
Computer and Information Science; Vol. 7, No. 2; 2014
ISSN 1913-8989 E-ISSN 1913-8997

Published by Canadian Center of Science and Education

117

A Fraud Detection System Based on Anomaly Intrusion Detection
Systems for E-Commerce Applications

Daniel Massa1 & Raul Valverde2
1 Information Technology and Services, Betsson, Malta
2 John Molson School of Business, Concordia University, Montreal, Canada

Correspondence: Raul Valverde, John Molson School of Business, Concordia University, Montreal, QC., H3G
1M8, Canada. Tel: 1-514-848-2424 ext. 2968. E-mail: rvalverde@jmsb.concordia.ca

Received: March 25, 2014 Accepted: April 14, 2014 Online Published: April 28, 2014

doi:10.5539/cis.v7n2p117 URL: http://dx.doi.org/10.5539/cis.v7n2p117

Abstract
The concept of exchanging goods and services over the Internet has seen an exponential growth in popularity
over the years. The Internet has been a major breakthrough of online transactions, leaping over the hurdles of
currencies and geographic locations. However, the anonymous nature of the Internet does not promote an
idealistic environment for transactions to occur. The increase in online transactions has been added with an equal
increase in the number of attacks against security of online systems.

Auction sites and e-commerce web applications have seen an increase in fraudulent transactions. Some of these
fraudulent transactions that are executed in e-commerce applications happen due to successful computer
intrusions on these web sites. Although a lot of awareness has been raised about these facts, there has not yet
been an effective solution to adequately address the problem of application-based attacks in e-commerce.

This paper proposes a fraud detection system that uses different anomaly detection techniques to predict
computer intrusion attacks in e-commerce web applications. The system analyses queries that are generated
when requesting server-side code on an e-commerce site, and create models for different features when
information is extracted from these queries. Profiles associated with the e-commerce application are
automatically derived from a training dataset.
Keywords: Fraud Detection, Fraud Auditing, e-commerce audit, anomaly systems, web attacks prevention

1. Introduction
E-commerce applications are prime targets for criminal attacks. Bolton and Hand (2002) explain that new types
of fraud have emerged such as mobile telecommunications fraud and computer intrusion whilst traditional fraud,
for instance money laundering, has become easier. Finding the best possible way against fraud is crucial.
Different processes have to be implemented in order to protect clients from attackers perpetrating fraud. Fraud
Prevention and Fraud Detection are the two (2) classes under which these processes are generally defined.

Fraud Prevention is the process of implementing measures to stop fraud from occurring in the first place (Bolton
& Hand, 2002). Prevention is considered the first line of defence, where most fraud is halted at the very
beginning. There are different types of Fraud Prevention techniques which can be associated with e-commerce
applications, such as Internet security systems for credit card transactions, passwords and tokens to name but a
few. However, in practise Fraud Prevention techniques are not perfect and sometimes a compromise must be
reached between expense and inconvenience (e.g. to a customer) on one hand, and effectiveness on the other
(Bolton & Hand, 2002). Nonetheless, Fraud Prevention can sometimes fail due to vulnerabilities in the system
and here is where Fraud Detection is needed.

Fraud Detection is the process of identifying fraud as quickly as possible once it has been perpetrated, with
minimal damage conceivable. The processes falling under this class are said to be the second line of defence.
When preventive methods fail, Fraud Detection kicks-in. Fraud Detection is an evolving discipline because of
the fact that once a detection method becomes known, criminal minds will adapt their strategies and try others
methods to circumvent it. In addition, new criminals enter the field, with different capabilities and different
mind-sets. If a detection method becomes known by attackers, it does not mean that it is no longer needed. On
the contrary, some inexperienced attackers might not be aware of any detection methods that were successful,

www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 2; 2014

118

thus, giving us the edge to detect them.

Although continuous security improvements are installed in auction sites or e-commerce web applications, in
practise research has shown that almost every online system has some type of vulnerability which can be
exploited to commit fraud (Jaquith, 2002). Even though online identity verification methods are nowadays more
sophisticated, illegal activity is still not totally prevented and criminal activity is still successful.

Fraud Detection systems are often derived from statistical tools which are based on the comparison of observed
data with expected values. In contrast, an Intrusion Detection System (IDS) is often used to detect Computer
Intrusion. The observed data in these statistical tools is generally based on behaviour profiles, including past
behaviour. The problem, with statistical tools is the way expected values are derived, since it is determined by
the environment context for which the statistical tools are built for. There cannot be a general,
all-encompassing-statistical tool; a one-for-all tool.

Statistical Fraud Detection methods are categorised into Supervised and Unsupervised methods. Supervised
methods involve techniques which observe training data and construct models based on what has been analysed.
In most cases, the observed data includes both fraudulent and legitimate cases. However, adaptability is of a
concern with these statistical methods, since they can only be used to detect fraud which has previously
occurred.

Unsupervised methods, on the contrary, do not require any training data, but try to find dissimilarities in
unlabelled data. Sometimes there are cases when training data is not available, or is very hard to get, thus giving
rise to unsupervised methods. One of the difficulties with this type of statistical method is accuracy because they
commonly create high volumes of false-positives and false-negatives. Any fraudulent case detected, involves a
considerable amount of analysis and resources to identify the real cause and security implications.
False-positives are of particular concern since a lot of time and resources are wasted to analyse cases which in
reality were genuine.

Intrusion Detection Systems (IDS) are used to detect any kind of attack launched against entire computer
networks. IDSs can also be used to detect web-based attacks by configuring them with a number of signatures
that support the data of known attacks (Kruegel, Vigna, & Robertson, 2005). The problem with IDSs is that it is
very hard to keep signature sets updated with the latest known vulnerabilities. Furthermore, new vulnerabilities
must first be discovered before signatures can be applied to protect against them, at which stage it might be too
late. In addition, when custom e-commerce applications are developed in-house, new vulnerabilities might be
introduced especially when business updates are installed. In practise, it is a very time-intensive and error-prone
activity to develop ad-hoc signatures to detect attacks against these applications, apart from the fact that
substantial security expertise is also required.

The aim of the research is to develop a Fraud Detection System based on anomaly intrusion detection. The goal
is to reduce the number of fraudulent transactions perpetrated through computer intrusion attacks in e-commerce
sites. The objective is to use data mining models to detect anomalies as a second line of defence, when
preventive methods fail.

2. Background and Literature Review
2.1 Fraud Detection

The biggest problem in the e-commerce industry is fraud. Yufeng et al. (2004) explains that computer intrusion is
an activity which leads to fraud and intrusion attacks on e-commerce web applications. Yufeng et al. (2004)
states that fraud cases are generally identified from the huge available data sets such as logged data and user
behaviour. The data collected through logs and user behaviour, can be a great advantage for fraud detection in
order to learn from the recent attacks. Phua et al. (2010) states that in the area of automatic fraud detection there
is lack of publicly available real data to conduct experiments on, and lack of published and well-researched
methods and techniques. This was concluded in a survey that categorises, compares and summarises most
published and technical articles in automated fraud detection within the last ten (10) years.

The problem is that legal and competitive complications within e-commerce make it extremely hard for
researchers to obtain real data from companies. Real e-commerce data is very difficult to get access to since it
contains personal information that, if made public, would lead to legal issues with data protection laws. In
addition, real data could also reveal potential vulnerabilities present in e-commerce site, resulting in a loss of
confidence in the service being offered whilst giving rise to further attacks. Furthermore, Phua et al. (2010)
concluded that automated fraud detection in the area of e-business and e-commerce is still a big challenge for
researchers.

www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 2; 2014

119

Bolton and Hand (2002) have shown that statistics and artificial intelligence (AI) are effective techniques for
fraud detection. Powerful AI techniques, including neural networks and rule-based methods, have proved to be
very effective in many applications. However, supervised fraud detection relies heavily on the correctness of the
training set used. On the contrary, Bolton and Hand (2002) explain that unsupervised fraud detection is generally
used when there are no prior sets of legitimate and fraudulent observations. Such methods include profiling and
outlier detection methods (Bolton & Hand, 2002).

Brause, Langsdorf and Hepp (1999) addressed the problem of credit card fraud by combining data mining
techniques and neural network algorithms to obtain high fraud coverage with a low false alarm rate. The
symbolic features of fraud transactions were rated using a generalisation graph of rules and neural networks of
the Radial Basis Function type rated analog features. To better detect credit card fraud, Bhattacharyya et al.
(2011) evaluate the use of two data mining approaches known as support vector machines and random forests.
Bhattacharyya et al. (2011) conclude that both techniques showed adequate ability to model fraud but random
forests demonstrated an overall better performance when evaluated against performance metrics.

2.2 Computer Intrusion

Tan (2002) states that the two most common types of online fraud are conducted in auction sites and web
applications which offer general retail merchandising. In general online fraud is achieved through identity theft;
a term used to refer to all types of crime in which someone wrongfully obtains and uses another person’s
personal data in activities that involve fraud or deception, typically for economic gain.

The most common attacks performed on e-commerce applications include Denial of Service Attacks, SQL
Injection, Cross-site Scripting (XSS), manipulation of hidden fields, Buffer overflows, malicious software, spam
emails, phishing and Brute Force attacks (Almadhoob & Valverde 2014).

Lee, Low and Wong (2002) explains that SQL injection is a subset of Injection attacks, and is used to retrieve
sensitive data, such as credit card numbers and personal medical histories, from databases which are accessible
through online systems. Mookhey (2010) defines SQL injection as the insertion of SQL meta-characters in user
input, such that attackers’ queries are executed by the back-end database.

