability )1( yprobabilitoutage− . The PR network has a 
higher priority to access the spectrum, regardless of the SR network, while the SR network limits its interference 
on the PR network by carefully controlling the density of its transmitters. Using the C++ programming toolkit, 
we simulate the transmission capacity for both networks and study their tradeoffs in the presence of two 
propagation constraints: the outage probability and transmission density. Simulation results show that the 
proposed model minimizes mutual interference by significantly increasing the network spectrum efficiency per 
unit area as well as the transmission capacity. 
Keywords: Wireless ad-hoc networks, Outage probability constraints, Network capacity tradeoffs, SINR, 
Pathloss 
1. Introduction 
Wireless communication networks consist of nodes that communicate with each other over a wireless channel. 
While some wireless networks have a wired infrastructure of controllers, with nodes connected to the controller 
over a wireless link, others, such as ad-hoc networks (Ramanathan and Redi, 2002) operate without the benefit 
of fixed infrastructure. This implies that nodes are responsible for relaying data as well as being sources and 
links of data. Given these additional responsibilities, it is natural to inquire about the capacity of such networks. 
Before a mobile user transmits, it requires channel assignment from a fixed (for cellular networks) or non-fixed 
(for ad-hoc networks) infrastructure. The mobile radio channel is characterized by rapidly changing channel 
characteristics. During transmission, it is expected that the signal strength should not drop below a certain 
threshold (signal strength required for an acceptable communication). At the receiving end, the signal 
experiences periods of sufficient signal strength or ‘non fades’ and insufficient signal strength or ‘fades’. During 
period of fades, the user experiences a signal outage (a situation where the signal drops below the noise power 
level or threshold). The likelihood of an outage occurrence in a certain time fraction is referred to as outage 
probability. It is the probability that the required signal power of the infrastructure exceed the actual power it 
gives if a new user is admitted.  
The analysis of ad-hoc networks dates back two decades ago. In the 1980’s, the term packet radio network was 
used. Recently, closed-form expressions for ad-hoc network capacity have been discovered (Gupta and Kumar, 
2000, Rozovsky and Kumar, 2001, Toumpis and Goldsmith, 2003). The reason for closed-form expressions is 
due to the difficulty in analyzing ad-hoc networks. This difficulty emanates from the following factors: 
(i) Users interfere with each other in a manner that renders modeling difficult 
(ii) There is a natural duplex or multiple access scheme 
(iii) The distributed nature of the network renders traditional analysis methodologies obsolete. 
Although recent research has made great strides towards understanding wireless network capacity, there still 



www.ccsenet.org/cis                  Computer and Information Science                Vol. 3, No. 3; August 2010 

                                                          ISSN 1913-8989   E-ISSN 1913-8997 90

remain some unanswered fundamental questions. For instance: How does the capacity depend on various system 
parameters such as channel characteristics, choice of physical layer and power consumption? Also, in recent 
years, due to the scarcity and poor utilization of the spectrum, the regulatory bodies are beginning to consider the 
possibility of permitting secondary (SR) networks to coexist with licensed primary (PR) networks. A PR network 
is a legacy network that has an exclusive right to a certain spectrum band. Examples of PR networks are the 
common cellular and television broadcast networks. SR networks are responsible for detecting the transmission 
of PR networks and avoiding interference with them. A SR network user has no spectrum license. Hence 
additional functionalities are required to share the licensed spectrum band. 
The concept of coexistence is the main driving force behind the cognitive radio technology (Haykin, 2005, Neel, 
2006, Simeone, Stanojev, Savazzi, Bar-Ness, Spagnolini and Pickholtz, 2008, Xiao and Hu, 2009). In cognitive 
radio networks, the PR users have a high priority to access the spectrum and the SR users need to operate 
conservatively such that their interference with the PR users is limited below an “acceptable level”. In this 
overlaid regime, the capacity or throughput scaling laws for the PR and SR networks become interesting 
problems. 
2. Review of Related Works 
Recent advances in characterizing network capacity were sparked in Gupta and Kumar (2000), with their notion 
of transport capacity. After their research, a number of studies (Xie and Kumar, 2004, Leveque and Telator, 2005, 
Ozqur, Leveque and Tse, 2007) have emerged. These studies focus on the behaviour of the end-to-end network 
capacity, growing within the node limit, under a variety of models of node interaction and fading conditions. The 
studies also confirm the basic induction in Gupta and Kumar (2000), that, under traditional technological or 
physical limitations, one node cooperation and signal reception transmission requires an “area” to operate and 
therefore, the per node end-to-end throughput decays as ⎟

