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Abstract 
Diabetic Retinopathy (DR) is a leading cause of blindness in human beings aged between 20 to 74 years. It has a 
great influence on the patient and society because it normally influences humans in their most gainful years. 
Early detection in DR is very difficult which is not detected by human beings. Many algorithms and techniques 
were established to detect DR. These techniques faced the problems such as increasing sensitivity, specificity 
and accuracy. To overcome those problems we have to introduce an effective image processing algorithms for 
increasing performances and also easily identify the DR diseases. One of the most challenging tasks in screening 
is automatic detection of Microaneurysms (MAs). This paper presents a new approach to detect MAs. Our 
proposed work consists of preprocessing, blood vessel segmentation (FPCM), fovea localization, fovea 
elimination, feature extraction and classification (Neuro-Fuzzy). Neuro-Fuzzy is a combined version of neural 
networks and fuzzy logical models. Experiments are conducted using MATLAB simulation tool. Using 
MESSIDOR database for our experiments which provides efficient and effective results in sensitivity, specificity, 
correct classification and detection rate (accuracy) and precision. 
Keywords: blood vessels, MESSIDOR database, fovea, microanueurysm 
1. Introduction 
Diabetic eye disease contains group of eye conditions that affects people with diabetes. These conditions include 
diseases such as diabetic retinopathy, diabetic macular edema, cataract and glaucoma these are very potential to 
cause severe vision loss problem and blindness problem in working age adults. Changes in blood vessels lead to 
the problem of diabetic retinopathy since it affects the lining of back of the eye. This will called as retina. DR 
has a significant impact on the world health organization systems. The number of people with DR will grow 
from 126.6 million in 2010 to 191.0 million by 2030. In general, DR is a silent disease (Rajan, 2015) , (Kanika 
Verma, Prakash Deep & Ramakrishnan, 2011) because this is identified by the patient when the level changes in 
the retina. Some common symptoms of diabetic retinopathy are given below: 

• Blurred vision 
• Fluctuating vision 
• Impaired color vision 
• Vision loss 
• Floaters vision 
• Flashers vision (dark spots) 
• Vision in dark and empty areas 

The effect of diabetic retinopathy on vision is varies widely, depending on the stage of the disease. Generally DR 
has two stages such as Proliferative Diabetic Retinopathy (PDR) and Non-Proliferative Diabetic Retinopathy 
(NPDR). PDR has the components of neovascularisation and vitreous fluid hemorrhage since new blood vessels 
grow on the surface of the retina and it can bleed. But in NPDR has no symptoms which are detect only by 
retinal photography. Diabetic NPDR stages are classified into three: Mild, moderate and severe (Latare & Patil, 
2015): 
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Table 1. GLCM matrix 
NPV/RPV 0 1 2 3 4 
0 (0,0) (0,1) (0,2) (0,3) (0,4)
1 (1,0) (1,1) (1,2) (1,3) (1,4)
2 (2,0) (2,1) (2,2) (2,3) (2,4)
3 (3,0) (3,1) (3,2) (3,3) (3,4)
4 (4,0) (4,1) (4,2) (4,3) (4,4)

 
(I) Maximum Probability (MP): 
Probability between NPV and RPV and its maximum value is taken for feature value. 

F(x,y) = , ( , )                                     (6) 
Where x, y denotes the NPV and RPV respectively and p(x,y) denotes the probability of maximum pixel 
value(NPV and RPV) 
(II) Contrast (Cn): 

F(x,y) = ∑ ∑ (( − ) ( , )                                (7) 
(III) Entropy (Ep): 

F(x,y) = ∑ ∑ ( , )( , )                                      (8) 

IV) Angular Second Moment (Asm): 
F(x,y) = ∑ ∑ ( , )                                       (9) 

v) Homogeneity (Hm): 
F(x,y) = ∑ ∑ ( , )| |                                    (10) 

VI) Dissimilarity (Ds): 
F(x,y) = ∑ ∑ | − | ( , )                                 (11) 