Cross-site Scripting (XSS) is another common attack that targets the end-user and takes advantage of the lack of
input and output validations on the web application. It can also be achieved by relying on users’ trust in clicking
on a URL which serves XSS attacks. Black hats try to embed client side scripting code (such as JavaScript), by
supplying it as part of the input. The main goal of this nature is to steal user’s session ID from cookies, so as to
impersonate the victim, and perform online transactions within the lifetime of the session.

Some payment gateways and online shopping carts also suffer from manipulation of hidden values. The
vulnerability is often exposed by having total payable prices of purchased goods stored as a hidden HTML fields
in a dynamically generated web page. A user can easily modify the value of this hidden field using proxies,
before submitting the request to the server. Repeated attacks of this nature can potentially cripple the viability of
the online merchant. Such vulnerabilities are not limited to price fields, but can also be used to tamper with
personal data.

Less common attacks on e-commerce applications, but which exist nonetheless, include buffer overflows in
which attackers send very large values in the input field or HTP header parameters to make the back-end
scripting engine unable to parse the request and display errors which might reveal information about the server
or code. This will give further insight on how to perform more refined attacks on the system.

Often identity authentications, within web applications, do not prohibit multiple failed logins and these can be
attacked using Brute Force techniques. Similarly, if user credentials are sent as clear text, an attacker sniffing the
traffic will easily discover the user’s credentials and commit fraud via identity theft. Encrypting can easily be
implemented in a web application through Secure Socket Layer (SSL) or Transport Layer Security (TLS).
Nonetheless, it is important that password policies are implemented and strong enough, to make it hard for
malicious users to crack down user’s credentials using dictionary attacks.

2.3 Data Mining and Web Logs

The following section explains how to detect the most critical web application flaws from web application logs.
Meyer (2008) explains that a detailed analysis of users’ action can be extracted from the web application log files
and these can reveal a lot of information about the behaviour of users. However, web server logs do not capture
everything and have some limitations since they contain only a fraction of the full HTTP request and response.

HTTP (stands for Hyper Text Transfer Protocol) is the protocol used by web browsers to communicate with the

www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 2; 2014

120

server. The flow in this protocol is one way; the client makes a request to the server and the latter responds. The
request contains the location of the web page that the server needs to deliver.

The request created by the client is packaged in chunks defined as request headers and request body, which
defined what resources need to be served back to the client. The server parses the request to identify what is
requested and returns a response message with a response status that describes if the request was successful or
not, response headers containing meta-information about the result data and the content that was requested which
is known as the response body.

A lot of information can be extracted from web logs. Feng and Murtagh (2000) propose a solution to extract
information related to user behaviour from HTTP web logs. In their proposal, a transaction profile is generated
for each user which contains information related to transactions and session from the browsing site. One problem
in such a solution is that the extracted data is determined by the standard used to generate logs available and their
quality. If traces are not logged and/or not detailed enough, the transaction model will not be able to extract the
information (Feng & Murtagh, 2000). In such a system, a data mining framework has to be written for each web
application, unless a standard way of generating logs is implemented.

The logs of a web application must follow a specific standard, if we want to apply data mining techniques to any
web application. Application logs rarely follow a standard, since developers follow their own or company’s
standards. However, server logs commonly follow the Common Log Format (CLF) standard, and that is why
data mining techniques will be applied on such information.

2.4 Intrusion Detection Systems

Simple secure processes are no longer sufficient with today’s complex intrusion detection problems. Nowadays,
Intrusion Detection Systems (IDS) are installed on networks, to monitor traffic and system activities for
malicious attacks and report any incidents that are found. The primary concern of IDS is to alert an administrator
of any intrusion attempts, though some IDSs are configured to stop them in the first place. An IDS is classified
under two domains: Misuse Detection and Anomaly Detection.

Penya, Ruiz-Agúndez and Bringas (2011) state that the first efficient methodology was misuse detection, which
recognised malicious behaviours based on a knowledge base of rules. Misuse behaviour is when an individual
deviates significantly from the established normal usage profiles. A misuse detection system uses patterns of
well-known attacks or weak spots of the system to match and identify known intrusion patterns and signatures.

The main disadvantages of a misuse IDS is that it cannot automatically detect any new threats, unless new rules
are added to its knowledge base, and as the set grows, the time to analyse the request may increase to a certain
extent that it might no longer be viable as a real time system.

Anomaly Detection adopts the same concept as misuse detection. However, instead of using static pre-defined
rules to detect intrusions, the set of rules get defined through a learning process. The anomaly detection has two
phases; training and detection. The training phase involves the analysis of legitimate traffic in which certain
features and characteristics of normal usage are recorded. The goal of this phase is to define how normal
accepted traffic looks, and ultimately create the dynamic set of rules (Meyer, 2008). During detection, the system
will compare the passing traffic against the rule-set created during the training phase, and any deviations from
this rule-set will be labelled as anomalous.

The basic assumption in anomaly detection is that anomalous behaviour differs from normal behaviour and the
difference can be expressed quantitatively or qualitatively. Kruegel, Vigna and Robertson (2005), and Corona
and Giacinto (2010) present different techniques to extract information from an HTTP request, which later can
be applied to profile the behaviour of normal traffic in web applications. Kruegel, Vigna and Robertson (2005),
and Corona and Giacinto (2010), in the solutions proposed, take advantage of specific characteristics in the
HTTP protocol and web applications in general, to model the legitimate behaviour within the application.
Anomaly detection can be easily performed once the profiles have been established and trained. The proposed
models can be used to detect fraud perpetrated through computer intrusion in e-commerce web applications.

3. Methods and Realization
3.1 Data Collection

An e-commerce honeypot is deployed on the web to collect data. The goal of the honeypot is to attract fraudsters
to attack the e-commerce site and gather information about their attack methods, which lead to fraudulent
transactions.

The honeypot used can be classified as a research honeypot. Barfar and Mohammadi (2007) explain that “a

www.ccsen

research h
compromi
are differe
Full servic
not allow a

The honey
overflows
(TLS) or S
monitors a
the server.
learning w
audit trails

The honey
the honeyp
users from
application

By perform
traced, em
primary st
sections.

Server acc
very valu
transaction
as Apache

The server
request, su
that access
set of HTT
in access l
including P

Before the
The data c
also have
performed

During the
Ask) will
navigation

net.org/cis

honeypot is u
sing a system”

ent types of ho
ces of e-comm
attackers to pe

ypot system ex
and weak auth

Secure Socket
are installed on
 Data collectio

which requires
s generated are

ypot will attrac
pot, the produc
m any identity
n file system.

ming data anal
merging attack t

ep towards dat

cess logs, refer
uable for ano
ns on a web se
generate serve

r log will not
uch as header p
s web pages ar
TP header para
logs only a fra
POST attribute

e audit trails fr
collected is sto

some irrelev
d as displayed i

e data cleaning
be removed.

n bots. Noneth

used to learn
”. The scope o
oneypots, but t
merce systems
enetrate their at

xposes a numb
hentication po
t Layer (SSL)
n the web app
on is a very im
training data.

e later used as

ct both fraudul
cts, listed on th
y theft throug

lysis on the da
techniques det
ta mining is to

rrer logs, agen
maly detectio

erver (Berendt
er logs in the C

t be the only
parameters and
re logged at the
ameters are log
action of the fu
e parameters c

rom the honey
ored in flat fil
ant informatio
in Figure 1.

g process, any
It would be in

heless, any req

Computer an

about black
of such a system
the one used in
are emulated
ttacks to the op

mber of vulnera
olicies. The we

connection, to
plication honey
mportant task i

The monitors
training data f

ent and legal t
he e-commerc
gh the honeyp

ata collected fro
tected and miti
o convert the a

nt logs and clie
on and which
, Mobasher, &
Common Log

source of use
d POST attribu
e application l
gged together w
ull data is avai

can be logged.

ypot can be def
les and cannot
on which nee

Figure 1. Data

y requests due
nsignificant to
quests which

nd Information S

121

hat tactics an
m is to allow i
n this project
by the honeyp
perating system

abilities such a
eb application
o attract more
ypot, in order t
n the project s
 log all reques

for the anomaly

transactions. H
e site, are high
pot applicatio

om the e-comm
igation process

audit log to a st

ent-side cooki
h are general

& Spiliopoulou
Format (CLF)

er data since it
ute parameters
evel, in anothe
with the date a
ilable, with th

fined as trainin
t be easily use
ds cleaning u

a preparation w

 to spider nav
o fill the train
might have s

Science

nd techniques
intruders to sta
can be classifi

pot, including
m.

as SQL Inject
is not secured
hackers since
to collect data
since anomaly
sts sent to the
y detection sys

However, to dis
hly priced and

on, the logs a

merce honeypo
ses against the
tructured datas

ies, are differe
lly automatica

u, 2002). By de
) standard spec

t lacks valuab
s. In order to c
er log file. By
and time, and t
he custom appl

ng data, they w
ed or queried.
up. The pre-pr

workflow

vigation (such
ning dataset w
ome type of l

s, monitoring
ay and reveal t

fied as a mediu
vulnerabilities

tion, Cross Sit
d over a Transp
e the traffic is
a about the req

detection is b
server and the

stem.

scourage hone
d old fashioned
are not availa

ot, the roots of
ese attacks can
set which is ex

nt types of da
ally generated
efault, standard
cification.

ble information
collect more in
using server-s

the body of the
lication logger

will require so
Nonetheless,
rocessing of w

as Google Bo
with requests g

log injection

Vol. 7, No. 2;

an attacker w
their secrets. T
um-interaction
s. However, it

te Scripting, b
port Layer Sec
clear text. Tw

quests being se
based on superv
eir content, an

est users from u
d. To protect ho
able from the

f the attacks ca
n be developed
xplained in the

ata sources, tha
d by client-s
d web servers

n related to H
nformation, req
side code, the e
e request. Whe
r, other inform

me pre-proces
the audit trails
web usage da

ots, Yahoo, Bin
generated by s
attacks, is filt

2014

while
There
 one.
does

buffer
curity
o (2)

ent to
vised
d the

using
onest
web

an be
. The
 next

at are
erver
such

HTTP
quest
entire
ereas,

mation

ssing.
s can
ata is

ng or
pider
tered,

www.ccsen

removed, a

Once the d
source. On
both the se
stored in a
logs are sto

3.2 Data A

The main
discoverin
the space a
task is nor
types of m
detection.

