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Abstract 
The cognitive radio system is proposed as an optimal way to improve the frequency underutilization. Spectrum 
sensing is the first and the essential function in this approach. A cognitive user must sense his environment to 
detect the unused channels, and then he can use the free channel without causing any interference to the primary 
user. In this article, an innovative technique is proposed for spectrum sensing based on principal component 
analysis and neural networks in frequency domain. The designed blocks are described using VHSIC Hardware 
Description Language (VHDL). The suggested application consists of extracting features from the captured 
signals by PCA; the classification is done by a Multi-Layer Perceptron (MLP). Neural network training part and 
principal components are done on MATLAB environment; while the hardware implementations are created on 
an FPGA DE2-70board. 
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1. Introduction 
The frequency spectrum use is becoming increasingly demanded(Datla, Rajbanshi, Wyglinski, & Minden, 2009), 
as a result of the rising needs of wireless technologies and their various services. The current management of the 
frequency spectrum is a static allocation which cannot support these growing needs. Within this context, the 
approach of cognitive radio was introduced by Mitola to end those problems and increase the spectrum efficiency. 
In this way, the spectrum management will shift from the classic appearance to a dynamic use (Mitola & 
Maguire Jr, 1999) and (Zeng, Liang, Hoang, & Zhang, 2010). The dynamism given to this management is based 
on separating users into two categories: 

PU: Primary User; that has a license to benefit from a given spectral band. 

SU: Secondary User; that does not have a license, but can temporarily profit from a free band. 

Thus under the condition, the PU should not suffer harmful external interference, and does not make any 
modifications to allow coexistence with the SU. 

Several methods for spectrum sensing are suggested in the literature, such as Matched filter (Fuchs, 2009), 
Cyclostationary test (Ning, Sohn, & Kim, 2009), and Energy Detection (Yucek & Arslan, 2009); but the energy 
detection remains the most chosen, not only for its simple implementation, but since it does not need to know 
any information in advance about the PU. In this method, the received signal energy is measured, and compared 
to a predetermined threshold, which presents the noise power of present on the channel, if the energy exceeds the 
threshold, we declare the PU presence, otherwise it is absent.  

The uncertainty of noise, shadowing and the channel fading are problems that decrease the performance of an 
energy detector (Tandra & Sahai, 2005). In our context, we propose a hybrid architecture for spectrum sensing, 
which consists of three blocks FFT, PCA, and ANN. MATLAB is used to calculate PCA eigenvectors, besides 
training the neural network, with the intention of calculating weights and bias. The hardware implementation 
illustrates the scheme of a numerical system with three stages achieving FFT block with 1024 points, a matrix 
multiplication block to change the signal basis by PCA, and a feed-forward multilayer neural network to make 
the decision; the hole process is realized in Altera Cyclone II FPGA integrated inside  the DE2-70 Board 
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(TechnologiesTerasic).  

The second section presents the adopted methodology and the used materials, then the third section deals with 
the different parts of implementation. In the fourth section, the implementation results are discussed. Finally, the 
fifth section concludes the paper. 

2. Methodology and Materials  
2.1 Mathematical Formulation of Spectrum Sensing 

In this context, we shall detect the presence of the PU that emits at a given time a signal	x(t). The problem of the 
spectrum sensing can be formulated as follows: 

 
൜y(t) = n(t) 																					 ∶ H଴y(t) = ɛ ∗ x(t) + n(t) 		 ∶ Hଵ                        with               0 < ɛ ≤ 1 

(1)

y(t): The received signal. x(t): The signal transmitted currently being deterministic or random, but unknown. n(t): Noise and it is supposed to be additive white Gaussian. 

The hypothesis H଴ presents the case where the received signal y	(t)contains the noise alone. While the 
hypothesis	Hଵ, refers to the ability of detecting the PU presence. 

The performance of the detector is characterized by using the pair (Pୢ , P୤ୟ) (Atapattu, Tellambura, & Jiang, 
2010).  Pୢ : probability of detection P୤ୟ: probability of false alarm. 

 ௗܲ = ݊݋݅ݏ݅ܿ݁݀)ܲ ݂݋ Hଵ/ Hଵ) (2)

 ௙ܲ௔ = ݊݋݅ݏ݅ܿ݁݀)ܲ ݂݋ Hଵ/ H଴) (3)
2.2 Dimensionality Reduction by PCA  

The Principal Component Analysis (PCA) is commonly used in data exploration. When we have a quantitative 
database, wherein ‘n’ observations (the captured signals) are described by ‘m’ variables (samples), where ‘m’ is 
considerably high. It is impossible to understand the data structure and the proximity between the observations 
by a simple analysis or even a correlation matrix. The PCA can be considered a projection method, which 
projects the observations from the N-dimensional space to a K-dimensional space (ܭ	 << ܰ) (Burges, 2010), 
such that the maximum of information is retained on the K-first dimensions. 

