
Computer and Information Science; Vol. 8, No. 4; 2015 
ISSN 1913-8989   E-ISSN 1913-8997 

Published by Canadian Center of Science and Education 

12 
 

Multi-View Software Architecture Design: Case Study of a 
Mission-Critical Defense System 

Kadir Alpaslan Demir1 
1 Gebze Technical University, Turkey 

Correspondence: Gebze Technical University, Gebze, Kocaeli, 41400, Turkey. E-mail: 
kadiralpaslandemir@gmail.com 

 

Received: July 14, 2015         Accepted: September 7, 2015         Online Published: October 14, 2015 

doi:10.5539/cis.v8n4p12        URL: http://dx.doi.org/10.5539/cis.v8n4p12 

 

Abstract 
An architecture outlines what a system can or cannot do. Attention to software architecture is essential for 
successful product developments. Therefore, software architecture development is a crucial phase in software 
development process. As the software intensive systems become complex, software architects face with the 
challenges of dealing with multiple sometimes conflicting concerns at the same time. Satisfaction of quality 
requirements can be achieved via a good software architecture design. Since the quality requirements are 
multi-faceted, the software architects have to consider many diverse aspects and provide a software architectural 
solution that can optimally satisfy functional and quality requirements. Such a solution requires a multi-view 
software architecture design as the result of a systematic architecture development process. Case studies are 
helpful in bridging the gap between academia and industry. Research studies including carefully designed case 
studies will help practitioners to understand the theoretical concepts and apply novel research findings in their 
practices. Hence, in this study, we explain a multi-view software architecture design process with the help of a 
mission-critical defense system development case study. In the study, we explain the multi-view software 
architecture design step by step starting with identifying the system context, requirements, constraints, and 
quality expectations. We further outline the strategies, techniques, designs, and rationales used to satisfy a 
diverse set of requirements with a particular software architecture pattern. We also introduce a novel 
architectural style, named as “star-controller architectural style”. We explain the use of the style with a related 
discussion. 

Keywords: software architecture, multi-view software architecture, software architecture design, quality 
requirements, software architecture patterns, software architectural style, defense system software development 

1. Introduction 
The “software architecture” is defined as "The fundamental organization of a system, embodied in its 
components, their relationships to each other and the environment, and the principles governing its design and 
evolution." by ANSI/IEEE Standard 1471-2000 - IEEE Recommended Practice for Architectural Description of 
Software Intensive Systems. There are other definitions such as “Software architecture is the level of system 
design that defines the overall structure of the software and the ways in which that structure provides conceptual 
integrity for the system.” (Shaw & Garlan, 1995), and “A software architecture is a specification of the global 
organization of software involving components and connections between them. Components and connections are 
associated with attributes whose nature depends on the property of interest.” (Fradet, Métayer, & Périn, 1999). 
The software architecture may be thought as the backbone of a software intensive system. According to Kruchten 
(1999), the software architecture helps us to (i) understand what the system does and how the system works, (ii) 
think and work in the pieces of the system, (iii) reuse the parts of the system to build other ones, and (iv) extend 
the system. Attention to software architecture is essential for successful product developments (Borrmann & 
Paulisch, 1999). Today, the importance of a well-designed software architecture for large-scale system 
developments is established (Borrmann & Paulisch, 1999). As the technology evolves, customers and users 
expect capable systems that can achieve multiple goals at the same time. In addition, they expect a certain level 
of quality in the system. Quality attributes such as reliability, scalability, maintainability can be enhanced with a 
well-crafted software architecture (Kheir, Oussalah, & Naja, 2013). For example, modifiability and extendibility 
are among the most important quality attributes in a software system. These qualities are necessary for increased 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

13 
 

system evolution capability. The architecture of a software system forms the basis for software evolution 
(Breivold, Crnkovic, & Larsson, 2012). Bass and John (2003) link usability, another quality attribute, to software 
architecture patterns. However, while a well-designed software architecture cannot guarantee quality in a system, 
an inadequate architecture design leads to bad quality (Taušan et al., 2014). As the systems increase in size and 
complexity, software architects face with many challenges (Taušan et al., 2014). For example, today, aerospace 
industry relies heavily on software technology. The size in terms of source lines of code (SLOC) has doubled 
every four years since mid-1990s (Feiler, Hansson, De Niz, & Wrage, 2009). Aerospace Vehicle Systems 
Institute (AVSI) launched an international, industry-wide initiative called System Architecture Virtual Integration 
(SAVI). The SAVI paradigm requires “an architecture-centric, multi-aspect model repository as the single source 
of truth” and “an architecture-centric acquisition process throughout the system life cycle that is supported” 
(Feiler et al., 2009).  

While architectural design decisions enable the system to achieve certain goals, the same decisions may limit 
certain capabilities of the system. Therefore, architects are always faced with trade-offs. The decisions regarding 
the architectural design have significant impacts on the resulting system (Bosch & Molin, 1999). System 
software architects have to consider many issues and deal with conflicting concerns during system development 
(Hofmeister, Nord, & Soni, 2000). As the systems increase in scale, the process becomes time-consuming and 
expensive. Furthermore, as the software systems get complex, the architecture development becomes critical 
(Shaw & Garlan, 1995; Garlan, 2000). The modifications in the software architecture in the final phases of the 
development or after system delivery cost dearly. The architecture development process is a multi-aspect process 
and it needs to be rigorous. To address different aspects, software architects have to develop multiple 
architectures from different viewpoints (Mattsson, Lundell, Lings, & Fitzgerald, 2009). The need to address 
multiple sometimes conflicting concerns with a multi-view perspective in developing system software 
architectures is well-supported (Roshandel, Schmerl, Medvidovic, Garlan, & Zhang, 2003; Hofmeister, et al. 
2007; Bessam & Kimour, 2009). 

