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Abstract 
A hybrid method is presented to accelerate network training for traditional BP networks and to improve the classification 
accuracy of features for automatic visual inspection of wood veneers. In order to achieve an optimal network structure, the 
uniform design method is employed to optimise the parameters taking advantage of typical experimental data and good 
data representation, and the optimal combination is confirmed using a nonlinear quadratic programming (NLPQL) from 
a response surface model., and the ‘best’ level-combination is obtained to further improve the performance of the hybrid 
classifier. By comparison, the classifier using the optimal factors shows more powerful performance with a 
classification accuracy of 98.99% and a fast speed, which means greater potential for practical applications. 
Keywords: Hybrid classifier, Uniform design, Parameter Optimisation, Defect Inspection 
1. Introduction 
Production rates in a plywood factory are very high, with the wood sheets being conveyed at a speed of 2-3m/s and an 
interval of only one or two seconds is allowed for human inspection (Pham and Alcock,1996,p.45-52). This makes the 
workers extremely stressed and a little disturbance or loss of attention will result in a misclassification. Huber, Mcmilin 
and Mckinney(1985,79-82) made a series of experiments and found an accuracy of 68% with human inspection of 
boards. It is necessary to develop an automatic visual inspection system to relieve the human inspector and improve the 
classification performance. 
Neural networks are of great interest due to their proven adaptability, parallel and distributed architecture and ability to 
learn. Backpropagation (BP) neural networks are widely used in various applications. Currently, the BP architecture is 
considered the most popular, effective and easy-to-learn model for complex, multi-layered network. However, there is 
still a need for improvement of the BP algorithms to overcome its shortcomings and to achieve a better structure of the 
network. 
This research proposes a hybrid method to accelerate network training and to improve the classification accuracy of 
features for automatic visual inspection of wood veneers. In order to achieve an optimal network structure, the uniform 
design method is employed to optimise the parameters, and the ‘best’ level-combination is obtained to further improve 
the performance of the neural network classifier. Section 2 describes a hybrid BP algorithm to tackle slow convergence 
of BP algorithms, and feature extraction from the defect images. It also discusses the normalisation of feature values 
and the encoding of the classifier output. Then the structure of the classifier is determined. Section 3 adopts uniform 
design for parameter optimisation of the neural network. A uniform design table is formed and a regression model 
designed between the response and the factors to find the best results among the all the responses and corresponding 
level-combinations of the factor values. Section 4 presents the results through a comparison between the improved BP 
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network and the traditional BP network. With the optimal parameter combination, the performance of the classifier is 
further improved. Finally, Section 5 draws conclusions of the research and recommends further work. 
2. Improved BP Network 
Typical problems of the backpropagation algorithms are the slow speed of convergence and the possibility of a local 
minimum of the error function. Thus the following three improved methods are used to overcome these weaknesses. 
The first two methods are applied separately or combinatively (Peng and Mo,1999,p.169-171). The third method is 
proposed as a new method to reach the desired error quickly. The hybrid method of this research makes use of their 
advantages adequately. 
2.1 Improved BP Algorithm 
Additional momentum 
This method considers both the effects of the gradient direction and the influences of change tendency on the gradient 
direction. To some extent, it accelerates the adjustment process and avoids getting into a local minimum. 
Self-adaptive learning rate 
The self-adaptability learning rate is induced to solve issues such as unsteadiness caused by a very high learning rate 
and long training time caused by a very low learning rate. The self-adaptability learning rate can reach a reasonably 
high efficiency while stable training is maintained. Note that learning rate is a sensitive parameter, and it has to change 
in a small area in order to avoid the training failure. 
Dynamic error segmenting 
The training process actually is looking for the global least value on the error surface. If the initial weights are given 
with some less value randomly, the error gradient easily gets into a local minimum and results in error vibration at the 
beginning of training. Usually after several vibration periods, the adjustment direction may tend to reach the global 
minimum. Assuming that the neural network is trained according to the error accuracy desired at the beginning, there 
should be such a long time to meet the training needs and accordingly the generalisation of the network gets worse. To 
overcome this shortcoming, a dynamic error segmenting method is presented. First, the training process begins with a 
larger error to accelerate to get the global minimum. Then, the error is lowered gradually till the desired error is satisfied. 
The error is divided into 3 to 4 grades. 
In this research, the initial error is set to 0.4. According to geometric proportion error training, the error is divided into 4 
grades. First, an error amplification ratio is set: A=0.4/ERROR, and ERROR=0.03, where ERROR is the desired error 
accuracy. Then, geometric proportion is set: B=1/A1/(n-1), where n is a known grade number. At last, the segmented errors 
are determined as 0.4, 0.4*B, 0.4*B2, …, ERROR. 
2.2 Structure of the Improved BP Neural Network 
2.2.1 Features extraction from defect images 
The images of veneer sheets acquired consist of 512*512 picture elements (pixels), each with a grey level value 
between 0 (black) and 255 (white) inclusive. Once the defect area is found, a window of size 60 pixels in the 
X-direction and 85 pixels in the Y-direction is placed on the defect. The origin of the window is in the window of the 
defect. The size of this window corresponds to 3 square centimetres on the sheet and is large enough to cover any of the 
defects under consideration except certain large barks. 
The grey level frequencies are recorded from the feature extraction window. The grey level histograms for samples 
belonging to the same defect have similar shapes. 17 typical features which represent the wood veneer defects are 
extracted from their image of every sample for training and testing the neural network. The features of wood veneers are 
shown in Table 1. 
2.2.2 Normalisation of feature values 
Because of different scales and ranges of the features for wood veneer defects, normalising the data is important to 
ensure that the distance measure accords equal weight to each variable. The features are scaled between -1 and 1 for use 
as the network input. To perform the normalisation, each image feature is converted to the standard distribution by the 
following transformation 