Figure 2 d
composed
Vigna and
request. Th
the value o
attribute or

A model is
model com
resulting in

Each mod
number of
model dur
is built and
on the tra
probability
output of t
request is f

Table 1 su
principle a

3.2.1 Data

This sectio
detection o
is used to

net.org/cis

and taken note

data sources ar
nce logs from
erver audits an
a flat file and s
ored into a rela

Analysis

methodology
ng of patterns a
and define dif

rmally handled
models are bui

depicts the ba
of different in

d Robertson (2
he feature und
of an attribute
r header param

s responsible o
mputes the pro
n a low probab

del has two (2
f legitimate req
ring training ph
d threshold es
aining data le
y score based
the model to e
flagged as an a

ummarises the
attack and the m

a Mining Fraud

on describes d
of malicious b
learn statistica

e of.

re cleaned, the
different sourc

nd from applic
so accessing th
ational databas

y used to anal
and rules with
fferent types of
d by different m
ilt and their re

asic architectu
ndependent mo
2005) state tha
der analysis cou

or header para
meters in a requ

of computing a
obability value
bility value, af

Figure 2. Ar

2) modes of o
quests are feed
hase, builds a
tablished, the
arnt. Whenev
on its corresp

establish wheth
attack if any o

e features that
model used to

d Detection Mo

data mining tec
behaviour. Each
al patterns and

Computer an

e logs from mu
ces have been
ation logs, inc
hem is not eas
se for easier ac

lyse the data
hin our data. T
f transactions
models, each a
esults are eval

ure of the ano
odels where ea
at a model is
uld either be a
ameter), a set
uest) or the rel

a probability f
 based on an e

fter being passe

rchitecture of p

operating; Trai
d into the mod
profile of thei
model is able
er a request r

ponding featur
her the feature
f the feature m

are employed
detect the atta

odels

chniques used
h model opera
d behaviours, w

nd Information S

122

ultiple sources
n merged, a new
cluding differen
sy and involve
ccess.

is data minin
To spot fraudul

where the dat
analysing differ
luated to dete

omaly detectio
ach detects ano
a set of proce

a single query
of query attrib
lationship betw

figure for a val
established sta
ed through the

proposed anom

ining Mode an
del to establish
ir respective fe
to generate an
reaches the w
res. The decisi
e’s value is an

models result in

d by the propo
ack are describ

d to analyse fe
ates in two mo
while the dete

Science

s are synchron
w log is create
nt header para

es parsing. To

ng. The proce
lent behaviour
a points signif
rent features. I
rmine the bes

on system in
omalies within
edures used to
attribute (e.g.

butes (e.g. the
ween a query a

lue in a query
atistical profile
e model, is seen

maly detection

nd Detection
h statistical pa
eature under a
n anomaly pro

webserver, eac
ion module ap

nomalous or no
n an anomalou

osed system. F
bed.

atures and ext
odes: training a
ction phase ca

nised and merg
ed. The new lo

ameter values.
simplify the p

ess of data m
r, we need to d
ficantly differ
In our proof-of
st techniques t

this project. T
n a set of input
o evaluate a sp
the characteris
absence or abn

and the previou

or for the que
e and any featu
n as a potentia

system

Mode. During
atterns of a spe
analysis. Once
obability value
ch model com
pplies a suitab
ot (Corona &

us state when th

For each featu

tract informati
and detection.
alculates proba

Vol. 7, No. 2;

ged together as
og has values
The initial log

process, the me

mining involve
detect regions
from the rest.
f-concept, diff
to use for ano

The architectu
t requests. Kru
pecific feature
stics distributio
normal presen
us requests.

ery as a whole
ure, under ana
al attack.

g training mo
ecific feature.
a statistical pr
 of a request b

mputes an ano
ble threshold t
Giacinto, 201
he filter is app

ure in the table

ion relevant fo
The training p

ability of malic

2014

s one
from

gs are
erged

s the
from
This

ferent
maly

ure is
uegel,

of a
on of
ce of

. The
lysis,

de, a
Each
rofile
based
maly
o the
0). A
lied.

e, the

or the
phase
cious

www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 2; 2014

123

use.

(1) Statistical Distribution of Non-Negative Integer Values (Model A)
The role of this model is to learn the statistical distribution pattern in the feature values under study. The main
assumption is that the features must always be a positive integer value or zero. If the feature can allow negative
values then it is not suitable for this model.

Table 1. Summary of the features profiles used by the proposed system

Feature Attacks Model

Length of attribute parameters Buffer overflow attacks / XSS attacks / SQL
injections

Model A (a model for each
attribute)

Character distribution of
attribute parameters

XSS attacks / SQL injections / Code
injections

Model B (a model for each
attribute)

Abnormal token value within
attribute parameter

Attacks that inject malicious input on
attributes with enumerations

Model C (a model for each
attribute)

Absence / Abnormal presence
of attributes

Any attack that injects malicious input on
uncommon attributes

Model D (a model for each
page)

Ordering of attribute
parameters

Any attack that manually changes the order
of attributes

Model E (a model for each page)

Request Method Information gathering / probing / Cross Site
Tracing (XST)

Model D (a model for web
application)

HTTP Version Information gathering / probing Model D (a model for web
application)

Length of HTTP Header
attributes

Buffer overflow attacks leveraging on header
input

Model A (a model each request
header)

Character Distribution in
HTTP Header attributes

Code injection attacks leveraging in the
header

Model B (a model for each
request header)

Frequency Access Information gathering / automated
discovering of vulnerabilities in web
application

Model A (a model for web
application)

Request Uri Information gathering / probing / Illegal
access of web pages

Model D (a model for web
application)

The model is based on the assumption that the higher the value of	ݔ௜, the lower the likelihood that it is legitimate.
Consider the training set ܵ ∈ ሼݔଵ, ,ଶݔ . . , ݔ .ேሽ where each element is a whole number, i.eݔ ∈ Գ଴. During
learning the value of the mean ߤ and variance ߪଶ is calculated on the sample to approximate the statistical
distribution. The values of ߤ and ߪଶ are calculated as follows (Kruegel, Vigna, & Robertson, 2005):

ߤ ൌ ∑ ௫೔௡௡௜ୀଵ (1)

ଶߪ ൌ ∑ ሺ௫೔ିఓሻమ௡௡௜ୀଵ (2)

To compute the legitimacy of the value under test, the distance from the mean ߤ for a random variable X of the
statistical distribution is calculated. The calculation uses Chebyshev inequality function. However, only the
upper bound of the probability calculation is appropriate since it is assumed that a value which is greater than the
mean is said to be malicious. The probability that the value ݔ is legitimate is defined as follows (Corona &
Giacinto, 2010):

legitimateሻ	is	ݔሺ݌ ൌ ൝݌〈|Χ െ |ߤ ൒ 	 ݔ| െ 〈|ߤ ൌ 	 ఙమሺ௫ିఓሻమ 	 , ݔ ൐ ,1ߤ otherwise (3)

www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 2; 2014

124

(2) Statistical Distribution of Symbols (Model B)

The discussed model captures the feature’s pattern by analysing the statistical distribution of the symbols within
the values. The feature under analysis is assumed to have a regular structure (i.e. not random) with printable
characters. The algorithm, as proposed by Kruegel, Vigna and Robertson (2005), is based on the frequency
values of symbols within the values of the feature. The concept is based on relative frequencies of the
alphabetical characters, numbers and special symbols. The value of the feature is assumed to be human readable
implying that there will be more alphabetical and numerical characters than the other symbols.

In learning mode, the total number of alphabetical characters, numerical digits and special symbols are each
counted for every value in the training set. Unlike Kruegel, Vigna and Robertson (2005) model, the frequency
counts are separated into three (3) bins; one for alphabetical characters, one for numerical characters and one for
special symbols. Once the model has traversed the entire training set, the mean value ߤ of each observed feature
in each bin is calculated. The relative frequency is used instead of the absolute frequency because the unity of the
three (3) bins needs to add up to one, without any preferences to other values with higher absolute frequencies.

To better understand the behaviour of the model, let’s consider a feature with the value p@$$w0rd1024. The
frequency count for alphabetical characters, numerical characters and special symbols would be 4, 5, and 3
respectively, and the relative distribution value would be 0.33, 0.42, and 0.25. The relative bin value is stored
and once the entire training set has been observed, the mean ߤ is calculated.

During detection, the frequency of the three (3) bins of the value under test is counted. The frequency count is
normalised to get the relative frequency. The detection algorithm uses the Pearson ߯ଶ-test (chi-squared test) as a
‘goodness-of-fit’ (Kruegel, Vigna, & Robertson, 2005), to determine the probability that, the obtained
distribution is a sample drawn from the expected statistical distribution of symbols.