In this article, we present a multi-view software architecture development process with a case study of a 
mission-critical defense system. The development approach chosen is Siemens Four Views Model (Soni, Nord, 
& Hofmeister, 1995; Hofmeister et al., 2000). The system subject to the case study is a “Mine Neutralization 
System” (MNS) for mine warfare ships. Mission-critical defense systems are complex and safety-critical systems 
in general (Demir, 2005; Demir, 2009a). Analysis and design of these systems pose many challenges (Drusinsky, 
Shing, & Demir, 2005). Most of these challenges can be addressed with a well-designed software architecture. 
Such challenges and strategies to resolve them are presented with the associated architectural solutions 
throughout the development of the MNS example. In our mission-critical defense system case study, adaptability, 
modifiability, maintainability, usability, testability, reliability, and safety are the quality attributes that are 
specifically addressed. How to achieve these quality attributes are presented with specific architectural patterns 
and solutions. In addition, a new architectural style, called “star-controller architectural style”, is introduced. An 
architectural style describes the structure of a pattern that can be applied to a family of systems. Architectural 
styles also explain the terminology of the components and connections along with a set of rules on how they can 
be combined (Garlan & Shaw, 1993). How the style is applied to the architecture development is provided as 
well. 

The article is organized as follows. Section 2 provides the related literature on the subject. Section 3 introduces 
the system and presents the architecture development process along with the system architecture and design 
diagrams. Next section is the conclusion. Finally, experiences, lessons learned, and future work are explained in 
section 5. 

2. Literature Review 
Software architecture research domain is rapidly evolving as the systems increase in size and complexity (Aleti, 
Buhnova, Grunske, Koziolek, & Meedeniya, 2013). Two main lines of research streams are observed in the 
literature. The first line of research deals with issues related to the development of a software architecture for a 
single “stovepipe” system. The second line of research began when the systems started to evolve into systems of 
systems. Boehm (2006) states that one of the trends in software and systems engineering processes is 
increasingly complex systems of systems. Enterprise architecture frameworks are developed mainly in response 
to overcome the challenges of architecture development of system of systems. Note that, today, the line between 
a single system and a system of systems cannot be easily drawn. Various approaches for architecture 
development process have been developed both for systems (Hofmeister, et al. 2007) and enterprise systems 
(Urbaczewski & Mrdalj, 2006). Among the most commonly known frameworks are Zachman Framework 
(Zachman, 1987), The Open Group’s TOGAF, United States Department of Defense Architecture Framework 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

14 
 

(DODAF), British Ministry of Defence Architecture Framework (MODAF), NATO Architecture Framework 
(NAF), Object Management Group’s Unified Architecture Framework (UAF), United States Federal Enterprise 
Architecture Framework (FEAF). Overviews of these enterprise architecture frameworks are found in 
(Schekkerman, 2004; Reichwein, & Paredis, 2011; Urbaczewski & Mrdalj, 2006). Even frameworks for 
categorizing enterprise architecture frameworks such as (Franke et al., 2009) are being developed. A notable 
initiative is Generalized Enterprise Reference Architecture and Methodology (GERAM) developed by 
IFIP-IFAC Task Force (1999). 

Various approaches, processes, techniques, best practices (Bosch, 2000; Gomaa, 2000; Dikel, Kane, & Wilson, 
2001; Clements et al., 2002; Garland & Anthony, 2002; Bass, Clements, & Kazman, 2003; Hofmeister et al., 
2007), and international standards (IEEE Standard 1471-2000; ISO/IEC/IEEE 42010-2011) are developed for 
system software architecture development process. Most of these software architecture development approaches 
are originated from the work conducted in the industry in response to the need for developing a systematic 
architecture development process. Different models propose development of different views (Mattsson et al., 
2009). There are many commonalities and some differences between architecture development approaches 
(Hofmeister et al., 2005; Hofmeister et al., 2007). There are also some attempts such as (Hofmeister et al., 2005; 
Hofmeister et al., 2007) to develop a general model of software architecture design. Furthermore, studies to 
develop techniques and methods for quality assessment of software system architectures (Kazman et al., 2001; 
Firesmith et al., 2006) are also conducted. 

In the rest of the section, we provide a short review of some predominant models for software architecture 
development. Most of these models are originated from the industrial practice. 

2.1 Software Engineering Institute’s (SEI) Attribute Driven Design (ADD) Method 

The attribute driven design approach is developed by Software Engineering Institute (SEI) in Carnegie Mellon 
University. In the ADD method (Bachmann & Bass, 2001; Bass et al., 2003; Wojcik et al., 2006), the main focus 
is to ensure that the quality attribute requirements are met with the designed software architecture. It is a 
systematic recursive approach. During decomposition of modules, at each stage, the architect ensures that both 
functional and non-functional (quality) requirements are met with an architectural solution. The architectural 
solution may be an architectural pattern or style. ADD version 2.0 (Wokcik et al, 2006) was also developed. 
Software Engineering Institute maintains a website (SEI, 2015) on the subject. The ADD Version 2.0 steps are 
presented in Table 1. A practical example of applying attribute driven design version 2.0 is reported by Wood 
(2007). 

 

Table 1. Software architecture design steps in the Attribute Driven Design (ADD) method (Wojcik et al., 2006) 

 
 

2.2 Siemens Four Views Approach (S4V) 

The S4V method is developed at Siemens Corporate Research. The four views (S4V) are conceptual view, 
module view, code view, and execution view. The conceptual view deals with the issues relating to the 
application domain. One of the most important questions answered with the conceptual view is how the system 
fulfills its requirements. How the functionality partitioned to the conceptual components is also explained with 
the conceptual view. The module view explains how the conceptual components are mapped to subsystems and 
modules. In this view, the conceptual solution is realized with today’s software platforms and technologies. The 
execution view describes the runtime interactions of the software application. It also deals with how subsystems 
and modules are mapped to the hardware platforms. The code view deals with how runtime entities are mapped 
to the deployment components such as executables, libraries, etc. Each view acts an input for another view and 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

15 
 

helps the software architect to analyze trade-offs. The software architecture development has feedback loops 
with hardware architecture and source code development. Details regarding the architecture development process 
with S4V method can be found in (Soni et al., 1995; Hofmeister et al., 2000). The case study in this article 
follows the Siemens Four Views approach. 

2.3 Rational Unified Process® (RUP®)’s “4+1” View Model of Software Architecture 

Rational Unified Process (RUP) (Kruchten, 2003) is a software development process developed by Rational 
Software, later acquired by IBM. RUP adapts the “4+1” model of software architecture introduced by Kruchten 
(1995). The views in the “4+1” model are logical view, development view, process view, physical view, and 
scenarios. The logical view is towards the end user and describes the functionality of the system. The 
programmers are mainly interested in the development view and this view deals with software management 
related issues. The process view is of particular concern to integrators. Among other issues, it mainly deals with 
performance and scalability related issues. System engineers are mainly concerned with the physical view. 
Topology and communication related issues are handled with the development of physical views. According to 
Kruchten (1995), creating scenarios in the architecture development process help developers to put it all together. 
These multiple views are developed concurrently and there is a feedback loop in the development process. In 
Rational Unified Process, architecture design process is iterative. In every iteration, the architecture becomes 
more refined. Three main group of architectural design activities are (i) defining a candidate architecture, (ii) 
performing an architectural synthesis, and (iii) refining the architecture (Hofmeister et al., 2007).  