⎠

⎞
⎜
⎝

⎛
n

1θ  for n nodes in the network. 

Using percolation theory, Franceschetti, Douse, Tse and Thiran (2007) have established the existence of ( )nθ  
sum throughput scaling. Therefore, by allowing the nodes to travel independently and uniformly, a constant 
throughput scaling ( )1θ  per S-D pair can be achieved.  In Baccelli, Blaszczyszyn and Muhlethaler (2006), a 
multi-hop spatial reuse ALOHA protocol is proposed by optimizing the product between the number of 
simultaneous successful transmissions per area and the average transmission range. Here, the transport capacity 
is proportional to the square root of the node density, which achieves the upper bound of Gupta and Kumar 
(2000). Weber, Yang, Andrews and de Veciana (2005) have derived the upper and lower bounds of the 
transmission capacity of spread spectrum wireless ad-hoc networks, where the transmission capacity is defined 
as the product between the maximum density of successful transmission and the corresponding data rate, under 
outage probability constraint. All of these results focus on the capacity of a single ad-hoc wireless network. Vu 
and Tarokh (2008) considers the throughput scaling law for single-hop cognitive radio network, whose linear 
scaling law is obtained for the SR network with an outage constraint on the PR network. Jeon, Devroye, Vu, 
Chung and Tarokh (2009) consider a multi-hop cognitive network on top of a PR network and assume that the 
SR nodes know the location of each PR node. With a transmission scheme that defines a preservation region 
around each Pr node, they show that both networks can achieve same throughput scaling law as a stand alone 
wireless network, while the SR may suffer some finite outage probability. Yin, Gao and Gui (2008) assumes that 
the SR nodes are familiar with the locations of PR transmitters. They propose a transmission scheme to show 
that both networks can achieve the same throughput scaling law as a stand-alone wireless network with no 
outage. 
This paper studies the coexistence of two ad-hoc networks with different transmission scales with power and/or 
transmission range based on the transmission capacity defined in Weber, Yang, Andrew, and de Vaciana (2005). 
In contrast with Vu and Tarokh (2008), Joen et.al. (2009), Yin, Gao and Gui (2008), we do not define any 
preservation region, but resort to a stochastic approach for quantifying the transmission capacities of both the PR 
and SR networks. We extend the definition of transmission capacity from the single network to overlaid 
networks through computational modeling. We approach this problem by minimizing the mutual interference 
effect across two overlaid networks (i.e., the PR network and the SR network). Our aim is to significantly 
increase the spectrum efficiency (Alouini, 1999) per unit area (a measure of the quantity of users or services that 
can be simultaneously supported by limited radio frequency bandwidth in a defined geographical area) in 
wireless ad-hoc networks as well as their transmission capacities and evaluate the outage probability of both the 
PR network, P0, and SR network, P1. 
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3. Network Modeling: Assumptions and Preliminaries 
Let the PR and SR networks be ad-hoc networks (i.e. has both transmitting and receiving capabilities). For 
simplicity, we assume that at a certain time instance, the distribution of PR transmitters (TR) follows a 
homogenous Poisson point process (PPP), H0, of density 0λ  and the distribution of SR transmitters follow 

another independent homogenous PPP, H1, of density 1λ . Our aim is to evaluate the outage probability of the 

PR network, Po and that of the SR network P1, which are functions of the TR node densities 0λ  and 1λ . 