Let the set ܧ௜ be the expected frequencies for the three (3) bins calculated during the learning phase, and the set ௜ܱ be the normalised frequencies of the three (3) bins of the value under investigation. The ߯ଶ value is
calculated as follows:

 ߯ଶ ൌ 	∑ ሺை೔ିா೔ሻா೔ଶ௜ୀ଴ (4)

The degree of freedom of the ߯ଶ-test is two (2) since it is the number of bins used minus one. The actual
probability value ݌ is derived from the associated value in the ߯ଶ-distribution graph or from a predefined table.

(3) Token Finder (Model C)
Consider a feature value ݔ where ݔ ∈ ܶ and ܶ is a set of predefined values referred to as enumeration. An
enumerable feature is one that has all its values elements of the predefined set ܶ. The goal of this model is to
detect if a feature is categorised as enumerable or random, and to learn all the combinations of the enumeration.
When a feature is said to be enumerable and a value	ݔ ∉ ܶ, then it is considered an anomalous. On the contrary,
when a feature is said to be random, anomalies cannot be detected.

The classification of features should be based on the analysis that the values are bound by an unknown threshold ݐ when enumerable while in the other case these values are mostly random. A feature can be classified as
random when the number of different values grows proportional to the total number in the training set. In
contrast, if the increase is inversely proportionally then it is assumed that the feature follows an enumeration.

Kruegel, Vigna and Robertson (2005) suggest using statistical correlation to detect if a feature is enumerable or
random. Let ݌ be the statistical correlation between the values of the functions ݂ and	݃, for increasing
numbers 1,… , ݅ of occurrences of attribute	ܽ, where the functions ݂ and ݃ are defined as follows:

 ݂ሺݔሻ ൌ (5) ݔ

 ݃ሺݔሻ ൌ ቐ݃ሺݔ െ 1ሻ ൅ 1, ݔnew݃ሺ	is	ܽ	of	௧௛valueݔ െ 1ሻ െ 1, ,0	exists	ܽ	of	௧௛valueݔ 	ݔ ൌ 0				 (6)

Once the training set has been observed and learnt, the correlation parameter ݌ is calculated using the following
formula:

݌ ൌ ஼௢௩௘௥ሺ௙,௚ሻඥ௏௔௥ሺ௙ሻൈ௏௔௥ሺ௚ሻ (7)

Where ܸܽݎሺ݂ሻ and ܸܽݎሺ݃ሻ is the variance of ݂ and ݃ respectively and ݎ݁ݒ݋ܥሺ݂, ݃ሻ is the covariance of ݂

www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 2; 2014

125

and ݃ together.

A negative value of ݌ indicates that ݂ and ݃ are negatively correlated, and thus an enumeration is assumed.
On the other hand, when the value ݌ is positive then a positive correlation is indicated meaning that a random
feature can be assumed. The set of enumerations observed is stored once the learning phase is complete and an
enumeration is assumed. The model assumes that the complete set of enumerations is found in the training set in
the case of an enumerable feature.

The detection process is straightforward since when the value of ݌ is positive, the model will always return 1
and when the value of ݌ is negative the model checks that the value of the attribute under test is an element of
the enumeration set. If that is the case, the model returns 1 and 0 on the contrary.

(4) Abnormal Presence and Presence of Features (Model D)
The absence or abnormal presence of certain features within a request can be an indica-tive sign of malicious
attack. This is normally achieved by manually manipulating the requests using specialised programs. The model
discussed in the following section deals with observing that certain features which are regular are kept and alert
only when irregular features are present or absent.

The idea behind this model is simple; the model observes the set of features	ܵ ∈ ሼݔଵ, ,ଶݔ . . , ேሽ and stores whilstݔ
traversing the training set. Once the learning phase is complete, a distinct set of features is created. The set ܵ
will be used to detect anomalies related to abnormal presence or absence.

For the detection of abnormal presence or absence features, the algorithm observes the set of features ܵ௤ of the
request under test. It then performs a lookup in the current distinct set and if any feature	ݔ௜ ∈ ܵ௤, ௜ݔ ∉ ܵ, the
model returns	0, and 1 on the contrary. Also, all the features in ܵ should be present in ܵ௤ i.e. ∀	ݔ ∈ ܵ: ݔ ∈ ܵ௤.
This means that all features observe abnormal characteristics. This implies that the set ܵ ൌ ܵ௤ for every request
excluding the order of values. If that is not the case, the request is considered to be irregular and 0 is returned.

(5) Irregular Ordering of Features (Model E)

There are instances when a change in order can be an indicative sign of malicious intervention. Attackers who try
to exploit web vulnerabilities pay little attention to the order of features (Kruegel, Vigna, & Robertson, 2005).
The model discussed hereunder is responsible to detect any irregularities in the order of values of a specific
feature.

During the learning phase, the model observes the set of values of a specific feature and records the order whilst
traversing the training set. Kruegel, Vigna and Robertson (2005) suggest constructing a directed graph with the
orders of values as directed edges. A value ݔ௦ precedes another value ݔ௧ when ݔ௦ and ݔ௧ appear together and ݔ௦ comes before ݔ௧ in the ordered list of values. The order of constraints is defined as the following set

 ܱ ൌ	 ቄ൫ݔ௜, ௝ݔ,௜ݔ	and	௝ݔ	௜precedesݔ	:௝൯ݔ ∈ ቀܵ௤ೕ ∶ 	 ∀݆ ൌ 1…݊ቁቅ (8)

The set of attribute pairs ܱ is generated through the use of a directed graph. Let ܩ be a directed graph where	ܸ,
the set of vertices, contains all the distinct values and ݒ௜ is associated with the value	ݔ௜. For every feature ݍ௝
(where	݆ ൌ 1…݊) that is analysed during the learning phase, the ordered list of its values ݔଵ, ,ଶݔ … , ௜ isݔ
observed. For each value pair ሺݔ௦, ݏ ௧ሻ in this list withݔ ് ݏ	and ݐ ൒ 1, ݐ ൑ ݅, a directed edge is inserted into
the graph from ݒ௦	to	ݒ௧.
Upon completion of the learning phase, the graph ܩ would contain all distinct values in ܸ and all order
constraints observed from the queries, represented as either an edge between two vertices or a path over a series
of directed edges. The only problem is that the graph could potentially have cycles as a result of precedence
relationship. To remove these cycles Kruegel, Vigna and Robertson (2005) suggest using Tarjan’s algorithm
(Tarjan, 1972) to identify all strongly connected components. Once these components have been identified and
exist in the graph, all the edges connecting the vertices of the same component are removed.

The model constructs a set of ordered constructs	ܲ, to detect any irregularities in the ordering of values, such that
all the value pairs ሺݔ௝, ݆ ௞ሻ withݔ ് ݇ and ݆ ൒ 1, ݇ ൑ ݅ are analysed to detect any potential violations. A
violation occurs when for any value pair	ሺݔ௝, ,௞ݔ௞ሻ, the corresponding pair with swapped elements ሺݔ ௝ሻ is anݔ
element of	ܱ. In such a case, the model returns	0, and 1 on the contrary.

3.2.2 Feature Profiles for the Fraud Detection System

A common observation in web applications is that the length of a query attribute does not vary significantly.
Generally, query attributes have fixed sized tokens (such as session identifiers or flag variables) or consists of

www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 2; 2014

126

short strings derived from human input (like name and surname input to an HTML form). The variation of
lengths within query attributes is not much and sometimes form inputs are also bound with a maximum length.

The intervention of malicious behaviour may considerably change the length of input parameters. For example
an attacker would pad the input with extra characters, to perform a buffer overflow attack. A Cross-Site Scripting
(XSS) attack might require an increased amount of scripting data to launch the attack. In both cases, the length of
the parameter value increases thus differentiating from the norm. The model, as proposed by Kruegel, Vigna and
Robertson (2005), allows minor deviations from the normal by genuine users. The model does not allow requests
with attributes of length greater than the normal unless very large attribute lengths are not the norm.

Kruegel, Vigna and Robertson (2005) observed that query attributes, in general, have a regular structure that
contains only printable characters and their values are often human-readable. The model under discussion
captures the normal patterns of the query attributes by analysing its character distribution. For example, in an
HTML form, when the user is asked for a name and surname, the likely values submitted would be made up of
alphanumeric characters. The common trend is that the name and surname of a user do not have special
characters.

The algorithm, as proposed by Kruegel, Vigna and Robertson (2005), is based on frequency values of characters
within the query attribute. The concept is based on relative frequencies of alphabetical characters, numbers and
special symbols. Attacks such as XSS use script related tags, full of special symbols, which are embedded into
the parameter. Other attacks, such as buffer overflow, pad the string with the same character (normally a
whitespace). In both cases, the values tend to deviate from the normal distribution of characters to launch the
attack.

Input attribute parameters in web applications often require one out of a small set of values called enumerations.
Typically these attributes can be flags or indices. The goal of this model is to primarily detect when an attribute
parameter can be categorized as enumerable or random. If an attribute is enumerable then anomalies can be
detected when any attribute value is not an element of the enumeration set. On the contrary, when an attribute is
random, anomaly detections cannot be detected.

As users navigate through a website, client side code automatically sends data to the server via attribute value
pairs. The attribute value pairs are either submitted in the URL using GET methods or in the HTML form data
using POST methods (the approach is changing with the new REST standards, though the concept is still the
same). Usually the attribute names are static and do not change, resulting in a high regularity in the number and
name of parameters. Attackers, who try to exploit web vulnerabilities, pay little attention to the completeness of
the parameters (Kruegel, Vigna, & Robertson, 2005). This model assumes that the absence or abnormal presence
of one or more parameters in a query might indicate malicious behaviour.