2.4 Business, Architecture, Process, Organization / Customer, Application, Functional, Conceptual, Realization 
(BAPO/CAFCR) 

Philips Research played an important role in the development of BAPO/CAFCR (America, Obbink, & Rommes, 
2004; van der Linden, Bosch, Kamsteries, Kansala, & Obbink, 2004). This architecture development approach is 
mainly geared towards the development of a product family in a business processes context. It can be said that 
BAPO approach takes a holistic view in system software development. Therefore, in addition to the system 
architecture (A), special consideration is given to the business (B), process (P), and organizational (O) context. 
In this approach, there are five views. These are customer (C), application (A), functional (F), conceptual (C), 
and realization (R) views (CAFCR). Again, the architecture development is an iterative process similar to the 
other approaches. In every iteration, the architect develops necessary project artifacts and various quality 
attributes are analyzed in the context of business, process, and organization. 

2.5 Architectural Separation of Concerns 

The software architects are faced with the challenge of crafting an architecture that satisfies a set of requirements 
spanning across a number of concerns. The architectural separation of concerns approach recognizes this reality 
and bases the architecture development methodology on this reality. Nokia played a significant role in the 
development of architectural separation of concerns or ARES system of concepts (Ran, 2000). This methodology 
has an architecture-centered development approach. In this methodology, it is recognized that the system goals 
affect architectural decisions that is represented with architecture descriptions. The architecture descriptions 
should be consistent with the implementation. Naturally, as the result of the system development effort, the 
implementation aims at achieving the system goals. In the methodology, the implementation should be validated 
using the architecture description that is verified by architectural decisions. In every step, software artifacts and 
the process is evaluated. 

In architectural separation of concerns approach, the stakeholder goals are analyzed and the goals that have 
impact on the architecture are refined into architecturally significant requirements (ASRs). These requirements 
are grouped under a set of concerns. During the development, how to address each concern and the effects on the 
architecture are investigated. Each concern is addressed via an architectural solution. In this approach, the 
development is viewed as a set of transformations that software artifacts turn into other software artifacts. During 
transformations, the evolution of the architecture is closely controlled, verified, and validated. 

3. Case Study of a Mission-Critical Defense System: Mine Neutralization System 
3.1 The Context of the Mission-Critical Defense System 

Because of the technological improvements in electronics and software systems, Navies around the world 
undergo major revisions in their combatant ships. Instead of designing and building ships from the scratch, it is 
cheaper to upgrade the combat systems to increase the ship’s combat capabilities. The Mine Neutralization 
System (MNS) is conceptualized and designed to adapt latest technologies in mine warfare without leading to 
major changes in a mine hunting ship’s original structure. The objective of the MNS is to detect and eliminate 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

16 
 

sea mines. The system uses a detection sonar to detect an underwater threat, possibly a sea mine. The 
classification sonar helps the sonar operator to classify the threat type, which may be a magnetic or a moored 
mine. The operators of the system eliminate the mine threats using a remotely operated underwater vehicle 
(ROV). MNS controls all these main and auxiliary equipment including system consoles to achieve sea mine 
hunting missions for navy mine warfare ships. 

3.2 Mine Neutralization System (MNS) High-Level and User-Level Goals 

Requirements engineering is an important success factor in software projects (Hofmann & Lehner, 2001; Demir, 
2008). Furthermore, half of the software development and information systems projects are challenged in 
requirements management (Demir, 2009b). Therefore, requirements engineering related activities are crucial. 
Requirements provides the main input for the software architecture development. The software architect takes 
the requirements and develops a software architecture that meets both functional and nonfunctional requirements. 
The decisions the software architect makes at this phase determine the boundaries for system quality attributes 
such as extensibility, modifiability, adaptability, reliability, safety, maintainability, testability, etc. 

The high-level and user-level goals of the system were identified through a series of interviews with navy 
officers who are the major stakeholders for such systems. Also, the analysis of business opportunities and 
technological improvement projections for mine warfare systems guided the most important system 
requirements. 

The interviews with navy officers revealed important improvement opportunities in existing mine hunting 
systems. For example, existing systems require multiple operators. In most navy ships, there are 3 watches. Each 
watch is 8 hours long. If a warfare system is operated by 3 crew members in a watch, then 9 crew members are 
needed to operate the system continuously. If the system is replaced with a one-man operated system, then there 
is a savings of 6 crew members. In a mine hunting ship, the number of personnel is limited and sometimes 
operators need to stay on watch for long hours, which poses a threat to the mission. MNS reduces the number of 
personnel to only one operator. This is one of the important achievements of the system. Another 
accomplishment of the system is that the system is highly adaptable to the technological advances in mine 
warfare. This requirement is derived from the business opportunities.  

After the requirements analysis phase, the high-level goals (Table 2) and the user-levels goals (Table 3) of the 
system are identified. 

 

Table 2. Mine Neutralization System (MNS) high-level goals 

 
 

 

 

 

 

 

 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

17 
 

Table 3. Mine Neutralization System (MNS) user-level goals 

 
The requirements analysis phase of the system development lead to identification of certain distinguishing 
features of the proposed product as presented in Table 4.  

 

Table 4. Mine Neutralization System (MNS) features 

 
 

All these goals and resulting features provide the most important input for the system software architecture 
development. 

3.3 Mine Neutralization System Main Components 

Analysis of similar mine warfare systems reveals the necessary main components for the MNS. The system is 
composed of five main components: 

Detection and Classification Sonar Suite: The sonar suite is responsible for the detection and classification of 
mines. Two different sonars exist in this suite. The detection sonar is a long-range wide-spectrum sonar that is 
used to detect the presence of underwater objects. The classification sonar is used for further analysis of 
underwater objects suspected to be mine threats. This sonar creates a contact for the system. A bathythermograph 
and an echo sounder are auxiliary devices attached to the suite to provide necessary sea condition data.  