The purpose of PCA is condensing the original data into a new group, so that they have no correlation between 
them, and are ordered in terms of the percentage of variance contributed by each component. Thus, the first 
principal component includes the maximum variance, while the second principal component covers following 
variance, and the process is repeated until the last principal component. In this way, the information loss 
decreases from one step to the next. 

 

 

 

 

Figure 1. Dimensionality reduction by PCA 

 

2.3 Artificial Neural Networks 

Hardware neural network systems (called neuro-hardware) have been developed rapidly over the last decade. 
Unlike the Von Neumann architecture - Classic -this is sequential in nature, artificial neural networks (ANN) 
benefit from the massively parallel processing. A variety of materials are designed to exploit the parallelism 
inherent in the neural network models. Despite the power growth of the numerical calculation in general 
processors, the approach of neuro-hardware is considered promising in specialized applications such as image 
processing, voice synthesis, pattern recognition… 
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2.3.1 Formal Neuron  

Studying artificial neural network was inspired mainly from the biological learning system(Basheer & Hajmeer, 
2000); the biological model is composed of complex layers of interconnected neurons. In effect, the human brain 
is composed of approximately 1011 neurons, each one have an average of 103 connections. It is believed that the 
considerable calculation power of the brain is a result of the parallel and distributed processing performed by 
these neurons. 

The artificial neuron has generally multiple inputs and a single output. Actions of excitatory synapses are 
illustrated by the coefficients called synaptic weights; these weights are coupled with all inputs. The numerical 
values of these coefficients are adjusted in the learning phase.  

 

Figure 2. The formal neuron architecture 
 

The second figure illustrates the artificial neuron design, the formal neuron receives n inputs presented by the 
vectorሼXଵ, Xଶ …X୬ሽ, these inputs are assigned by their weights indicated such as	ሼWଵ,Wଶ …W୬ሽ, and the ܾ 
presents the bias activation. Equation (4) gives the output of this model.   

ݕ  = ݂(෍ܹ௜ ∗ ௜ܺ + ܾ)  (4)

The activation function has a crucial role in the formal neuron architecture. In this paper, a sigmoid function is 
utilized the since its nonlinearity makes it possible to approximate any function. 

(ݔ)݂  = 11 + ݁ି௫ (5)

2.3.2 Multi-Layer Perceptron 

A Multi-Layer Perceptron (MLP) consists of a number of artificial neurons interconnected, this network is 
organized in the form of layers (Huang, 2003), such as the layer ′݅′	receive as input the outputs of the previous 
layer ′݅ − 1′	 and feed its outputs to the next layer	′݅ + 1′. This model is called a direct neural network or a feed 
forward neural network. The first and last layers are called, respectively, the input and output layers. Layers that 
are neither input nor output are known as hidden layers. 
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Figure 3. MLP model 

 

The MLP model uses essentially the back-propagation algorithm for the training phase(Shao & Zheng, 2011), 
this algorithm consist in minimizing the global error ܧ௚	which calculated by the relation below.  ݕௗ,௜(ݐ) : Is the desired output for the ith neuron, and ݕ௠,௜(ݐ) is the measured output for the same neuron  

(ݐ)௚ܧ = 12෍൫ݕௗ,௜(ݐ) − ൯²௡(ݐ)௠,௜ݕ
௜ୀଵ  

(6)

2.4 Proposed Design 

The design adopted in this paper is guided by the principle to realize an efficient detector based on neural 
networks, which will be able to determine whether the band being in the test is free or occupied, not only with a 
satisfactory precision, but also with a minimal number of inputs to the model to save the training time and 
minimize the area of implementation. The proposed design consists of three stages: 

 FFT block to transform captured signals from time to frequency domain. 

 Dimensionality reduction with PCA. 

 Decision is done by a MLP neural network with two layers in which every layer is completely linked with 
its closest layers. 

 
Figure 4. Proposed architecture 

 
2.5 Measurement Platform and Database  

The measurement platform employed in this paper consists of two parts. In the first one, the generation of a 
signal, where we can choose the type of modulation: AM, FM or FSK, by the Agilent 33250A Function / 
Arbitrary Waveform Generator (Agilent 33250A User's Guide Ref 33250-90002, March 2003). In the second, the 
numerical oscilloscope FI3104 ( InfiniiVision 3000 X-Series Oscilloscopes Datasheet Ref 5990-6619EN, April 11, 
2014 ) is used to receive signals that are captured by the antenna, the latter is connected to a Personal Computer 
(PC) with Universal Serial Bus 2 (USB2) interface. The figure below gives a view about the measurement 
platform used in this experience. 
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Figure 5. Measurement platform 

 

The signals database used in our work has been collected exploiting the previous platform. It contains 500 
signals for different types of modulation (AM, FM and FSK) and 200 signals that include only noise. The 
following table shows data used in both the learning and testing phases. 