The network model design is as follows: consider the scenario where a network of PR nodes and a network of 
SR nodes coexist in the same geographical region, and assume that the PR network is the legacy network, which 
has a higher priority to access the spectrum. The prerequisite condition for introducing a new SR network into 
the territory of the PR network is upper-bound limited by a target constraint, ∈Δ , where ∈Δ  represents the 
target outage probability increment and usually takes a small value. Similar to Weber et. al. (2005), and in order 
to evaluate the outage probabilities, we condition a typical PR (or SR) receiver (RS) at the origin, which yields 
the palm distribution for PR (or SR) TRs. An attempted transmission is successful if the received 
signal-to-interference-plus-noise ratio (SINR) at the reference RS is above a threshold, jβ , otherwise, the 
transmission fails, i.e. outage occurs. We use 0β  and 1β  to represent the SINR threshold for the PR network 
and the SR network respectively. 
3.1 Channel Model 
The channel model is simple. Consider the large-scale pathloss and ignore the effects of shadowing and small 
multipath fading. The normalized channel power gain g(d) is given by 

1)()( −= αdkdg                   (1) 

where k is a system-dependent constant, d is the distance between TR and the corresponding RS and 2>α  
denotes the pathloss exponent. We normalize k to unity and consider a single-hop transmission, assuming that all 
PR TRs use the same transmission power 0P , and all PR transmits over the same distance 0γ . Also for 
simplicity, the ambient noise is assumed to be Additive White Guassian Noise (AWGN) with average power n. 
We assume that all PR TRs and the SR TRs use the same spectrum with bandwidth also normalized to unity. 
Assuming transmissions at the Shannon target rate is Hzbpsb /)1(log2 β+= , the transmission capacity 

∈C , of a randomly-deployed wireless network, is defined as a product over the maximum density ∈λ  of 
transmissions, the common transmission data rate R and the probability of successful transmission, ( )∈−1 , with 
∈  having an asymptotically small outage probability. Thus 

( ) 2//1 MHzbpsRC ∈−= ∈∈ λ                (2) 

for the maximum density ∈λ  of transmissions. The transmission capacity is then the area spectral efficiency 
resulting from the maximum density of successful transmissions. 
3.2 Single Network Transmission Capacity 
Let all nodes transmit with the same power P0 and its intended transmitter TR. Assuming that all receivers are 
located at a fixed distance 0γ  away from their transmitter, the resulting SINR is given by 
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where η  is the background noise power, and ( )ix  denotes the distance from PR TRs. From equation (3), we 
derive the asymptotic over vanishingly-small outage probability values for the transmission capacity of the PR 
network when the SR network is absent. When the SR network is absent, we denote the target outage probability 
of the PR network over per-link SINR as o∈  and obtain 
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Equation (4) could be re-written as 

( ) 00Pr ∈=≥ TXob                  (5) 
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The moment generating function (mgf) of X is given in Venkataraman, Haenggi and Collins (2006) as  
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Considering 4=α , we have 
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Through the inverse of Laplace transform, we obtain the probability density function (pdf) of x as 
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and the corresponding cumulative density function (CDF) of x as 
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From (9), we have 
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Combining equations (5) and (10), it becomes clear that the following condition has to be satisfied: 
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(via the monotonicity of the Q function) of 0λ , asymptotically for 4=α  as 
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As can be observed in equation (12), when the outage probability is negligible, the density of the TRs is a linear 
function of 0∈ . Therefore, the transmission capacity of the PR network is given by 

( )0000 100 ∈−= ∈∈ λRC                        (13) 

where 0R  represents the data rate when the transmission between the Tx and its associated Rs is successful, and 
is set to be same for all the links. 
4. Model Design 
4.1 Transmission Capacity of the Primary (PR) Network 
When the SR network is present, interference is introduced into the PR network and the outage of the primary 
network is increased. If we set the target outage probability increment of the PR network as ∈Δ , we obtain 
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where jY  denote distance from SR TR, to the origin. 