Navigation Unit: This unit provides the precise location data for the ship. The navigation unit consists of a global 
positioning system (GPS) device and a gyro unit. Both of these devices provide the location data and one of the 
devices is sufficient for the operation. The gyro unit is a redundancy measure against the GPS failure. Therefore, 
the failure of one device doesn’t compromise the mission.  



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

18 
 

Mine Neutralization System Console: This unit is the interface between the operator and the system.  

Mine Neutralization Vehicle (MNV): This unit handles the elimination of sea mines. It is a remotely operated 
underwater vehicle (ROV) and attached to the mother ship with an umbilical cable that carries the 
communication and power cables. The vehicle carries many devices to achieve the mission. Some of these 
devices are an echo sounder to determine the depth, a TV camera to monitor the underwater, a projector to 
provide light, an emergency pinger used to locate the vehicle if lost, an umbilical cable to provide electrical 
power and the necessary comunication with the mother ship, a gyro unit to determine location, and a mine 
neutralization vehicle control unit.  

Mine Neutralization System Controller: This unit is the heart of the system. It provides communication between 
components. It also synchronizes the events during the mine hunting operation.  

Figure 1 shows the main components and relations between the components for the system architecture. 

 

 

Figure 1. Mine Neutralization System main components 

 

3.4 Mine Neutralization System Use Cases 

During the requirements gathering phase, we interviewed a navy officer responsible for mine hunting operations 
in navy mine hunting ships. The navy officer indicated 6 main functions expected from a mine neutralization 
system. These functions are detecting mines, classifying mines, control of mine neutralization vehicle (MNV), 
control of the TV camera subsystem integrated with the MNV, mine neutralization using a cable cutter or an 
explosive charge, and handling emergency operations. As a result, we identified 6 high-level use cases. Figure 2 
shows these use cases. Naturally, further in the process, these high-level use cases are decomposed into low-level 
use cases. Note that there is only one operator handling all these use cases, since one of the important features of 
the system is being a one-man operated system. 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

19 
 

 

Figure 2. High-level use cases of mine neutralization system 

 

3.5 Mine Neutralization System Software Architecture Design 

Mission-critical defense system software development is an expensive and long effort. These types of systems 
tend to have long life-cycles and they evolve in time. Older versions are replaced with newer versions to keep up 
with advancing technology. A well-designed software system architecture prolongs the system life-cycle and 
reduce the maintenance effort. Therefore, the architecture design phase is one of the most important phases in a 
software engineering project (Bass et al., 2003).  

System requirements are the main inputs for the software architecture design. In the previous phases, we 
developed the system requirements with a rigorous effort. Now, we move into the design of system software 
architecture with a multi-view perspective. In this study, we follow the Siemens Four View Architecture 
development approach. In this model, developing the views of the system software architecture starts with a 
global analysis. Note that we exclude the code and execution view. Since, the final views can only be achieved at 
the end of the development phase.   

3.5.1 Global Analysis 

The global analysis is the process of identifying factors influencing the architectural design. The goal of the 
global analysis is to develop strategies for each identified factor. The factors related to the development of MNS 
are listed in Table 5. During MNS development, strategies are laid out for each identified factor. It is important to 
cover each factor with at least one strategy. Table 6 shows the factors and corresponding strategies. For example, 
factor 2 enforces the system to be easily modifiable. Encapsulating the features into separate components is 
chosen as a strategy for this specific factor. In the MNS, the navigation unit handles all the navigation tasks and 
the unit is only connected to the system controller. If an upgrade becomes necessary in the navigation features, 
the navigation unit can easily be replaced with a newer version. Such modification doesn’t effect other 
components in the system. This is also how one of the corresponding high-level user goals is achieved. The next 
step in the process is the development of the conceptual view of the system. The main components of the system, 
presented in figure 1, are used as inputs for the development of the conceptual view. 

 

 

 

 

 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

20 
 

Table 5. Factors influencing architectural design 

 

 

Table 6. Factors and corresponding strategies 

 

 

3.5.2 Conceptual View 

In the global analysis, use of well-known patterns is chosen as a strategy to address some of the identified factors. 
For the conceptual view, we decided to use the pattern known as Model-View-Controller (MVC). The suggested 
context for this architectural pattern is interactive applications with a flexible human-computer interface 
(Buschmann, Meunier, Rohnert, Sommerlad, & Stal, 1996). The model-view-controller architectural pattern 
divides an interactive application into three components. Models contain the core functionality and data. Views 
display the information to the user. The controller binds the models and the views. A change-propagation 
mechanism through controller ensures consistency between the view and the model. Figure 3 shows the 
conceptual view and how the architectural pattern is applied to the MNS. The rationales for choosing the pattern 
are as follows: 

• The prospective customers are the Navies in the world. This necessitates compliance with existing user 
interface standards of the different Navies. Thus, the user interface of the system have to be decoupled and 
features such as multi-language support and different look and feels have to be provided. 

• Even if the model changes, the users will require the same information from the system. This pattern enables 
decoupling the model from the view. For example, an upgrade in the navigation unit will not effect the 
interface. The navigation unit is one of the components of the model and the mine neutralization system 
console, which is the interface to the user, is the view in the pattern.   

• The product is a mission-critical defense system and it is a real-time interactive application. Abstracting the 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

21 
 

controller enables us to focus on the synchronization of events in the system in a real-time environment. 
• The system is an adaptable system enabling modifications when necessary in each component of the MVC 

pattern.  
• Easy addition/modification/removal of the view and model components will ease the maintenance of the 

product. 
• The architecture of the product will form a framework for future versions and similar products. Note that the 

product has a long life-cycle. 

Choosing the model-view-controller pattern helped us to conceptualize an adaptable and maintainable system. 
This is how some important nonfunctional requirements can be achieved in the conceptual view. 

 
Figure 3. Conceptual view 

 

3.5.3 Module View 

The main purpose of the module view is to simplify the system’s implementation in software. It helps us to 
overcome the complexity of the system. In the module view, all the application functionality, control 
functionality, and meditation are mapped to subsystems, modules, and connections.   

For the module view, we developed an architectural style named star-controller architecture. The style resembles 
to a star network topology in structure. The style benefits from the well-known design decomposition principle. 
The system is carefully partitioned to subsystems, which are strictly loosely coupled with each other. In this 
architectural style, the system is divided into two types of components: controllers and subcomponents. The 
controllers handle the control functionality and the subcomponents handle the application functionality in the 
module view.  