σ
μ−

=
xZ       (1) 

where µ is the mean and σ the standard deviation of the original distribution, x is the original feature value and Z is a 
new transformed variable with a standard normal distribution (mean 0 and standard deviation=1). This ensures that 
99.04% of the data will lie within the range ±3. The Z values are further divided by 3 to limit the input values between 
-1 and 1. This method of normalisation was used by Kjell, Woods and Freider (1995,p.1222-1226). The normalised 
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feature data is eventually fed to the neural network for training. 
2.2.3 Encoding of the classifier output 
The neural network has 13 output neurons, each of which corresponds to one defect type as indicated in Table 2. 
Because the output values of a neural network are usually real numbers, it is essential to convert them into a binary 
form suitable for the classification of defects. This can be realised with several methods. The maximum method is 
chosen here, which sets the highest output value to 1 and the others to 0. This means that the defect class chosen 
corresponds to the output neuron with the highest value. 
The network has 17 input neurons, each corresponding to an extracted feature, while 13 output neurons correspond to 
the defect classes respectively. This research uses one hidden layer with a number of different neurons to determine the 
suitable network. Because networks with biases, a hidden layer and an output layer are capable of approximating any 
function with a finite number of discontinuities. The hidden layer uses the tansig activation function. Initial weights and 
biases are generated randomly. The output layer uses the purelin activation function, and output layer determines the 
class that the features in the input layer belong to. The number of neurons in the hidden layer is 50 determined by a 
series of experiments. 
3. Uniform Design for Network Parameter Optimisation 
Taking into account the difficulties of determining the neural network parameters, uniform design (UD) is introduced to 
solve parameter optimisation of the neural network. UD is an experimental design method proposed by Fang 
(1980,p.363-372). It has been recognised as an important space-filling design, which plays a key role in large systems 
engineering design. UD is equivalent to generating a set of design points that are uniformly scattered in the experiment 
domain, which reflects the main features of the system. It can solve optimisation problems by finding the maximal or 
minimal value for the fitness or an error function (Xie and Fang, 1997,p.101-111). 
All the UD designs are based on U-type design such as UG-type and UL-type. U-type design gives a good structure. 
Suppose that there are s factors with q levels for each of the factors. There are qs level-combinations. 
DEFINITION 1. A U-type design for simplicity denoted by Un (ns), is a matrix of n rows and s columns. A U-type 
design can be considered as a design with n levels and s factors. 
UD is often expressed as a table, called a UD table, and a number of UD tables can be found on the UD web. Note that 
for a given set of (n, s), the corresponding UD is not unique. Two U-type designs are called equivalent if one can be 
obtained from another by permuting the rows and the columns. 
3.1 Forming a UD Table 
UD defines the minimum set of parameter level-combinations to be tested in an experiment in order to gain an estimate 
of the average effects of each parameter. In the structure of the neural network to be designed, two parameters are 
considered, learning rate and the number of hidden layer neurons that play an important role in the classifier 
performance. Therefore the UD table is built in Table 3. 
The six levels marked by 1,2…,6, are transformed into the real levels of the factors and record the corresponding yield 
Y. Specifically the heading of (1, 2) represents the UD table for the two factors, i.e. the number of hidden neurons and 
learning rate. Such a table can be found from the UD-web. The heading (X1 and X2) represents the actual experimental 
values for the two factors. The last column Y gives the response of the experimental results from the misclassification 
accuracy. 
3.2 Building the Response Surface Model (RSM) 
RSM (Li and Wu, 2001,p.68-73) is an efficient tool for modelling on a few observations. In general, for n design 
parameters x=(x1, x2, …, xn), the system response Y can be written as 