VII) Mean (Mn): 

F(x,y) = ∑ ∑ ( , )×                                        (12) 

Where n is the number of rows and m is the number of columns. 
VIII) Correlation (Cr): 

F(x,y) =	∑ ∑ ( ) ( , )                                (13) 

To create GLCM: GLCM = graycomatrix (image I, ‘offset value []) 
F) Classification:  
Classification is a final step of our DR disease identification process. After extracting the features we have to 
classify diseases into Microaneurysms and Non-Microaneurysms. For classification purpose, features as an input 
that is fed to a classifier based on neural network and fuzzy logical models. Fuzzy logics and neural networks are 
natural complementary tools in building for classification. Neural networks and fuzzy logic are two approaches 
that are widely used to solve classification problem. While networks are low-level computational structures that 
perform well when dealing with raw data, fuzzy logic deals with reasoning on a higher level. A fuzzy logical 
system is a non-linear mapping of features into a scalar output. The fuzzy model is used for giving more accurate 
results when adding more number of features into fuzzy models. The main advantage of neural networks is their 
learning capabilities and their ease of implementation. When combined neural networks and fuzzy logic it 
exploits more number of advantages. 
Feature sets such as Mp, Em, Ep, Asm, Hm, Ds, Mn and Cr are extracted from the input images (fundus image) 
using GLCM. The fundus images are classified using the Neuro-Fuzzy classifier. Extracted features are given as 
the input to the Neuro-Fuzzy Classifier which is classified by all the given fundus images into 2 classes 



cis.ccsenet.

 

i.e.Microa
a learning 
and provid
solutions 
membersh
and inter- 
more accu
rows and 2
is equal to
classes(C)

 
All rows a
vectors are
classifier i
output laye
product of
output nod
from the N
nodes and 
operation. 

org 

aneurysms and 
algorithm der

des local modi
instead of us

hip functions (M
related inform

uracy of the cl
2 columns, in w

o the number o
 (Bhanumurth

and columns in
e given as the 
is used. MLP h
er (Neural netw
f 8 features an
des from the N
NN. The total n

output nodes.
The output is

Non-Microan
rived from Neu
ifications in th
sing the syste
MF) that are fa

mation are extr
lassification u
which the num

of classes. Mem
y & Koteswar

F

n the members
input to the Ne

has three layer
works for clas

nd 2 classes ar
NN is same as
number of hidd
. Defuzzificati
s a single valu

Computer an

neurysms. Neu
ural Networks

he fuzzy system
em componen
acilitated by th
racted from th
sing Neuro-Fu

mber of rows is
mbership matri
raraa, 2014).

Figure 10. N

Figure 11. Neu

ship matrix are
eural Network
s such as input

ss 1 and class 2
e 16, which is
s that of the n
den nodes is e
on process is c
ue, c1 or c2 f

nd Information S

10 

uro-Fuzzy class
s. Learning alg
m. In general, 
nts individuall
he membership

he features to t
uzzy classifier
s equal to the n
ix MF produce

Neuro-Fuzzy S

 

ural Network C

e cascaded and
k (NN). In this 
t layer (vector
2). The total nu
s the number o
number of clas
qual to the squ
carried out on 
for a given fu

Science

sifier is a fuzz
gorithm only p

a neuro-fuzzy
ly. Input feat
p of each featu
the classes thro
r. The member
number of fea
ed degree of d

System 

Classifier 

d converted int
neural networ

rs), hidden laye
umber of inpu
of input nodes
sses, and here 
uare root of the
the output no

undus image. F

zy based system
performs on the
y system gener
ture values ar
ure to different
ough the MF, 
rship matrix is

atures and the n
different featur

to a vector (v1
rk Multi-Layer
er (weights for
ut nodes of the
s of the NN. T

two output n
e product, of th
des of NN, by
From this valu

Vol. 10, No. 1;

m that is traine
e local inform
rates very pow
re fuzzified u
t classes. Unkn
which leads t
s computed w
number of colu
res (dF) to diff