The architectural style follows two basic rules: 

1. A controller can be connected to controllers and subcomponents. 

2. Subcomponents can only be connected to controllers.  

Figure 4 shows the star-controller architectural style. 

 

 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

22 
 

 
Figure 4. The star-controller architectural style 

 

The style helps us to reduce the development effort for interfaces and similar subcomponents. It also enables the 
independent development of subcomponents or easy addition of existing subsystems enforced with one of the 
high-level goals. This architecture helps to achieve an adaptable and maintainable system.  

In this architectural style, faults can easily be identified and localized to specific portions of the system. 
Subsystems are tested separately and integration testing is achieved as new subsystems are added to the system. 
The style follows “design for testing” principle in this perspective.  

The star-controller architecture has a simple structure. Synchronization and the control flow of information are 
handled by controllers. The information is produced by subcomponents. The controllers’ solemn task is to ensure 
reliable communication and synchronization, which are important considerations for real-time systems. In this 
architecture, high cohesion is achieved by partitioning the functionality cohesively into subcomponents. 

The nonfunctional requirements of MNS require the system to be safe and reliable. Ease of testing and a simple 
design is essential for achieving safety and reliability.  

The major drawback of the style is that the failure of one controller disables all the subcomponents attached to 
the controller. In the MNS, we overcome this problem by using redundancy in hardware. The MNS has a system 
self-checking mechanism built in its design. Every controller constantly monitors the attached subcomponents 
and another controller. Whenever a failure is detected in a subcomponent or in a controller, the system 
immediately switches to the redundant hardware. Another solution to this problem may be redundancy in 
software. A software module having the same functionality may be designed differently and installed to the 
redundant hardware. However, this is a costly solution. As a result, only hardware redundancy exists in the MNS. 
Figure 5 shows how star-controller architecture is applied to the mine neutralization vehicle subsystem. Note that 
all classes have a status attribute used to store the status of the component. The system self-checking mechanism 
is accomplished via querying these status attributes. 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

23 
 

 
Figure 5. The mine neutralization vehicle subsystems 

 

Rationales on choosing the star-controller architectural style are listed as follows: 

• Easy elimination of synchronization problems increases the system’s reliability and safety.  
• Application and control functions are separated. Therefore, modifications in the application functionality 

does not effect the control functionality. 
• Easy addition/removal of modules and functionality supports quality attributes such as adaptability and 

modifiability. 
• Easy localization of errors reduces the testing effort.  
• Reduced fault propagation increases the system safety and reliability. 

A system may have multiple software architectures addressing different concerns. Because high reliability and 
safety are important concerns for MNS, an additional software architecture is used to address communication 
and synchronization issues. A layered architectural pattern is chosen. Layered architectures help to structure 
applications that can be decomposed into groups of subtasks. These subtasks are at a particular abstraction. In the 
MNS, the system is divided into two layers. The first layer, networking layer, handles the communication 
between modules as well as establishing the protocols and checking messages for errors. The networking layer 
corresponds to the physical and data link layer in open system interconnection (OSI) model (Zimmermann, 
1980). The second layer is named as system layer and it is responsible for all other application-related 
communications in the system. Figure 6 shows the layered architecture of the MNS.  

 
Figure 6. The layered architecture of the MNS 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

24 
 

The next phase in the process is the development of code and execution views of the system. Development of 
these views require lengthy discussions impractical to fit into one article. Therefore, we only provide some of the 
high-level software design diagrams as part of the code view. The rest is left as future work.  

3.6 Mine Neutralization System High-Level Software Design 

The inputs from different views of MNS architecture are used in the high-level design of the system. It is 
important that the design follows the architectural design decisions. A smooth transition from one activity to 
another activity is achieved in the MNS development by ensuring that the architectural decisions are followed in 
every step. Figure 7 shows the derived domain model of the MNS. Note the structural similarity of the domain 
model and the star-controller architectural style introduced earlier. Figure 8 and 9 show some of the high-level 
design diagrams. 

 

Figure 7. The domain model of the Mine Neutralization System 

 

 

 

 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

25 
 

 
Figure 8. The detection and classification sonar suite high-level design 

 

 

Figure 9. The mine neutralization system controller high-level design 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

26 
 

3.7 Validation of the Mine Neutralization System throughout the Development Process 

In every step of the development, we put special emphasis on the validation of the system. Therefore, various 
system development artifacts such as a vision document, a system domain model, conceptual diagrams, detailed 
use cases, system sequence diagrams, statecharts, test cases, prototypes, user interface mock-ups are developed 
at different stages. During the development process, we consulted a navy officer who had experience in using 
similar systems in mine hunting operations. These system artifacts helped us in exchanging ideas and in system 
design validation with a user. For example, the operation of the mine neutralization vehicle control is modeled 
with a high-level statechart as shown in Figure 10. This and other types of artifacts were identified to be quite 
useful in system validation. 

 

Figure 10. High-level statechart of Mine Neutralization Vehicle control operation 

 

3.7.1 Validation of the Mine Neutralization System User Interface Design 

The user-level goals of the MNS has two distinct goals related to the system user interface. The first user-level 
goal is to develop a system that can be operated with only one operator. This is a quite challenging goal 
considering the mine neutralization operation. It is also one of the distinguishing features of the system. The 
third goal is to have a simple user interface. When this goal translates into a system software requirement, it is 
quite vague. Since we recognize the challenges behind these goals, we used the model-view-controller 
architectural pattern. Our goal was to decouple the view of the system from the rest. As a result, we put special 
emphasis on the process of the system user interface design. At this stage, we employ rapid system prototyping 
techniques. Rapid prototyping of systems helps to identify requirements (Demir, 2009c). We developed various 
user interface mock-ups and turned these mock-ups into prototypes. During this process, it was important that 
our user interface designs are validated by experienced users. Therefore, we consulted a navy officer to help us 
in user interface design. The interviews and preliminary testing of various user interface designs with the navy 
officer provided significant insights and helped us to finalize our requirements. 