During the learning phase, the model observes the set of attribute parameter names making the requests whilst
traversing the training set. Once the learning phase is complete, a distinct set of attributes is created for each
page requested. This set will be used to detect any abnormal presence or absence of attribute parameters.

As explained earlier, since automatic client-side programs construct the request, it is assumed that legitimate
invocations of server-side programs often contains the same parameters in the same order. Client-side programs,
in general, preserve the relative order of attribute parameters within a request. Malicious attackers pay little
attention to the order of attribute parameters when hand-crafting the attack via specialised programs. This model
will test the consistency of the order of attribute parameters, and in assuming that irregular order of parameter
indicates malicious behaviour, will raise alarms when these irregularities are discovered.

The HTTP protocol offers different methods that can be used to perform actions on the web server. Although, the
most widely used methods are GET and POST, other methods exist which include HEAD, PUT, DELETE,
TRACE, OPTIONS and CONNECT. Some of these HTTP methods are used by developers to test their system.
However, if a web server is misconfigured, these methods can potentially pose a security risk (OWASP, 2008).
Sometimes attackers create hand-crafted HTTP requests of different method types, to gather information about
the web server and to know how to establish attacks. The proposed mode uses the Absence & Presence model to
analyse all the method types within the training set of legitimate users. The request type model assumes that the
training set contains requests with all method types which are considered legitimate. It also assumes that a
request with a method type which is not within the training set is an indication of malicious behaviour.

OWASP (2008) explains that to gather information about the web server, attackers send malformed requests or
request non-existent pages to the server. An example used is GET / HTTP/3.0. To detect malicious behaviour via
HTTP version, the token finder model is used. Legitimate requests are used as a training set and it is assumed

www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 2; 2014

127

that any legitimate HTTP version is included in the set. Requests with other HTTP versions, which are not part of
the distinct set of the model, are considered to be malicious behaviour.

Attackers do not only manipulate attribute parameters within the request, but also request headers. The length
distribution of request headers is often unchanged since request headers, like attribute parameters, are often fixed
sized tokens.

The intervention of malicious behaviour sometimes considerably changes the length of input parameters. The
same model used for attribute length, is used to detect anomalies in header requests. The model will not allow
request header parameters with very large length that deviate from the norm.

It is observed that request headers have a regular structure and often contains only printable characters that can
be human-readable. Using the character distribution model, the normal patterns of the request headers are
analysed and learnt.

The algorithm, as proposed by Kruegel, Vigna and Robertson (2005), is based on frequency values of the
characters within the request headers. The concept is based on relative frequencies of the alphabetical characters,
numbers and special symbols. Attacks such as XSS use scripts related tags, full of special symbols, which are
embedded into the header. It is assumed that malicious intervention will tend to deviate from the normal
distribution of characters and thus anomaly can be detected.

Attackers probing any web application will tend to use automatic tools which help in finding web applications
vulnerabilities. The frequency at which these automated tools submit requests is generally much faster than a
human’s standard rate. The goal of the access frequency model is to observe and learn the frequency at which
clients submit requests. The idea is to analyse how many requests are submitted in total on each page of the web
application and by each individual client (assuming that distinct IPs are distinct clients).

Consider an e-commerce site with a login and review feature. Analysing the frequencies at which these two
pages are accessed, one would observe that the authentication page is called less frequently by each individual
client since it is only used to login once. However, the total access frequency for the authentication page is very
high since it is accessed by many clients. On the other hand, the review page is accessed in bursts by an
individual use who is reading reviews about a particular product. However, the total access frequency for the
review page can be low since not every client looks at the reviews of a product before buying it.

An irregular burst of invocations may indicate an attacker probing for vulnerabilities. Though the method can
indicate irregularities, an attacker can easily trick the model by slowing the rate at which invocations are
requested. However, most of the hacking tools available do not support such features. Furthermore, once a
vulnerability hole is identified and becomes wide spread, more individuals attack the web applications, thus
raising the total frequency to a suspicious level.

The request Uri-model works under the principle that the e-commerce application serves a number of different
pages and resources to the client. However, the web server also has a set of different programs that are used by
system administrators to configure the system properties and to maintain its operations (Gaarudapuram, 2008).
The administrative tools include creating logs, configuration of web server settings, authentication and
authorisation mechanisms and also creation of users and roles. By default, if the web server is not configured
correctly, the tools are accessible over the network with default passwords that are known to everyone.

A user with malicious intent would try to access the administrative pages of the web server if available. If an
attacker succeeds in accessing these administrative tools, he would most likely have administrator privileges that
allow him to run operating system commands and ultimately take control of the web application. To capture any
request which is addressed to unknown pages, this model observes the set of pages that are accessible within the
e-commerce application, takes a note of them, and any request to a page which is not part of the e-commerce
application, will be an indication of malicious attack. During the learning phase, a distinct set of pages is
observed. This set is then used to detect any abnormal requests to pages or resources which do not form part of
the e-commerce application.

3.3 Installation and Configuration

To simulate a real world scenario and collect data from real traffic, an e-commerce honeypot is deployed on a
remote server. Instead of redesigning a new e-commerce web application, it was decided to use osCommerce
(osCommerce, 2011), a free online shop e-commerce solution that offers a wide range of out-of-the-box features
and can be setup fairly quickly. OsCommerce is based on the PHP (PHP, 2012) scripting language and the
benefit of being script-based is that it can be easily modified to purposely add weaknesses to the system. The
OsCommerce uses a MySQL (MySQL, 2012) database to store any information. OsCommerce version 2.2ms.2

www.ccsen

was deploy

The idea o
spread thu
and PHP. F
are already

To promot
legitimate
attack it. O
the remote
attacks.

The defaul
genuine on
shop. The
search pag
Cross Site
attacks. A
passwords

3.4 Penetr

Though th
site during
e-commerc
the system

Penetration
been used
(2013). Ho
two stages
to actually
by OWASP

3.5 Loggin

Server log
system. In
moving to

The Comm
incoming
composed

The server
indicates th

net.org/cis

yed on an exte

of using an old
us attracting m
Furthermore, u
y known thus a

te lack of sec
users are disc

Once all the co
e server, so as

lt template of
ne and not a ho
se were added

ges were altere
 Scripting (XS
lso password

s making brute

ration Testing

he e-commerce
g the time fram
ce honeypot. T

m, enabling the

n testing is no
successfully i

owever in this
s of testing; te
y perform the a
P (2008).

ng

gs and Applica
n this section, a

Application L

mon Log Form
traffic. The CL
of several tok

F

r, used for the
hat a token do

ernal domain.

der version of
ore malicious
using older ve
attracting more

curity within o
couraged beca
onfiguration of
not to allow m

the web applic
oneypot. New
d by using th
ed to add vulne
SS) attacks wh
policies were
 force attacks

e is promoted
me of this pro
To increase th
generation of

ormally used to
in the security
s case, it is use
sting in passiv

attack. The pen

ation logs are
a description o
Logs.

mat (CLF) spec
LF specificatio

kens separates b

Figure 3. Comm

e following pr
es not have a v

Computer an

the osComme
users. Noneth
rsions of MyS
e malicious us

our e-commerc
ause of its lack
f the web appl
malicious user

cation was alte
items and cate

he admin scree
erabilities to th

hilst the change
not enforced
more successf

as best, it is s
oject. It would
he number of m
f data which ca

o evaluate the
y evaluation of
ed to simulate
ve mode to gat
netration testin

the main sour
of how the logs

cification is ge
on calls for ev
by spaces (Me

mon Log Form

roject, adds th
value. The tok

nd Information S

128

erce is that vul
heless, this vers
SQL and PHP,
ers.

ce site, it was
k of security w
lication were a
s to raise their

ered and styled
egories were a
ens. To furthe
he pages. The
es on the searc
on the clients

ful.

till very unlik
d be unlikely t
malicious requ

an be used for t

security of a
f e-business sy

malicious beh
ther informatio

ng that is used

rces of data th
s will be forma

enerally used b
very HTTP req
eyer, 2008) as s

mat (CLF) spec

he referrer and

kens are defined

Science

lnerabilities, fo
sion is depend
results in the

s decided not
while maliciou
applied, the ad
r privileges to

d to give a fee
added to the in
er attract malic

development
ch page provid
s thus users co

ely that many
to have testing
uests, data pen
testing and eva

web applicatio
ystems as docu
haviour. Norm
on about the e
here is based o

hat are used as
atted is present

by standard we
quest to be log
shown in Figu

cification (Mey

d user agent t
d in Table 2:

or older versio
dent on older v
addition of vu

to secure it o
us users are in
dmin screens w
admin users a

eling that the w
ventory to pro
cious behaviou
on the review
ed a back-doo

ould create acc

malicious use
g data if users
netration testin
aluation.

on and there is
umented by Ste

mally, penetrati
e-commerce sit
on black-box t

s input to the
ted, starting w

eb servers such
gged on a sepa
ure 3 below:

yer, 2008)

to the logs. A

Vol. 7, No. 2;

ons, might be w
versions of My
ulnerabilities w

over SSL, and
nstigated to try
were removed
and perform fu

web application
omote a real re
ur, the review
pages, gave ri
r for SQL inje
counts with si

ers try to attac
s do not attack
ng is performe

s evidence tha
ephens & Valv
on testing invo
te and active m
testing as sugg

anomaly dete
with Server log

h as Apache, t
arate line. A li

A hyphen / das

2014

wider
ySQL
which

thus
y and
from

urther

n is a
tailer

w and
ise to
ction
mple

k the
k the
ed on

at has
verde
olves
mode
ested

ction
s and

o log
ine is

sh (-)

www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 2; 2014

129

Table 2. Details of an example of a log entry in CLF

Token Description Example
127.0.0.1 - joe [04/Nov/2011:10:11:22 -0500] "GET /catalog/index.php HTTP/1.1" 200 12345
"http://www.decommerceproject.com" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bo

Host Fully qualified domain name of client or
remote address (IP)

127.0.0.1

Ident Identity reported by client when
IdentityCheck is enabled and client runs
identd

-

Authuser The userid of the client making the
request which is determined by HTTP
authentication if required

Joe

Timestamp The time when the server finished
processing the request. The time is given
in between squared brackets

[28/Jan/2012: 09:02:36 –0500]

Request The request line requested by the client.
This token is given in between inverted
commas.

