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Abstract 

In this paper the performance of product codes based on quadratic residue codes is investigated. Our Proposed 
Iterative decoding SISO based on a soft permutation decoding algorithm (SPDA) as a component decoder. 
Numerical result for the proposed algorithm over Additive White Gaussian Noise (AWGN) channel is provided. 
Results show that the turbo effect of the proposed decoder algorithm is established for this family of quadratic 
residue codes. 
Keywords: soft decoding, error correcting codes, turbo code, product codes, Iterative decoding, quadratic 
residue codes 

1. Introduction 

The turbo codes were invented in 1993 by Berrou, Glavieux and Thitimajshima, who had used the concatenation 
of convolutional codes, the elementary decoder BCJR (Bahl, Cocke, Jelinek and Raviv Algorithm) and SOVA 
(Soft output Viterbi Algorithm) as a soft output. Two years later, Pyndiah et al [4] presented an alternative for 
bloc codes using the product code based on BCH (Bose, Ray Chaudhurand Hocquenghem) codes, the Chase II 
algorithm, as a component decoder, and the Pyandiah’s soft output generated according to the formula presented 
in. Since turbo codes have been subject of many publications for instance. The turbo codes have attracted the 
interest of the scientific community, especially for their high speed transmissions over the air. The word turbo is 
much more related to decoding than encoding. To make a turbo decoding we will need three basic elements 
where the first is the concatenation of several simple codes, the second is to develop or adopt an efficient 
elementary decoder conducted by a soft output and the third element is a decoding scheme in which the soft 
output is converted to extrinsic information exchanged between the components decoders in an iterative process. 
The implementation and the performance of an efficient turbo decoder depend on the complexity of these three 
elements. In addition to the computation of the extrinsic information which has to be done in a very short time, 
and the convergence based on the number of iterations, we will need an elementary decoder less complex. In this 
perspective comes our work in which we use our soft permutation decoding algorithm (SPDA) proposed in [5] as 
an elementary decoder  given the importance of performance  results  obtained by our decoder SIHO, and we 
compute its soft output using extrinsic information according to Soleymani et al. The result obtained in terms of 
BER is very interesting. The rest of the paper is organized as follow: section II presents the quadratic residue 
(QR) codes, section III describes the construction of product codes, section IV describes the original version of 
Soft permutation decoding algorithm (SPDA) for QR codes, section V talks about the Soft 
output and the Schema of the iterative decoding of Soleymani, finally, Simulation results and analyses are given 
in Section VI. 

2. Quadratic Residue Codes and Their Stabilizers 

The n is a prime and , the quadratic residue code  is a cyclic code 

with a generator polynomial , where is the set of all nonzero 

1(mod 8)n ≡ ± ( )QR( ) QR n,( 1) / 2,n n d= +

( ) ( )i
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quadratic residue integers modulo n and  β is a primitive nth root of unity in GF(2m), where m is the smallest 

positive integer such that n divides 2m - 1. A
 

code, where d is odd, can be extended to a 

 code whose codewords are obtained by adjoining a parity-check bit to a fixed 

position ∞ of every codeword of the code. For all values of n, the binary is invariant under the 

projective special linear group PSL2(n), which we define as follows: 

For a prime , the set of permutations over {0,1,2,…,n-1,∞}, of the  form 

 where a, b, c and d are elements of GF(n) verifying : ad-bc=1 form a group called the 

projective special linear group G=PSL2(n),  of order . PSL2(n) can be generated by the 

three following permutations [3]:   where ρ is a primitive element of GF(n). 

By a theorem of Gleason and Prange, the automorphism group of an extended quadratic residue code has a 

subgroup which is isomorphic to either PSL2(n). 

3. Product Codes 

The product codes are constructed by concatenation of two or more linear block codes. We consider two basic 

block codes C1 and C2 characterized by parameters (n1, k1, d1,R1) and (n2, k2, d2,R2) where ni represent the code 

length, ki the length of the message di  the minimum distance Hamming and Ri the code rate . The product code

 is represented in the form of matrix with n1 rows and n2 columns. Where the information 

forms a sub-matrix M of k1 lines and k2 columns, each of the lines k1 from M is coded by the code C1 and each of 

the n1 columns is coded by the code C2. The resultant parameters of the product code  are 

where ,  and , the code rate is

. An important Property of these codes is that if the n1 columns are by construction the C2‘s 

code words, and k2 lines are C1‘s code words, the n1-k1 remaining lines of the resultant code word are C1‘s 

code words. In other hand the major advantage of product codes is a gain in minimum distance, and their major 

disadvantage is the loss in codes rate, subsequently, we consider that codes C1 and C2 are identical. 

 

 
Figure 1. Construction of product code 

( )QR n

( )EQR( ) EQR n+1,( 1)/2, 1n n d= + +
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4. Soft Permutation Decoding Algorithm (SPDA) 

The SPDA algorithm proposed in [5], tries to find the closest codeword to the received word in terms of 
Euclidian distance. The algorithm works as shown below: 

 

 

5. Soft Output and the Schema of the Iterative Decoding  

5.1 Description of Confidence Value 

The concept of confidence value designated by Φ is detailed in [4]. In this paragraph, we will simply give a brief 
description. 

Let be the transmitted code word, Φ = P{D = X/R} is the probability that the 

decoder takes a correct decision  given the received sequence  ; 

That is the assessment of the decision of the decoder. Computing Φ is impossible for a practical implementation, 

thus estimation has to be performed. To estimate Φ Soleymani et al are adopted a distance destructive denoted by 

as a metric between R and D where only the positions increasing the Euclidian distance contribute, i.e. 

where the noise vector has a different polarity than the decision vector D, following. 