4. Conclusions 
In this article, we presented a case study of multi-view software architecture development. The case study is a 
mission-critical defense system. The development of defense systems is a long and expensive effort. These types 
of systems are generally complex safety-critical systems. Because of these properties, achieving high quality is 
vital. Only, a well-designed architecture lead the way to satisfy all the necessary quality (nonfunctional) 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

27 
 

requirements.  

First, we identified the high-level and user-level goals through interviews with navy officers and analysis of 
existing similar systems. Analysis of existing systems revealed the necessary components for the mine 
neutralization system. Then, we conducted a global analysis to identify factors that influence our architectural 
design decisions. The strategies to resolve the factors are determined. The global analysis guided the 
development of the conceptual and module views of the system software architecture. The widely-known 
patterns are used and a new architectural style is developed to meet the specific properties imposed by the 
identified factors. Finally, we showed how the architecture formed the basis for the high-level system design. 

We introduced the star-controller architectural style using the case study. This style has the advantage of (i) being 
simple and easily testable (ii) achieving low-coupling and high-cohesion in the software design (iii) having 
increased control over synchronization and communication necessary in real-time systems. The weakness of the 
style is that the failure of a controller also disables the subsystems attached to it. To overcome this weakness, 
hardware redundancies are used.   

In the system software architecture, we used the model-view-controller architectural pattern and the 
star-controller architectural style to achieve usability, extensibility, adaptability, modifiability, testability, 
maintainability, safety, and reliability. The layered architecture is used to increase maintainability, safety, and 
reliability. 

5. Experiences, Lessons Learned, and Future Work 
During the architecture development, it was clear that one architectural pattern would not be enough to satisfy all 
the nonfunctional requirements. The requirements forced us to use multiple software architectures for different 
nonfunctional requirement sets. Some of the lessons learned are as follows:  

• Paying special attention to the requirements gathering phase is a good promise of a successful software 
architecture development. The views of the navy officers on the system proved to be very critical at this 
phase. 

• Partitioning the tasks into different architectural views, each addressing separate concerns, is found to be 
useful in meeting both functional and nonfunctional requirements.  

• A well-documented conceptual view ensures that the problem at hand is understood by all the stakeholders. 
Communication among developers is improved this way and misunderstandings are reduced if not 
eliminated completely.  

• Conceptual view was used as a primary input for the module view.  
• Development of various system software artifacts especially using Unified Modeling Language (UML) 

enabled easy exchange of ideas and creation of constructive feedback loops. Visual diagrams such as the 
domain model, the use case model, system sequence diagrams, and statecharts are found to be significantly 
helpful in system design.  

• Early prototyping of user interfaces are found to be effective in requirements elicitation.  

Architecture description languages (ADLs) have been the focus of software architecture community for some 
time (Medvidovic & Taylor, 2000). There are various languages to specify the software architecture designs 
formally, for example Armani (Monroe, 1998). It is possible to analyze software architectures with ADLs. As a 
future work, we would like to analyze the star-controller architectural style with ADLs and get an in depth 
understanding of the style.  

Acknowledgements and Disclaimers 
The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily 
representing the official policies or endorsements, either expressed or implied, of any affiliated organization or 
government. This article is a revised and extended version of the study (Demir, 2006) presented in First Turkish 
Software Architecture Design Conference.  

References 
Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., & Meedeniya, I. (2013). Software architecture optimization 

methods: A systematic literature review. IEEE Transactions on Software Engineering, 39(5), 658-683. 
http://dx.doi.org/10.1109/TSE.2012.64 

America, P., Rommes, E., & Obbink, H. (2004). Multi-view variation modeling for scenario analysis. In 
Software Product-Family Engineering (pp. 44-65). Springer Berlin Heidelberg. 
http://dx.doi.org/10.1007/978-3-540-24667-1_5  



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

28 
 

Bachmann, F., & Bass, L. (2001). Introduction to the attribute driven design method. Proceedings of the 23rd 
International Conference on Software Engineering (pp. 745-746). IEEE Computer Society. 
http://www.computer.org/csdl/proceedings/icse/2001/1050/00/10500745.pdf   

Bass, L., & John, B. E. (2003). Linking usability to software architecture patterns through general scenarios. 
Journal of Systems and Software, 66(3), 187-197. http://dx.doi.org/10.1016/S0164-1212(02)00076-6 

Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture in Practice (2nd ed.). Reading, MA: 
Addison-Wesley, 2003. 

Bessam, A., & Kimour, M. T. (2009). Multi-view Metamodeling of Software Architecture Behavior. Journal of 
Software, 4(5), 478-486. http://dx.doi.org/10.4304/jsw.4.5.478-486 

Boehm, B. (2006). Some future trends and implications for systems and software engineering processes. Systems 
Engineering, 9(1), 1-19. http://dx.doi.org/10.1002/sys.20044 

Borrmann, L., & Paulisch, F. N. (1999). Software Architecture at Siemens: The challenges, our approaches, and 
some open issues. In Software Architecture (pp. 529-543). Springer US. ISSN: 1868-4238 
http://dx.doi.org/10.1007/978-0-387-35563-4_31  

Bosch, J., & Molin, P. (1999). Software architecture design: evaluation and transformation. In Engineering of 
Computer-Based Systems, 1999. Proceedings. ECBS'99. IEEE Conference and Workshop on (pp. 4-10). 
IEEE. http://dx.doi.org/10.1109/ECBS.1999.755855  

Bosch, J. (2000). Design and Use of Software Architecture: Adopting and Evolving a Product-Line Approach. 
Addison-Wesley, Boston. 

Breivold, H. P., Crnkovic, I., & Larsson, M. (2012). A systematic review of software architecture evolution 
research. Information and Software Technology, 54(1), 16-40. http://dx.doi.org/10.1016/j.infsof.2011.06.002  

British Ministry of Defence (2015). Ministry of Defence Architecture Framework (MODAF). Retrieved  
September 10, 2015, from https://en.wikipedia.org/wiki/MODAF  

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-Oriented Software 
Architecture: A System of Patterns, Volume 1, John Wiley & Sons, West Sussex, England. ISBN: 
0471958697.  

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., & Stafford, J. (2002). 
Documenting Software Architectures: Views and Beyond. Addison-Wesley, Boston. 