"GET /catalog/index.php HTTP/1.1"

Status The HTTP response status code returned
to the client

200

Bytes The number of bytes in the object returned
to the client excluding all HTTP headers

12345

Referrer From which website the request was
triggered (if any). Basically to identify
where people are visiting from. The token
value is given in between double quotes

"http://www.decommerceproject.com"

User-agent The clients’ identification of which
software is being used to submit the HTTP
request. The token value is given in
between double quotes so as to escape any
space symbols found in this token

"Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit/535.7 (KHTML, like Gecko)
Chrome/16.0.912.63 Safari/535.7"

Although the server provides a lot of information about requests, the main point of research is to collect more
information. An HTTP logger was also implemented at application level using a scripting language (PHP in this
case). Since osCommerce is script based, the application logger was easily merged with the framework. The
KLogger (Katzgrau, 2008) is used to log data into a text file. The logger was slightly modified so as to support
older version of PHP, and to write in files which are rolled over daily.

The HTTP Request Log object, captures the information from the request and formats it into a readable format.
The data captured includes the following request headers:

 HTTP_*

 SERVER_PROTOCOL

 REQUEST_TIME

 REQUEST_URI

 QUERY_STRING

 REQUEST_METHOD.

In addition this object also captures the body of the request such as POST attribute parameters. Each request
header is printed on a separate line, by first printing the header name, a semi-colon followed by a space and the
header value. The last to be printed is the request body, both encoded and decoded, and the same format as the
headers is used. An empty line divides a new request from the previous one.

www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 2; 2014

130

The Application Logger logs all requests which successfully make it to a valid page. However, it does not mean
that all requests with response status 200 are logged in the application log. There can be hand-crafted requests
which skip the application logger, in which case Server logs will be the only source of information.

3.6 Anomaly Detection System Implementation

The anomaly detection system was developed in Java, and can be executed as a console application. The
program accepts different arguments as input parameters, which are used to specify what is needed from the
system.

The anomaly detection system has two modes of operations; training and detecting. During training, a training
dataset is supplied to the program and through various data mining techniques, behavioural profiles are
constructed for different features. The profiles are serialised to xml and saved in a file. The program serialises
the profiles to save the state of the profiles once the system has been trained. When in detection mode, the
serialised xml files is loaded and detection can commence.

During detection mode, the system de-serialises the xml file to reconstruct the models, and generate a score for
each request that is passed. The anomaly score is determined by the value calculated from each model. The
models return a value of one (1) or zero (0); the latter indicates a probable anomalous request, while the former
indicates a probable genuine request. If any of the models returns a 0, then it is assumed that the request is
anomalous.

In reality, the values determined by each model are in decimal format, and are stored in the database. The
decimal value is passed through a threshold filter and if it is less than the threshold, it results in a 0 and if above
or equal then it returns a 1. However, by default the threshold values of the system are set to 0.5. If the threshold
needs to be configured, then this can be done manually, by changing the threshold values within the serialised
xml file.

4. Results
The evaluation consists of two phases training and testing. For the training phase, a dataset which was created
using random variables was used. This dataset was filtered from any malicious attacks and thus it can be
considered to be legitimate traffic. The dataset contains requests to all the pages of the e-commerce site. During
training phase the system learns the characteristics from the requests that were supplied. The model values were
serialised into an xml file so that the profiles are stored and thus the system can be easily switched to detection
mode.

To visualise the anomaly counts that were obtained via the anomaly detection system on the data collected, a
number of bar charts were generated. The charts represent the absolute count of the alerts for each model.

4.1 Training Systems

The detection system which is based on supervised learning requires a dataset to be trained. The training data is
based on legitimate requests, so as to learn the normal process of requests. In an e-commerce web application,
intrusion attacks are a small ratio when compared to legitimate attacks. However, the scope of the honeypot was
not to gather legitimate data but to attract malicious attacks. So the data collected from the honeypot cannot be
used for training. Due to the factors in place, a dataset of legitimate requests had to be generated that can be used
for training. The data of a simulated user using the e-commerce web applications was gathered and formatted.
Whilst simulating the user, every single page of the web application and every operation available were
requested so that no web page is left out form the training dataset. Once the requests were submitted, the server
logs and application logs were supplied to the log parser to filter them and format them. A total of 507 requests
were generated by the simulated user.

However, this was not enough as a training dataset. So instead of simulating other users, the logs of the
simulated user were replicated with variable data for 99 more users, i.e. a total of 100 users. To replicate this data,
users with different information were generated randomly or randomly selected from a list of predefined values,
and the user information within each request was replaced by the random generated values. Other information
which is not correlated to a user, but to a request, was generated randomly.

The set ܶ of 50,702 requests were manufactured as the training set for the anomaly detection system. The
system took approximately five (5) hours to learn the entire dataset	ܶ. Approximately, the system took 0.36 of a
second to learn each request which shows that the system is quite fast. In addition, the time can be decreased
further by updating the code to make it more efficient, and remove code which enables logging.

www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 2; 2014

131

4.2 Results of Synthesised Datasets

There are four (4) possible outcomes when predicting the purpose of requests, which include the following:

Table 3. Possible outcomes in the classification of requests

True Positive (TP) Requests that are predicted correctly as Anomalous

False Positive (FP) Requests that are predicted as Anomalous but in reality are Legitimate

False Negative (FN) Requests that are predicted as Legitimate but in reality are malicious

True Negative (TN) Requests that are predicted correctly as Legitimate

First, the detection system was supplied with the training dataset, which did not contain any attacks and thus
could safely be labelled as genuine.

4.2.1 Brute Force Attacks
A total of 87 brute force attacks were simulated and labelled as anomalous. Most of these attacks were generated
using the application named Brutus (HooBieNet, 2002). However, 10 of the attacks were created manually by
submitting them through the web user interface. Four different method types were used to attack, which include
GET, HEAD, PUT, and POST. Figure 4 shows the results obtained at different threshold levels, when the attacks
were submitted to the detection system. The requests that are not identified as anomalous can be considered as
False Negatives (FN). The number of FNs are independent of the threshold applied, this could be attributed to
brute force attacks not being able to be filtered by a threshold level.

Figure 4. Number of FN requests at different thresholds for Brute Force attacks

Figure 5 displays the models that contributed to the rate of TP during the detection process. After analysing the
results obtained, it was discovered that a large subset of the brute force attacks were discovered by the Access
Frequency Model since the attacks were launched without any interval in between. Furthermore, the Model
responsible with Request type discovered attacks which had been requested using the HEAD and PUT method
types. The Attribute Character Distribution Model also predicted some requests as being anomalous since the
password field was not conformant with the passwords being used, during the training period.

0

2

4

6

8

10

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
r o

f R
eq

ue
st

s

Threshold

False Negatives

TP

www.ccsen

4.2.2 SQL

A total of
submitted
However,
obtained fr
2007) was

The result
anomalous
Attribute L
predefined
some of th

net.org/cis

Figure 5. Nu

L Injection Atta

f 230 SQL Inj
on the advanc
a small subset

from the cheat
s used to submi

ts, as shown
s requests. Mo
Length Model
d values. Whil
he attacks, in o

Figure 6

0
1
2
3
4
5
6
7
8
9

N
um

be
r o

f R
eq

ue
st

s

umber of TPs f

acks
ection attacks

ce search page
t of the attacks
sheet on RSna
it the attacks. T

in Figure 7,
ost of the atta
l. The Attribut
le performing
rder to be disc

. Number of F

0
0
0
0
0
0
0
0
0
0

Attribute C
Distribu

Computer an

for feature mod

s were simulat
since it is the

s was submitte
ake (2011a) wa
The results pre

provide us w
acks were ide
te Token mode

the penetratio
covered by the

FN requests at d

haracter
ution

Re

Fea

TPs for

nd Information S

132

del at different

ted and labell
page which ex

ed to other pag
as used to laun
edicted by the

with a clear vi
entified by the
el identified at
on testing, the
Attribute Ord

different thresh

equest Type

ature Model

each feat

Science

t thresholds for

ed as anomalo
xposes vulnera
ges. A series o
nch the attacks
detection syste

iew of the mo
e Attribute Ch
ttacks which w
e attribute ord
er Model.

holds for SQL

Access Freque

ture

r Brute Force A

ous. Most of
abilities for SQ
of different SQ
s. SQL Power I
em are visible

odels which p
haracter Distri
were launched
der was intenti

L Injection atta

ncy

0.9

0.8

0.7

Threshol

Vol. 7, No. 2;

Attacks

these attacks
QL Injection at
QL Injection at
Injector (Larou
in Figure 6.