With ∑
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γ , equation (14) can be rewritten as 
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The moment generating function (mgf) of Y is given by 

⎟
⎠
⎞

⎜
⎝
⎛ −Γ−

= α
πλ αα

φ
21/2/2

11

)(
sP

Y es                        (16) 

Define Z = X + Y, such that the mgf of Z is given by 
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and the pdf of Z is given by 
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Applying (18) and (15), we have 
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which leads us to 
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When 000 →∈Δ→∈ and , a bivariate Taylor series expansion process gives  
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Choosing 0
00
∈= λλ  as in (12), the maximum allowable value of 1λ  corresponding to the target probability 

increment ∈Δ  is given by 
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and the transmission capacity of the PR network becomes 

( )∈Δ−∈−= ∈∈
0000 10λRC                      (23) 

Following similar derivations of the PR transmission above, the transmission capacity of the SR network is given 
by  

( )1111 1 ∈−= ∈∈ λRC                        (24) 

where 1R  is the data rate adopted by successful SR links. Note the derivation of equation (24) is omitted for 
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brevity.  

On the other hand, if we simultaneously set the target probability on the PR network as ∈Δ+∈0 , and set the 

target outage probability of the SR network as 1∈ , we could choose the value of ∈
1λ  in equation (24) as  

( )1
111 , ∈∈Δ∈ = λλλ Min                           (25) 

where 1
1
∈λ  is given by 
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To study the tradeoff of transmission capacities between PR network and SR network, we rewrite equations (23) 
and (24) as follows 
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From equations (27) and (28), we can easily study the impact of 1P  on ∈
oC  and ∈

1C  respectively. 

4.2 Model Simulation Input 
The derived model equations were simulated using empirical data gathered from ad-hoc experiments in city 
scenarios (Weber et. al, 2005, Stepanov and Rothemel, 2006, Souley and Cherkaoui, 2005). Constraint parameter 
such as outage probabilities were varied based on ideal conditions in urban environment. Table 1 shows the input 
parameters and their corresponding values, used for the simulation. The simulation results were captured and 
represented graphically for easy interpretation. The following section interprets the obtained results. 
5. Interpretation of Simulation Results 
Figure 1 is a graph showing the dependence of transmission Capacity (TC) on outage probability in the PR 
network. As can be seen from this figure, TC is maximized when the outage probability = 0.5. The reason for this 
performance is that the TC is adapted to maintain the required signal threshold, rather than impaired, thus 
eliminating the effect of change. 
Figure 2 is a plot of TC vs. outage probability in the SR network. Here, the TC is maximized at 0.4 outage. As 
shown in this figure, we observe that TC increases monotonically over the outage, since the larger the 
transmission power is, the larger the value of the SR density. Comparing Figure 1 with Figure 2, we see that the 
PR has a larger TC than SR. This means that PR has a higher priority to access the spectrum without peculiar 
contradictions of the SR network. 
Figure 3 gives the system performance in terms of the SR density while varying with transmission capacity. Here, 
as the density of SR radically decreases, the TC increases slowly rather than sharply. This is due to the fact that 
SR network limits interference to the PR network by carefully controlling the density of the transmitter. 
6. Conclusion 
In this paper, we extended the transmission capacity definition from a single network case to an overlaid network 
case, which consists of two coexisting networks (the PR and SR networks). We also derived the transmission 
capacities for these networks by considering the mutual interference effect across the networks and studied 
through computer simulation, the tradeoffs on both networks. Results obtained show that the PR network has a 
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larger transmission capacity than the SR network and if we permit a slight increase in the outage probability of 
the PR network, the total transmission capacity (i.e. the overall spectrum efficiency per unit area) of the overlaid 
networks will be boosted significantly over that of a single network.  
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