Demir, K. A. (2005). Analysis of TLCharts for weapon systems software development, Master’s Thesis in 
Software Engineering, Monterey, California. Naval Postgraduate School. Retrieved December, 2005, from  
https://calhoun.nps.edu/bitstream/handle/10945/1825/05Dec_Demir.pdf?sequence=1    

Demir, K. A. (2006). Meeting Nonfunctional Requirements through Software Architecture: A Weapon System 
Example. In Proceedings of the First Turkish Software Architecture Design Conference, TSAD 2006, 
Istanbul, Turkey, pp. 148-157, 20-21. Retrieved November, 2006, from 
http://www.softwaresuccess.org/papers/2006_Demir_UYMK_Meeting_Nonfunctional_Reqs_Through_SW
_Arch.pdf  

Demir, K. A. (2008). Measurement of software project management effectiveness. Doctoral Dissertation in 
Software Engineering, Naval Postgraduate School, Monterey, CA, USA. Retrieved December 2008, from 
http://edocs.nps.edu/npspubs/scholarly/dissert/2008/Dec/08Dec_Demir_PhD.pdf  

Demir, K. A. (2009a). Challenges of weapon systems software development. Journal of Naval Science and 
Engineering, 5(3), 104-116. Retrieved from 
http://www.softwaresuccess.org/papers/2009_Demir_JNSE_Challenges_of_Weapon_Systems_SW_Dev.pdf 

Demir, K. A. (2009b). A Survey on Challenges of Software Project Management. In Proceedings of the Software 
Engineering Research and Practice 2009 (SERP 2009). pp. 579-585. Retrieved from 
http://www.softwaresuccess.org/papers/2009_Demir_SERP_Survey_On_Challenges_of_SW_Project_Mgm
t.pdf  

Demir, K. A. (2009c). Modular Prototyping of Systems and Environments Using Models Developed with 
Attributed Event Grammar. In Proceedings of the Software Engineering Research and Practice 2009 (SERP 
2009) pp. 237-243. Retrieved from 
http://www.softwaresuccess.org/papers/2009_Demir_SERP_Modular_Prototyping_of_Systems_and_Envir
onments.pdf  



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

29 
 

Dikel, D. M., Kane, D., & Wilson, J. R. (2001). Software Architecture: Organizational Principles and Patterns. 
Prentice-Hall, Upper Saddle River, NJ. 

Drusinsky, D., Shing, M. T., & Demir, K. (2005). Test-time, Run-time, and Simulation-time Temporal Assertions 
in RSP. In Rapid System Prototyping, 2005. (RSP 2005). The 16th IEEE International Workshop on (pp. 
105-110). IEEE. http://dx.doi.org/10.1109/RSP.2005.50  

Feiler, P. H., Hansson, J., De Niz, D., & Wrage, L. (2009). System architecture virtual integration: An industrial 
case study (Report No. CMU/SEI-2009-TR-017). Carnegie-Mellon University, Pittsburgh, Pa, Software 
Engineering Institute (SEI). http://resources.sei.cmu.edu/asset_files/technicalreport/2009_005_001_1511 
9.pdf  

Firesmith, D., Capell, P., Elm, J. P., Gagliardi, M., Morrow, T., Roush, L., & Shu, L. (2006). QUASAR: A 
Method for the Quality Assessment of Software-Intensive System Architectures (No. 
CMU/SEI-2006-HB-001). Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA, 
USA. Retrieved September 10, 2015, from 
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7767 

Fradet, P., Le Métayer, D., & Périn, M. (1999). Consistency checking for multiple view software architectures. In 
Software Engineering—ESEC/FSE’99 (pp. 410-428). Springer Berlin Heidelberg. 
http://dx.doi.org/10.1007/3-540-48166-4_25   

Franke, U., Höök, D., König, J., Lagerström, R., Närman, P., Ullberg, J., Gustafsson, P., & Ekstedt, M. (2009). 
EAF2 - A framework for categorizing enterprise architecture frameworks. In Software Engineering, 
Artificial Intelligences, Networking and Parallel/Distributed Computing, 2009. SNPD'09. 10th ACIS 
International Conference on (pp. 327-332). IEEE. http://dx.doi.org/10.1109/SNPD.2009.98 

Garlan, D., & Shaw, M. (1993). An Introduction to Software Architecture. Advances in Software Engineering 
and Knowledge Engineering, Volume I, edited by V. Ambriola and G. Tortora, World Scientific Publishing 
Company, New Jersey, 1993. Retrieved from 
http://www.worldscientific.com/doi/suppl/10.1142/2207/suppl_file/ 2207_chap01.pdf 

Garlan, D. (2000). Software architecture: a roadmap. In Proceedings of the Conference on the Future of Software 
Engineering (pp. 91-101). ACM. http://dx.doi.org/10.1145/336512.336537 

Garland, J., & Anthony, R. (2002). Large-Scale Software Architecture: A Practical Guide using UML. John 
Wiley & Sons, Inc., New York. 

Gomaa, H. (2000). Designing Concurrent, Distributed and Real-time Applications with UML. Addison-Wesley, 
Boston. 

Hofmann, H. F., & Lehner, F. (2001). Requirements engineering as a success factor in software projects. IEEE 
Software, (4), 58-66. http://dx.doi.org/10.1109/MS.2001.936219  

Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran, A., & America, P. (2005). Generalizing a model of 
software architecture design from five industrial approaches. In Software Architecture, 2005. WICSA 2005. 
5th Working IEEE/IFIP Conference on (pp. 77-88). IEEE. 910-924. 
http://dx.doi.org/10.1109/WICSA.2005.36  

Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran, A., & America, P. (2007). A general model of 
software architecture design derived from five industrial approaches. Journal of Systems and Software, 
80(1), 106-126. http://dx.doi.org/10.1016/j.jss.2006.05.024  

Hofmeister, C., Nord, R., & Soni, D. (2000). Applied Software Architecture, Addison-Wesley Object Technology 
Series, New Jersey. 

IEEE Standard 1471-2000 (2000). IEEE Recommended Practice for Architectural Description of Software 
Intensive Systems. IEEE, 2000. http://dx.doi.org/10.1109/IEEESTD.2000.91944  

IFIP-IFAC Task Force (1999). GERAM: Generalized Enterprise Reference Architecture and Methodology, 
IFIP-IFAC Task Force on Architectures for Enterprise Integration, Tech. Rep., 1999. Retrieved from 
http://www.ict.griffith.edu.au/~bernus/taskforce/geram/versions/geram1-6-3/GERAMv1.6.3.pdf  

ISO/IEC/IEEE 42010-2011 (2011). Systems and software engineering - Architecture description, IEEE, 2011. 
http://dx.doi.org/10.1109/IEEESTD.2011.6129467  

Kazman, R., Klein, M., & Clements, P. (2001). Evaluating Software Architectures-Methods and Case Studies. 
Boston, MA: Addison-Wesley, 2002.  