predicted the
ibution Model
d on attributes
ionally change

cks

ld

2014

were
tacks.
tacks
uche,

most
l and
with

ed in

www.ccsen

4.2.3 Cros

A total of
the review
attacks wa
attacks ob
(Dawes, 2
visible in F

Whilst con
included t
predicted a
launched o

net.org/cis

Figure 7. Num

ss Site Scriptin

205 XSS attac
w page since it
as submitted to
btained from t
2011) applicati
Figure 8.

Figu

nfirming the in
the Attribute
a small fraction
on attributes w

mber of TPs fo

ng (XSS)
cks were simu
is the page wh
o other pages
the cheat shee
ion was used

ure 8. Number

nitial assumpti
Character Dis
n of the attack

with predefined

Computer an

or feature mode

ulated and labe
hich exposes v
to verify the

et on RSnake
to launch the

r of FN request

ons, Figure 9
stribution Mo

k dataset. For e
d values.

nd Information S

133

el at different t

elled as anoma
vulnerabilities
accuracy of th
 (2011b) was

e attacks. The

ts at different t

shows that the
odel and Attri
example Attrib

Science

thresholds for

alous. Most of
to XSS attack

he detection sy
 used to laun
results predic

thresholds for

e models which
ibute Length
bute Token Mo

SQL Injection

f these attacks
s. However, a
ystem. A serie
nch the attack
cted by the de

XSS attacks

h predicted the
Model. The o

odel identified

Vol. 7, No. 2;

n Attacks

were submitte
small subset o

es of different
ks. The WebSc
etection system

e most XSS at
other models
attacks which

2014

ed on
of the
XSS

carab
m are

tacks
only
were

www.ccsen

4.2.4 Dr In

A total of
database a
overflow,
dataset, are

Figure 11
be predict
errors wer

net.org/cis

Figure 9.

ngham’s Datab

f 108 attacks
and legitimate
Input validatio
e visible in Fig

Figure 1

and Figure 12
ted by the Attr
e assumed to b

 Number of TP

base of Attacks

were synthes
e requests fro
on error, and U
gure 10.

0. Number of

2 show the mo
ribute Length
be predicted by

Computer an

Ps for feature m

s

sised through
om the e-com
URL decoding

FN requests at

dels which pre
Model, and t

y the Request U

nd Information S

134

model at differ

a merging pr
mmerce applica

error. The res

t different thre

edicted the atta
this has been c
Uri Model, wh

Science

rent thresholds

rocess involvin
ation. The att
sults predicted

esholds for Dr

acks. Buffer o
confirmed by
hich in fact did

s for XSS Atta

ng attacks fro
tacks have a
by the detecti

Ingham's Atta

overflow attack
Figure 11. Al

d as Figure 12

Vol. 7, No. 2;

acks

om Ingham (2
mixture of B
ion system, for

cks

ks were assum
lso, URL deco
explains.

2014

2006)
Buffer

r this

ed to
oding

www.ccsen

F

Figure 1

4.3 System

Choosing
the total o
performan
sample of
calculate t
from 4998

Table 4 sh
Performan
data. The r
of 95%. T
indicative

net.org/cis

Figure 11. Num

12. Number of

ms Performanc

0.7 as our suit
of false negati
nce of the anom

attacks, a rand
the performanc
8 requests.

hows the con
nce is calculate
results show th

The equation u
calculation, th

mber of TPs fo

f TPs for featur

e
table threshold
ives is 68. A c
maly detection
dom sample of
ce of the syste

fusion matrix
ed using the d
hat the anomal

used to calcula
here are cases t

Computer an

or feature mode

re model at dif

d for the anom
confusion mat
n system. Sinc
f about 4998 re
em. At 0.7 thre

that contains
data within the
ly detection sy
ate the accurac
that this metric

nd Information S

135

el at different t

fferent thresho

maly detection
trix, as stated
ce the sample
equests was se
eshold mark, a

s information
e matrix. Table
ystem has som
cy rate is foun
c is not an adeq

Science

thresholds for

lds for Ingham

system, the to
by Bhowmik

 of legitimate
elected from th
a total of 190

about the actu
e 5 shows con

me errors in its
nd in Table 6.
quate perform

Ingham (2006

m (2006) Attac

otal of false po
(2011), is us
traffic is muc

he legitimate tr
requests class

tual and predi
nfusion matrix
prediction, wi
Thought the a

ance metric.

Vol. 7, No. 2;

6) Attacks

ks (continued

ositives is 2085
ed to calculat
ch greater than
raffic and is us
ified as anoma

icted classifica
built on simu

ith an accuracy
accuracy rate

2014

...)

5 and
e the
n the
ed to
alous

ation.
ulated
y rate
is an

www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 2; 2014

136

Table 4. Confusion matrix

 Labelled

Predicted

 Legal Fraud

Legal True Negative (TN) False Positive (FP)

Fraud False Negative (FN) True Positive (TP)

Table 5. Confusion matrix of the synthesised data set used to test the system

 Labelled

Predicted

 Legal Fraud

Legal 4808 68

Fraud 190 562

Table 6. Performance metric

Metric Name Equation Value

Accuracy(AC) ܥܣ ൌ ܶܰ ൅ ܶܲܶܰ ൅ ܲܨ ൅ ܰܨ ൅ 0.95 ܲܨ

4.4 Evaluation of Data from Honeypot
The performance of the anomaly detection system calculated before, gives a broad understanding of the accuracy
in the prediction of the HTTP queries on the e-commerce honeypot system. The data collected on the honeypot
system ranges from 10th October 2011 to 4th December 2011; 8 weeks of data and a total of 12773 requests. The
collected data is divided into week batches as follows:

Table 7. Honeypot’s definition of data batches

 Batch Code From Date To Date No. Requests

B1 10th October 2011 16th October 2011 4017

B2 17th October 2011 23rd October 2011 1514

B3 24th October 2011 30th October 2011 1551

B4 31st October 2011 6th November 2011 719

B5 7th November 2011 13th November 2011 495

B6 14th November 2011 20th November 2011 2290

B7 21st November 2011 27th November 2011 808

B8 28th November 2011 4th December 2011 1383

Each batch was passed through the detection system and the results were recorded. After analysing the results of
each batch, we found that the majority of the requests on the e-commerce honeypot were attacks related to
information gathering, mostly trying to access the admin section of the e-commerce web application. However,
there were other requests which are considered as False Positives since they are accessing resources which were
not included in the training set. Figure 13 contains the number of anomalous requests predicted by the Request
Uri Model for each batch.

www.ccsen

The results
lack of ac
others Fal
small as w
almost equ
the honey
legitimate
system, th
anomalous
independe
by a thresh

4. Conclus
E-commer
Intrusion i
malicious
various vu
perpetrator

net.org/cis

Figure

s show that 81
ccuracy in the
se Negatives (

well. FPs are la
ual, the two nu
ypot. This sho

ones. Further
ough most of
s request in
nt of the thres
hold level.

Figure 14

sions
rce fraud has s
is one of the
users from ac

ulnerabilities w
rs take advant

2

4

6

8

10

12

Pe
rc

en
ta

ge
 o

f R
eq

ue
st

s

13. Anomalou

1% of the requ
detection syst

(FN). Howeve
abelled as legal
umbers will cro
ows that the
rmore, a subs
these attacks w
each batch a

shold applied,

4. Percentage o

een an increas
techniques us

cquiring confid
within an e-com
tage of these v

0

20

40

60

80

00

0

0.1 0.2

Perce

Computer an

us requests pre

uests on the e-c
tem, there cou
er, the rate of
l while FN are
oss each other,
honeypot was
stantial numbe
were related to
at different th
this could be a

of anomalous

se in the last fe
sed to perpetr
dential informa
mmerce web a
vulnerabilities

2 0.3 0.4
T

entage of P

nd Information S

137

edicted by Requ

commerce hon
uld be some r
FP and FN is

e malicious (se
, thus proving
s successful,
er of attacks
o information k
hreshold value
attributed to an

requests for ea

ew years and a
rate fraud. Alt
ation about cli
application wh

and penetrate

0.5 0.6
Threshold

Predicted

Science

uest Uri Mode

neypot were pr
requests which
s quite small a
ee Table 5). If w

that 81% is th
since it attrac
were launche
knowledge. Fi
es. The numb
nomalous requ

ach batch at di

action needs to
though traditio
ients and from

hich allow intru
e the system to

0.7 0.8

d Intrusio

el for each batc

edicted as ano
h are False Po
and the numbe
we had to cons
he actual perce
cted more ma
d on the e-co
igure 14 show
ber of anoma
uests not being

fferent thresho

 be taken to pr
onal security t

m committing
usions by mal
o steal valuab

0.9

ns
B

B

B

B

B

B

B

B

Vol. 7, No. 2;

ch

omalous. Due t
ositives (FP), w
er of FP and F
sider them as b
entage of attack
alicious users
ommerce hone

ws the percenta
alous requests
g able to be fil

olds

revent it. Comp
techniques pre
fraud, there ca
icious users. F
le information

B1

B2

B3

B4

B5

B6

B7

B8

2014

to the
while
FN is
being
ks on
than

eypot
ge of
s are
tered

puter
event
an be
Fraud
n that

www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 2; 2014

138

can be used to perform fraud.

E-commerce security within this project is upgraded to another level. The proposed system learns the
characteristics of e-commerce web applications by creating profiles of the associated HTTP requests. The system
generates different profiles using supervised learning. Once profiles are created, the system can be used to
monitor incoming traffic and classify HTTP requests as legitimate or malicious. The profiles generated by the
system are based on various features which help distinguish anomalies queries from genuine ones.