 

Table 1. Data-base used in learning and testing 

Signal Learning phase Testing phase 

Primary signal 400 100 

Noise 100 100 

 

2.6 Implementation Platform 

The detection system is implemented on an FPGA device, as it offers a high flexibility. VHSIC Hardware 
Description Language (VHDL) is used to synthesize the design, with Altera Quartus II Web Edition as the place 
and-route tool. The target device is the Altera DE2-70. The following figure gives more details about the target 
board.   

 

 

Figure 6. DE2-70 FPGA from Altera 

 

3. Implementation  
3.1 FFT Implementation  

As a first block of our proposed architecture, we use the FFT MegaCore function which is an IP Core for FPGA 
from Altera (FFT MegaCore Function User Guide, August 2014), this function is able to calculate both forward 
and inverse Fourier transform. This hardware architecture is chosen to optimize the usage of resources, and has 
the four following parameters: Burst mode, Single output engine, Single instance of engine, 16-bit internal and 
data input/output precision widths. 

3.2 PCA Implementation  

The aim of using PCA in this work is to make possible the hardware implementation of the neural network 
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detector. In this work, each captured signal contains 1024 samples. If we use the signal vector directly as an 
input of the neural network, there would be 1024 input neurons, which would form a very large network in terms 
of neurons number in the input and hidden layers, also it would increase the computational complexity (registers, 
multipliers, adders). So the architecture of the detector would be high in terms of hardware cost. In this respect, 
PCA is used to reduce ANN complexity; but we have to take into account that the classification rate must be kept 
at a satisfactory level. 

The PCA training part, which concerns the eigenvectors matrix calculation, was developed in MATLAB. The 
hardware implementation has been restricted to features extraction following these two equations (8) and (11). 

 ܺ′ = (௑ି௑ത)ఙ Such as തܺ = ଵே ∑ ௜ܺ௡௜ୀଵ              and             ߪ௝ = ଵே∑ ௜,௝ݔ) − ௜,௝)௡௜ୀଵݔ̅  (8)ܺ : Is the signal vector, while തܺ is the vector of variable means, and then ߪ present the variance of variables. 

 ܺ௥ = ்ܲ. ܺᇱ	 Such as  ܲ = ሾݑଵ,… , ,௞ሿ (9)X୰: Is the reduced vector, and P is the new basisሼuଵݑ … , u୩ሽ of the K-largest eigenvalues. 

As described in the figure below, the architecture of PCA consists in three blocks: the first stage receives the 
signal vector already converted in the frequency space, then it subtracts the vector of variable means ܺ	ഥ from the 
signal vector X, the ܺ	ഥ  vector has been stored in a Read-Only Memory (ROM). The second block is used to 
devise the first block output by the variance ߪ given by the equation (8). The third and final stage was used to 
project the signal into the reduced space using the equation (9). 

 
Figure 7. PCA block architecture 

 
3.3 Architecture of the Neuron 

The hardware implementation of the decisional phase will be restricted in the trained neural network; the training 
phase has been done in MATLAB environment. As specified above, this implementation has been developed by 
VHDL language, and the design has been created in Quartus II environment. Figure 8 explains the block diagram 
of a neuron, it is consisted of a multiplier block which multiplies the weights by all parallel inputs, then an 
accumulator which gives the addition result of all the multiplications plus the bias, and finally the score is taken 
from the output of the activation function.  

Figure 8. Block diagram of a neuron 
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3.4 Activation Function 

As cited in the section (2.3.1) the activation function has a critical impact in the neuron design, in the 
Multi-Layer perceptron model the sigmoid function is the most used. The sigmoid function consists of an infinite 
exponential series, which makes it inappropriate for a direct implementation on FPGA. To bypass this problem, 
we use the Piece-Wise Linear Approximation (Campo, Finker, Echanobe, & Basterretxea, 2013) , in that 
approximation the ‘logsig’ function presented by the equation 10, is divided into five intervals to consider it as 
linear function in each interval, as shown in the equation 11. 

(ݒ)ߠ  = 1(1 + ݁ି௩) (10)

 
(ݒ)ߠ = ۔ۖەۖ

ۓ 1 ݎ݋݂ ݒ ≥ ݒ40.0625 + 0.75 ݎ݋݂ 0 < ݒ < ݒ	ݎ݋݂																											40.5 = ݒ00.0625 + 0.25 ݎ݋݂ − 4 ≤ ݒ < 00 ݎ݋݂ ݒ ≤ −4  
(11)

Figure 9 illustrates the approximated sigmoid hardware design; this architecture provides an insight about the 
complexity degree for a hardware implementation of such function. 