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

30 
 

Kheir, A., Oussalah, M. C., & Naja, H. (2013). Hierarchical Multi-Views Software Architecture. In Proceedings 
of the Eighth International Conference on Software Engineering Advances, ICSEA 2013, October 27 - 
November 1, 2013 - Venice, Italy 

Kruchten, P. (1995). The 4+1 view model of architecture. IEEE Software, 12(6), 42-50. 
http://dx.doi.org/10.1109/52.469759  

Kruchten, P. (1999). The Rational Unified Process: An Introduction, Addison-Wesley, Reading, MA. 

Kruchten, P. (2003). The Rational Unified Process: An Introduction, 3 ed., Boston: Addison-Wesley, 2003. 

Mattsson, A., Lundell, B., Lings, B., & Fitzgerald, B. (2009). Linking model-driven development and software 
architecture: A case study. IEEE Transactions on Software Engineering, 35(1), 83-93. 
http://dx.doi.org/10.1109/TSE.2008.87  

Medvidovic, N., & Taylor, R. N. (2000). A classification and comparison framework for software architecture 
description languages.  IEEE Transactions on Software Engineering, 26(1), 70-93. 
http://dx.doi.org/10.1109/32.825767  

Monroe, R. T. (1998). Capturing software architecture design expertise with Armani. Carnegie-Mellon 
University. Department of Computer Science. Retrieved September 14, 2015, from 
http://ra.adm.cs.cmu.edu/anon/home/ftp/usr/ftp/1998/CMU-CS-98-163R.pdf  

NATO (2015). NATO Architecture Framework (NAF) Version 4.0, Retrieved September 10, 2015 from 
http://nafdocs.org/ 

Object Management Group (OMG) Unified Architecture Framework (UAF) (2015). Retrieved September 14, 
2015 from http://blog.nomagic.com/unified-architecture-framework-uaf-new-page-updm/ 

Ran, A., (2000). ARES Conceptual Framework for Software Architecture. In: Jazayeri, M., Ran, A., van der 
Linden, F. (Eds.), Software Architecture for Product Families Principles and Practice. Addison-Wesley, 
Boston, pp. 1–29. 

Reichwein, A., & Paredis, C. J. (2011). Overview of architecture frameworks and modeling languages for 
model-based systems engineering. In Proceedings of the ASME 2011 International Design Engineering 
Technical Conferences and Computers and Information in Engineering Conference, pp. 1341-1349.  

Roshandel, R., Schmerl, B., Medvidovic, N., Garlan, D., & Zhang, D. (2003) Using Multiple Views to Model 
and Analyze Software Architecture: An Experiment Report, USC Technical Report Number 
USC-CSE-2003-508, 2003. Retrieved September 14, 2015, from 
http://sunset.usc.edu/publications/TECHRPTS/2003/usccse2003-508/usccse2003-508.pdf  

Schekkerman, J. (2004). How to survive in the jungle of enterprise architecture frameworks: Creating or 
choosing an enterprise architecture framework. Trafford Publishing. 

Shaw, M., & Garlan, D. (1995). Formulations and formalisms in software architecture. Computer Science Today 
(pp. 307-323). Springer Berlin Heidelberg. 

Software Engineering Institute (2015). Attribute Driven Design, Retrieved September 16, 2015 from 
http://www.sei.cmu.edu/architecture/tools/define/add.cfm  

Soni, D., Nord, R. L., & Hofmeister, C. (1995). Software architecture in industrial applications. In Proceedings 
of the 17th International Conference on Software Engineering, ICSE 1995. (pp. 196-196). IEEE. 

Taušan, N., Aaramaa, S., Lehto, J., Kuvaja, P., Markkula, J., & Oivo, M. (2014). Customized Choreography and 
Requirement Template Models as a Means for Addressing Software Architects’ Challenges, In Proceedings 
of the Ninth International Conference on Software Engineering Advances, ICSEA 2014. October 12 - 16, 
2014 - Nice, France  

The Open Group (2015). TOGAF version 9.1, Retrieved September 14, 2015, from 
https://www.opengroup.org/togaf/ 

U.S. Department of Defense (2015). The DoDAF Architecture Framework Version 2.02, 
http://dodcio.defense.gov/Library/DoDArchitectureFramework.aspx 

U.S. Federal Enterprise Architecture Framework (FEAF) (2015). Federal Enterprise Architecture Framework 
Version 2, Retrieved September 16, 2015 from https://www.whitehouse.gov/omb/e-gov/fea 

Urbaczewski, L., & Mrdalj, S. (2006). A comparison of enterprise architecture frameworks. Issues in Information 
Systems, 7(2), 18-23. 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 4; 2015 

31 
 

van der Linden, F., Bosch, J., Kamsteries, E., Kansala, K., & Obbink, H. (2004). Software product family 
evaluation. In Proceedings of Third International Conference on Software Product Lines, SPLC 2004, 
Boston, MA. Springer-Verlag, pp. 110–129. 

Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord, R., & Wood, W. (2006). Attribute-Driven 
Design (ADD), Version 2.0 (CMU/SEI-2006-TR-023). Software Engineering Institute, Carnegie Mellon 
University. Retrieved September 10, 2015, from http://www.sei.cmu.edu/reports/06tr023.pdf 

Wood, W. G. (2007). A Practical Example of Applying Attribute-Driven Design (ADD), Version 2.0 (No. 
CMU/SEI-2007-TR-005 Software Engineering Institute, Carnegie Mellon University. Retrieved September 
10, 2015, from http://www.sei.cmu.edu/reports/07tr005.pdf  

Zachman, J. (1987). A framework for information systems architecture. IBM Systems Journal, 26(3), 276-292. 
http://dx.doi.org/10.1147/sj.263.0276 

Zimmermann, H. (1980). OSI reference model-The ISO model of architecture for open systems interconnection. 
IEEE Transactions on Communications, 28(4), 425-432. http://dx.doi.org/10.1109/TCOM.1980.1094702 

 
Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/3.0/). 

 