The list of features extracted from the HTTP queries include unknown or abnormal ordering of parameters,
abnormal length and character distribution of HTTP query parameters, illegal use of HTTP protocol versions and
HTTP methods, abnormal length and character distribution of HTTP header parameters, illegal access to specific
server resources and access frequency of users.

The benefit of this proposed system is that profiles are learnt with minimal human interventions unlike other
Intrusion Detection Systems (IDS). The detection capabilities of the system can be adjusted to suit specific needs
of the business, by tuning the threshold values used for the detection process.

To evaluate the system, a labelled dataset of HTTP queries including both malicious and genuine queries was
needed. A good database that contained labelled requests could not be obtained and so synthesised data was
generated to help us test the system.

The synthesised legitimate dataset was devised by randomly replacing the values of HTTP queries collected
from logs (application and server) which were generated by a simulated user. This dataset was used to train the
system. Attacks were synthesised by constructing malicious HTTP query using attack values obtained from
Ingham (2006) database infused with legitimate HTTP queries obtained from the simulated user. Nonetheless,
the dataset of attacks was further increased by performing penetration testing (OWASP, 2008) on the
e-commerce web application.

The results of the experiments were presented in this article. From the evaluation it is evident that fraud detection
in e-commerce can be reduced using data mining techniques together with statistical analysis. With the given
datasets, our approach proofed to be promising though it might need further full-scale tests and configuration
flexibilities. The results of the evaluation have been presented as bar-chats to help visualise the performance and
accuracy of the proposed system. Moreover, these will help system administrators to easily understand the state
of the system and easily identify attacks, if the system had to be taken to a production scale.

From the results it is evident that the system successfully detected a high percentage of malicious attacks, but
there were also a number of false positives and false negatives. In certain scenarios, it is very hard to detect if an
HTTP query is benign or anomalous from just a simple request. More information is needed in certain cases.
However, it can be safely assumed that usually a malicious user will submit several different attacks to
successfully perpetrate fraud, unless he knows all the vulnerabilities of the system already. Thus if not all of the
HTTP queries are detected as malicious, but the majority are, the system can still be considered useful. By
grouping the requests into sessions, there is a possibility that the system gives better results.

The assumptions made in this project, might not be comprehensive since if a new web page is created on the
website and the system has not learnt of its existence, then the HTTP request to this page will be considered
anomalous, and that might not be the case. Nonetheless, if a web page has been changed and the attribute
parameter names changed or the orders changed, then the system must be re-trained with the new parameters
since all HTTP queries with new parameters will be considered malicious unless the system is trained.

There is continuous interest in the area of fraud detection in e-commerce. The proposed system is considered a
novel approach to the detection of computer intrusion attacks in e-commerce web applications. The techniques
used can be further investigated to reduce the number of false positives to a possible minimum. Furthermore,
from the results obtained in the evaluation, it is concluded that there is no single technique which works for most
attacks. The more features are extracted, the more information is gathered and the better the detection outcome.
However, a balance must be reached between accuracy and efficiency.

As a future reference, the system should handle the presence of attacks in the training set. If such a feature is
enabled, the administrators of the web application do not need to collect genuine request to be used as training
data. Assuming that the majority of the requests in e-commerce are legitimate, the system can be left in training
mode for a considerable amount of traffic and switched to detection mode, once valid profiles have been
generated.

Another problem is that the system does not allow changes in the web application. The web application might
detect changes as a possible threat. There should be a mechanism in place, that whenever changes are deployed

www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 2; 2014

139

on the web application, the system is trained again to generate new profiles, amend old ones and possibly also
delete unnecessary ones. Ideally, the system should automatically recognise a change and start training.

The ultimate goal is to allow the system to perform anomaly detection in real time. The system should be able to
handle millions of requests per day and ideally the system should not trigger any false alarms.

References
Almadhoob, A., & Valverde, R. (2014). A cybercrime prevention in the kingdom of Bahrain via IT security audit

plans. Journal of Theoretical of Applied Information Technology, 65(1).

Barfar, A., & Mohammadi, S. (2007). Honeypots: intrusion deception. ISSA Journal, 28-31.

Berendt, B., Mobasher, B., & Spiliopoulou, M. (2002) Web Usage Mining for E-Business Applications.,
ECML/PKDD-2002 Tutorial edn.HHL. Retrieved November 15, 2011, from
http://ecmlpkdd.cs.helsinki.fi/pdf/berendt-2.pdf

Bhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. (2011). Data mining for credit card fraud: A
comparative study. Decision Support Systems, 50(3), 602-613. http://dx.doi.org/10.1016/j.dss.2010.08.008

Bhowmik, R. (2011). Detecting Auto Insurance Fraud by Data Mining Techniques. Journal of Emerging Trends
in Computing and Information Sciences, 2(4), 156-162.

Bolton, R. J., & Hand, D. J. (2002). Statistical fraud detection: A review. Statistical Science, 235-249.

Brause, R., Langsdorf, T., & Hepp, M. (1999). Neural Data Mining for Credit Card Fraud Detection.
Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence (p. 103). IEEE
Computer Society.

Chang, S. S., & Chiang, M. S. (2005). An e-intelligence approach to e-commerce intrusion detection. Granular
Computing, 2005 IEEE International Conference on (p. 401).

Corona, I., & Giacinto, G. (2010). Detection of Server-side Web Attacks. In T. Diethe, N. Cristianini, & J.
Shawe-Taylor (eds.), Workshop on Applications of Pattern Analysis (p. 160). Department of Electrical and
Electronic Engineering, University of Cagliari, Italy.

Dawes, R. (2011) OWASP WebScarab Project. Retrieved December 16, 2011, from
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

Feng, T., & Murtagh, K. (2000). Towards knowledge discovery from WWW log data. Information Technology:
Coding and Computing, 2000. Proceedings. International Conference on (p. 302).

Gaarudapuram, S. R. (2008) Data processing for anomaly detection in web-based applications, Dissertation
(MA), Oregon State University. Retrieved November 17, 2011, from http://hdl.handle.net/1957/8176

HooBieNet. (2002). Brutus - The Remote Password Cracker. Retrieved December 18, 2011, from
http://www.hoobie.net/brutus/

Ingham, K. (2006) HTTP-delivered attacks against web servers. Retrieved December 14, 2011, from
http://www.i-pi.com/HTTP-attacks-JoCN-2006/

Jaquith, A. (2002). The Security of Applications: Not All Are Created Equal, @Stake, Inc. Retrieved July 27,
2011, from http://www.securitymanagement.com/archive/library/atstake_tech0502.pdf

Katzgrau, K. (2008). KLogger. Retrieved September 15, 2011, from http://codefury.net/projects/klogger/

Kruegel, C., Vigna, G., & Robertson, W. (2005). A multi-model approach to the detection of web-based attacks.
Computer Networks, 48(5), 717-738. http://dx.doi.org/10.1016/j.comnet.2005.01.009

Larouche, F. (2007). SQL Power Injector Product Information. Retrieved December 17, 2011, from
http://www.sqlpowerinjector.com/

Lee, S. Y., Low, W. L., & Wong, P. Y. (2002). Learning fingerprints for a database intrusion detection system. In
Computer Security—ESORICS 2002 (pp. 264-279). Springer Berlin Heidelberg.

Meyer, R. (2008). Detecting Attacks on Web Applications from Log Files. Information Security Reading Room.
Retrieved October 25, 2011, from
http://www.sans.org/reading_room/whitepapers/logging/detecting-attacks-web-applications-log-files_2074

Mookhey, K. K. (2010). Common Security Vulnerabilities in e-commerce Systems. Symantec. Retrieved July 26,
from http://www.symantec.com/connect/articles/common-security-vulnerabilities-e-commerce-systems

www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 2; 2014

140

MySQL. (2012). MySQL The world's most popular open source database. Homepage of MySQL. Retrieved
January 26, from http://www.mysql.com/

OsCommerce. (2012). Welcome to osCommerce! Homepage of osCommerce. Retrieved January 26, 2012, from
http://www.oscommerce.com/

OWASP. (2008). OWASP Testing Guide (3rd ed.). OWASP Foundation.

Penya, Y. K., Ruiz-Agúndez, I., & Bringas, P. G. (2011). Integral Misuse and Anomaly Detection and Prevention
System. In P. Skrobanek (ed.), Intrusion Detection Systems (p. 172). InTech.

PHP. (2012). PHP: Hypertext Preprocessor. Homepage of PHP. Retrieved January 26, 2012, from
http://www.php.net/

Phua, C., Lee, V. C. S., Smith-Miles, K., & Gayler, R. W. (2010). A Comprehensive Survey of Data
Mining-based Fraud Detection Research. Artificial Intelligence Review. Retrieved July 27, 2011, from
http://arxiv.org/abs/1009.6119

RSnake. (2011a). SQL Injection cheat sheet. Retrieved December 19, 2011, from http://ha.ckers.org/sqlinjection/

RSnake. (2011b). XSS (Cross Site Scripting) Cheat Sheet. Retrieved December 19, 2011, from
http://ha.ckers.org/xss.html

Stephens, J., & Valverde, R. (2013). Security of E-Procurement Transactions in Supply Chain Reengineering.
Computer & Information Science, 6(3).

Tan, H. S. (2002). E-fraud: current trends and international developments. Journal of Financial Crime, 9(4),
347-354. http://dx.doi.org/10.1108/eb026034

Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM journal on computing, 1(2), 146-160.
http://dx.doi.org/10.1137/0201010

Yufeng, K., Chang-Tien, L., Sirwongwattana, S., & Yo-Ping, H. (2004). 'Survey of fraud detection techniques',
Networking, Sensing and Control, 2004 IEEE International Conference on (p. 749).

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/3.0/).