 
Figure 9. The approximated “Logsig” circuit 

 

4. Results and Discussion 
4.1 PCA Results 

The PCA training is realized using MATLAB environment, the following graph gives the percentage of the first 
35 eigenvalues. From these results, we can see that the first 10 components with a percentage of eigenvalue 
superior than 2%, together explain 98% of the total data-base variance. The first principal component describes 
the greater percentage 12.1%, while the second one illustrates about 10.6% of the total variance. 
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Figure 10. Percentage of the first 35 eigenvalues 

 

4.2 Neural Network Training Results 

Knowing that the PCA block extracts 10 features, so in the input layer we use also 10 neurons, and in the output 
layer we use one neuron to differentiate between H0 and H1. 

 

Table 2. Desired outputs in the learning step 

Hypothesis  Signal used Output 

H0 Only noise 0 

H1 Primary signal plus noise  1 

 

Each additional neuron in the hidden layer is used to take into account specific profiles of the input neurons. A 
larger number makes it possible to better match the data presented, but decreases the capacity of generalization 
in the network. Here again there is no general rule, but empirical rules (Zhang, Patuwo, & Hu, 2001). The size of 
the hidden layer must be: 

-Equal to that of the input layer. 

-Equal to 75% of the input layer. 

-Equal to the square root of the product between the number of neurons in the input and output layer. 

Should be noted that the last choice reduces the number of freedom degrees left to the network, then the ability 
to adapt on the training samples in favor of a greater stability / ability to generalize. 

In this work, we adopt a statistical approach, it consist in trying different architectures with different numbers of 
neurons in the hidden layer. The classification rate is calculated for these architectures. The following table 
summarizes the results of this statistical study: 

 

Table 3. Learning and testing results for different hidden layer sizes 

Hidden layer size Classification rate in Learning 
Classification rate in testing 

H0 H1 
5 98 97 80% 
7 98 99 94% 

10 100 99 98% 
12 97 100 92% 
15 98 100 88% 
20 100 98 96% 

 

Analyzing the results shown in the table above, it is obvious that the high classification rate (98%) in testing is 
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achieved by using 10 neurons in the hidden layer. 

4.3 Neural Network Implementation Results 

The implemented network architecture consists in using 10 neurons at the input layer. Thereafter, 10 neurons are 
used in the hidden layer, while we exploit one neuron in the output layer to differentiate between the two 
hypotheses ܪ଴ and ܪଵ. The following figure shows the RTL design of the full network circuit: 

 

Figure 11. The RTL description of the network circuit 

 
4.4 Full Detector Implementation Results 

The subsequent diagram explains the manner in which we connect the two designed blocks (PCA and ANN), 
with the FFT MegaCore IP Core. At the beginning of this architecture, we receive the collected samples. The 
treatment begins by transforming the signal into frequency domain using the FFT IP core. Next, the PCA block 
extracts the features, this block takes ܺ(݂)	with 1024 parameters and sets free ܺ௥(݂) with only 10 elements. 
Finally, the reduced vector is presented to the ANN block to make the decision about the channel stat.  

 

 
Figure 12. Full detector block architecture 

 

The 4th table summarizes the proposed design characteristics, including the utilization of different resources; we 
notice that the proposed architecture takes 46% from the total logic elements in the FPGA, while it spends 70% 
from the embedded 9-bit Multipliers. 
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Table 4. The designed circuit results 

Recourse available Used Percentage 
Total logic elements 68,416 31,410 46% 

Total pins 622 322 52% 
Embedded Multiplier 9-bits 300 210 70% 

 

5. Conclusions 
In this work, a new method of spectrum sensing based on PCA and ANN is designed and implemented on an 
FPGA device. A fully parallel MLP network is trained with a back-propagation algorithm, and the detector error 
is at a suitable level (2%). The numerical precision of the proposed detector is reasonable, and the inaccuracy of 
the ANN is very low. The sigmoid activation function is the most essential block of the neuron; it was realized in 
hardware using the Piece-Wise Linear Approximation with floating-point representation, and the results show 
that the activation block consumes the major part of the hardware resources. The final proposed network 
architecture is modular, making it possible to change the number of neurons and layers in a simple manner. In 
our future work, we will explore ways to integrate the learning phase for both PCA and ANN in the same design. 
To do this, we have to reduce the FPGA resource usage, while maintaining the performance of detector at an 
acceptable level.  
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