 

 

, v2… v16). T
r Perception (M
r input vectors
 NN is equal t

The total numb
odes are gene
he number of 

y performing a
ue, we can ab

2017 

ed by 
mation 
werful 
using 
nown 
o get 

with 8 
umns 
ferent 

These 
MLP) 
) and 
to the 
ber of 
rated 
input 
 max 

ble to 



cis.ccsenet.org Computer and Information Science Vol. 10, No. 1; 2017 

11 
 

classify whether the given input fundus image is Microaneurysms or Non-Microaneurysms (Bhanumurthy & 
Koteswararaa, 2014). 
4. Experimental Analysis 
Our proposed Microaneurysms detection and classification of retinal disease should be processed by 
segmentation and classification steps. Initially pre-processing fundus image by reduces the noise level and also 
performed with contrast enhancement. Blood vessel segmentation done with the help of Fuzzy Possibilistic 
C-Means should contain segmentation information about every retinal image. In classification of diabetic 
retinopathy we have to use Neuro-Fuzzy classifier which increases sensitivity and accuracy. Comparison shall be 
made for classification. For classification we have to compare previous classifiers with our Neuro-Fuzzy. 
4.1 Database 
MESSIDOR database (Methods for Evaluating Segmentation and Indexing techniques for Dedicated to Retinal 
Ophthalmology) is used in our proposed system. Generally, MESSIDOR database consists of two sets of data 
such as training set and evaluation set. Here, we evaluate this database for identifying Microneurysms and 
Non-Microneurysms. MESSIDOR database contains 1200 retinal images, which is the largest database publicly 
available on the internet. The images will be saved as uncompressed TIFF format with a 1440 * 960 pixel 
resolution that is about 4MB per image. These images acquired by 3 ophthalmologic departments using a color 
video 3CCD camera on a Topcon TRC NW6 non–mydriatic retinograph with a 450 Field of View (FOV). The 
images captured using 8 bit per color on plane at the pixel ranges are 1440*960, 2240*1488, 2304*1536. 1200 
images are divided into two sub images i.e. 800 images acquired with pupil dilation (one drop of Tropicamide at 
0.5%) and 400 images are without dilation. 
(i) Training Set: 
This dataset is used for testing and improving the available algorithms as well as for validating the methods used 
to evaluate the algorithms. This database contains 200 images. 
For each image, it indicated at least: 
• Stage of Diabetic Retinopathy. 
• The number of and/or the surface of the micro aneurysms and Non-Microaneurysms. 
(ii) Evaluation Set: 
This dataset contains thousand images since its purpose is evaluating the proposed algorithms. 
Usually, Diabetic Retinopathy stages are classified as mild, moderate, severe and PDR. But in our proposed 
process we have to categorize diseases like Microaneurysms and Non-Microaneurysms. Our dataset is processed 
and improve classification accuracy. 
4.2 Performance Metrics 
Performance of the test classifier can be measured in the form of sensitivity (or) Recall, specificity and Accuracy 
(Correct classification and Detection rate). True positive (TP), True Negative (TN), False Positive (FP) and False 
Negative (FN) are the test outcomes. In general True positive is correctly identified, False Positive is incorrectly 
identified, True negative is correctly rejected and finally false negative is incorrectly rejected. Performance 
metrics such as sensitivity, specificity and accuracy are in follows: 
(i) Sensitivity: 
Sensitivity can be measured by the proportion of positives, disease affected peoples can be correctly identified. 
This can be computed as follows: 

 Sensitivity (%) =	  *100%                                  (14) 

(ii) Specificity: 
Specificity can be measured by the proportion of negatives, peoples does not could affected are correctly identified. 
This can be computed as follows: 

Specificity (%) =	  *100%                                  (15) 
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99%, specificity of 99% and accuracy is 99%. In future, we will decide to separate the diseases with some different 
properties and use different database for processing. 
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