 

{ }0 1 1, , ..., nX x x x −=

{ }0 1 1, , ..., nD d d d −= { }0 1 1, ,..., nR r r r −=

destDist
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                          (1) 

There is a relationship between the confidence value Φ and the destructive Euclidean distance . Using 

software simulation according to [2] the influence of the variable Eb/No and the number of iterations may be 

omitted, and treat the confidence value Φ as a function of destructive Euclidean distance, written as: 

                                    (2) 

Table 1 below resumes the function between  and Φ for some used residue codes (RQ) codes. 

 
Table 1. Confidence Value “Φ” Versus Distance destructive 

Q
R

(2
3,

12
,7

) DEST 

<9 9 10 11 12 13 14 15 >15 

 Φ 0.99 0,97 0,95 0,91 0,72 0,5 0,36 0,33 0 

Q
R

(4
1,

21
,9

) DEST 

<15 16 17 18 19 20 21 22 >22 

 Φ 0.99 0.98 0.95 0.89 0.76 0.55 0.29 0.14 0.00 

Q
R

(4
7,

24
,1

1)
 DEST 

<27 27 28 29 30 31 32 33 >33 

 Φ 0.99 0,95 0,93 0,84 0,71 0,53 0,21 0,12 0 

5.2 Computing Soleymani’s Soft Output 

In this subsection we give the computation of the soft output as it’s described in [2] by Soleymani et al. Recall 

that is the transmitted Codeword, the symbol has certain 

confidence value Φ. The probability of can be expressed as: 

                         (3) 

The first term represents the probability value when the decoder gives a correct codeword. applying Bayes’ rule 
to this term will yield 

( )

( ){ }

2
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                          (4) 

Since the decision bit  is known, then 

                             (5) 

The second term in (3) represents the probability value when the decoder decides in favor of a wrong codeword. 
In this case, we consider the transmitted symbol  is corrupted with Gaussian noise. Thus 

 

                              (6) 

Again, we apply Bayes ‘rule to the second term in (3) and get : 

                            (7) 

Combining (3)-(7), the a posteriori probability of  is found as:  

                             (8) 

And 

                              (9) 

Similar to the traditional algorithm described in previous section, we can obtain the extrinsic information 	by 

the following equation 

                             (10) 

Substituting P(xj = +1|R) and P(xj = −1|R) , we get 

                             (11) 
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Unlike other list-based algorithms, soft outputs generated by (10) can be directly fed into the next decoding 
stage. 

5.3 Iteratif Decoding Scheme 

Soleymani’s algorithm is intended for decoding turbo product codes; it may be considered an improvement of the 
chase algorithm / Pyndiah. Indeed, in their algorithm Soleymani et al. adopt the same elementary decoder that 
Pyndiah is that of Chase-II, by calculating the soft output based on the list of candidates provided by the 
elementary decoder "ie Chase-II" and the weighting factors α and β. While Soleymani base its calculation of Soft 
output decision on elementary decoder while rejecting the other candidates, and by evaluating the decision 
depending on its distance from the received word, to assign the value of trust Φ previously described. The latter is 
used to calculate the extrinsic information. 

 

Figure 2. Iteration Jth du Turbo decodeur 

 

Figure.2 present the Jth itération of Soleymani’s Turbo decoder. The Rline(J) are the rows of the matrix R(J), 

where R(0) is received at the matrix output channel. The Rline(J) are decoded by the first component decoder 

(rows decoder). And extrinsic information Wline (J) of the iteration J is calculated using the formula (11). Wline is 

added to the received word R to form the second component of the soft input decoder for decoding Rcolumn(J) 

which represent the columns of the matrix R (J) (column decoder). This allows us to get a hard decision D (J) and 

the extrinsic information Wcolumn(J). For the next iteration, Wcolumn is added to the original received matrix R to 

form a matrix R (J + 1), which in turn must be injected into the first component decoder. This operation, which 

injects R(J + 1), to be repeated, and by default, it will become R(J). This iterative process stops when the 

maximum number of iterations is reached. 
6. Simulations & Results 

6.1 Permutations Effect on the Elementary Decoder 

The Figure 3 shows that the increase of the number of the stabilizers improves the performances.  

 

 
Figure 3. The performances of the soft decision algorithm for EQR(48,24,12) code 
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Figure 4. Comparaison between Chase PD and the soft decision algorithm for EQR (32,16,8) code 

 

When the soft decision of permutation decoding algorithm works with 2600 stabilizers, for all values of the SNR, 
it is better than the Chase-2 decoding algorithm with 32 test sequences.  The gain of coding is about 0.5 dB. As 
we see in the Figures 4, the performances of the soft decision of PD are equal or better than the Chase PD for the 
EQR(32,16,8). 

6.2 Permutations Effect on the SISO Decoder 

 

Figure 5. Effect of the number of permutations on the proposed SISO for QR (47,24,11)2 code 

 

In Figure 5, we present the simulation results for the RQ (47, 24, 11)2 code for different numbers of stabilizers of 
the code. Its show that the gain depends on the number of the permutations and the improvement becomes 
negligible when the number of permutations is greater than 1000. 

6.3 Turbo Effect 

 
Figure 6. Turbo effect of the proposed SISO for QR(47,24,11)2 code 
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The turbo effect: Figure 6 shows that the performances increase with number of iterations. According to these 
Figures we can see that the improvement is great after the first iterations. So, we note that the turbo effect of the 
proposed SISO is established for this family of codes. 

7. Conclusion 

In this paper, we have presented a new iterative decoding SISO of product codes based on quadratic residue 
codes. We have studied the effect of the number of permutations which stabilize QR codes, the number of 
iterations using simulations. As perspectives of this work, we will challenge other families of codes to be 
decoded by our iterative SISO decoder. 
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