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Abstract 
In this article, a novel predictive controller based on a Bayesian inferring nonlinear model (BMPC) is presented 
and analyzed. In the construction of the BMPC, the Bayesian inferring model is selected as the predictive model 
with the characteristics of on-line tracing ability to the actual controlled object. The nonlinear programming 
method called the steepest gradient is set as the receding horizon optimization algorithm of the BMPC. The 
on-line controller output is obtained using this method. The convergence analysis of the proposed BMPC is 
given and the examples (nonminimum phase and nonlinear objects) are selected to validate the performance of 
the BMPC. The simulation results show that with the help of the presented BMPC algorithm, the closed loop 
control system demonstrates the abilities of anti-disturbance and robustness. 

Keywords: Bayesian predictive control, nonlinear system, modeling, receding horizon optimization 

1. Introduction 
The model predictive control (MPC) method, derived from the practice industrial application, has been widely 
used in many industrial fields such as petroleum industry, chemical industry and pharmaceutical manufacturing 
industry (Armando, 2013; Anders, 2013; Ali, 2012). The reason for the success of the MPC is that the MPC 
method owns three characteristics, namely, predictive model, feedback correction and rolling optimization. 
Among them, the predictive model is not limited to any special model framework. And any model, which can 
provide the ability to predict the system output, all can be used as the predictive model. So the extensity of the 
predictive model contributes to the research prosperity of the MPC (Aswani, 2013; Rodriguez, 2013; Giselsson, 
2013). 

The predictive model plays an essential role to the predictive accuracy of the MPC. In the past decades, the 
theory of linear model predictive control based on linear predictive model has already been fully researched. But 
in industrial control, the majority of controlled objects possess many kinds of nonlinear characteristic. So the 
research of nonlinear model predictive control is very meaningful and practical. Until now, there is no uniform 
model describing method for all kinds of nonlinear systems in nonlinear model predictive research. Commonly, 
three design ideas are presented till now. The first idea is to make the nonlinear model linearization and then to 
solve the problem based on the developed linear predictive model control method (Christofides, 2013; Lincoln, 
2013; Tung, 2013). The second idea is to obtain the nonlinear system model using identification method and 
converted the controller design problem into nonlinear programming issue. And then the control variable is 
optimized with the aid of some receding horizon methods. The nonlinear first-principles modeling method is also 
been used (Mesbah, 2010). 

In the second research idea of nonlinear model predictive control, the fuzzy model and neural network (Xiangjie, 
2013; Hazil, 2014; Karim, 2013) are two kinds of frequently used nonlinear models. But the designs of 
membership functions and fuzzy rules all have a great influence on the predictive accuracy. In the design of 
neural network model, the number of hidden layers and nodes and the dynamic or static neural structure are all 
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objective function )(kJ . Namely, in the feasible control field of min max[ , ]u u , the optimization problem is to 
obtain a feasible solution * * *[ ( ),..., ( )]TU u k u k M  to make the ( )J k minimum. In the implementation of 
control, only the * ( )u k is used to act on the controlled object at the k  time moment. Then at the time moment

1k  , the optimization progress is repeated as the moment k . And in this way, the whole dynamic process of the 
controlled object is optimized. 

The above receding horizon of * ( )u k  belongs to the nonlinear programming problem with constraint 
conditions. In this work, we choose the steepest gradient method as the receding horizon algorithm. Taking the 
comprehensive consideration of the training of the Bayesian inferring predictive model and the working flow of 
the BMPC, we give the implementation procedures of the BMPC method. 

(1) Obtain the sample data of the controlled object. Determine the input and output vector of the Bayesian 
inferring model. Utilize the PSO algorithm (Vahid, 2013; Cabrerizo, 2013) to train the parameters of the 
threshold matrix D . 

(2) Determine the width of the sliding window N  and validate the on-line predictive ability of the obtained 
Bayesian inferring model. 

(3) Based on the trained Bayesian inferring model, the implementation of the BMPC is set as follows. 

a) Obtain the current output ( )y k  and then compute the Bayesian inferring model output ˆ( )y k . The error 
( )e k is computed as ˆ( ) ( )y k y k . 

b) Utilize the Bayesian inferring model to computer the ˆ( ), 1,...,y k i i P  ; according to the formula 1, 
compute the corrected predictive output ( )py k i ; at the same time, compute the desired system output 

( )ry k i  according to the formula 7. 

c) Use the steepest gradient method to solve the minimization of the objective function ( )J k  and the 
optimized control variable * ( )u k  is obtained. 

d) Take the * ( )u k to implement on the controlled object. Then go to the step a) to continue the next 
optimization procedure at the time moment 1k  . 

3. Convergence Analysis of Bayesian Model Predictive Controller 
The objective function ( )J k  is described as the vector form. 

( ) [ ] [ ]T T
r p r pJ k Y Y Y Y U U                               (8) 

where, [ ( 1,..., ( ))]T
r r rY y k y k P   , [ ( 1,..., ( ))]T

P p PY y k y k P   , )]1(),...,([  MkUkUU . 

Let r PE Y Y  , ( )J k  is the function aboutU . According to the steepest gradient method (Zhang, 2010), the 
optimal control law is listed as follows. 

( 1)
( ) ( 1) ( 1)

1 ( )
T T T E k

U k U k E k
U k




    
 

                           (9) 

where,   denotes the optimized step length, 0  . 
According to the above formula 

( 1)
( 1) ( )

( ) 1
T TE k

E k U k
U k




   
 

                            (10) 

Obtain the one first order derivative of the )(kJ  

( ) ( 1) ( ) ( )
2 ( 1) 2 ( )

( )
T TJ k E k U k U k

E k U k
k U k k k

       
   

             (11) 

The approximation of the first order derivative is set as 

( ) ( 1) ( ) ( )
2 ( 1) 2 ( )

( )
T TJ k E k U k U k

E k U k
k U k k k

       
   

            (12) 

Take the formula 10 into the above equation and the obtain the following formula 

\begin{equation} 
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6. Conclusion 
In this note, the Bayesian model predictive control system is designed based on the Bayesian inferring model. 
The particle swarm optimization algorithm is used to the off-line training of the Bayesian inferring model. In the 
on-line implementation of the Bayesian inferring model, the sliding window method is utilized to achieve the 
structure updating so as to capture the nonlinear characteristics of system quickly. The receding horizon 
optimization in the design of the Bayesian model predictive controller adopts the steepest gradient method, 
which ensures the convergence ability of the proposed model predictive control algorithm. And the experiments 
implemented on the nonminimum phase and nonlinear systems show that the Bayesian model predictive control 
system owns good control effect, anti-disturbance ability and robust performance. 
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