Y=f(x)+ε      (2) 
where ε is a random error component. An accurate model of the true system requires a model of degree two or higher to 
approximate the curvature in the actual surface. In most cases, the second order model is an adequate approximate. The 
second order (or quadratic) model is 
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                 (3) 
For a system with two design parameters (n=2), it can be expressed by the following equation 

εββββββ ++++++= 2112
2
222

2
11122110 XXXXXXY       (4) 

In the equation, the linear and quadratic components and the first order interaction are included. A reasonable 
approximation of the true response of most systems can be fitted using the second order model. The model coefficients 
can be estimated through a response surface design. 
To estimate the coefficients of a second order model, a design of experiment with at least three levels per parameter is 
required since two points can only decide a straight line. 
The coefficients of the second order model can be estimated for a system with two parameters if none of the interactions 
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are included. The fitted model is described by substituting n=2 and ignoring the interactions in equation (4) to give 
equation (5). 

2
222

2
11122110 XXXXY βββββ ++++=                 (5) 

where 0β  is the mean of all the observed response values. Many runs in an UD average the random error to zero which 
is why the ε term has been dropped. The two model coefficients are the linear components ( 21,ββ ) and the quadratic 
components ( 2211,ββ ) of the two parameters. Ignoring the higher order components and interactions gives an advantage 
to the fitted model. This model avoids fitting a surface exactly through all the observed data which is affected by 
random noise. 
3.3 Modelling Neural Network Performance 
Using Table 1 and the method described, the model coefficients are obtained by the following formula. 

B=Y-1╳X 
                     =[7.9995 0.0511 78.2435 -0.0036 -136.8136]' 
A model with no interactions which describes the classifier’s performance using the estimated values can be written as 

         
2

2
2

121 8136.1360036.02435.760511.09995.7 xxxxY ×−×−×+×+=         (6) 
3.4 Finding the Optimal Settings 
Finding the process of optimal parameters is actually a problem of the sequential quadratic programming algorithm 
NLPQL (Nonliear quadratic programming) of Schittkowski [12]. The NLPQL algorithm is to solve nonlinear 
mathematical programming problems with equality and inequality constraints. Therefore in this paper, the following 
formulae need to be satisfied with NLPQL. 
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Using the fitted model and the constraints, 0<x1≤60 and 0<x2≤0.06, an optimal setting for each design is found for the 
classifier: Learning rate = 0.0127. Number of neurons in the hidden layer = 57. For the learning rate, two decimal places 
are kept, e.g. 0.01(See Fig.1) . The results indicate a small learning rate and less than 60 neurons in the hidden layer 
give the best classification performance, which are consistent with above optimal results. It is worth noting that the 
learning rate cannot be 0, which is meaningless to the network learning. 
4. Experimental Results 
In the simulation experiments, 80% of the 232 samples are selected at random to form the training set and the remaining 
20% for the test set. Experiments are carried out in 3 groups. 17 features are considered as input for training the 
improved neural network. 
The classification accuracy is 98.99 %for the test set, and short running time of 9.67s with a larger amount of sample 
data (i.e. 232 samples). The running time is taken largely to train the sample data, while the testing time is only in 
milliseconds. It therefore has greater potential for practical applications with respect to both accuracy and real-time 
inspection. In comparison with the traditional BP neural network, the improved BP neural network presented is more 
accurate and has a faster convergence speed. Figure 2 shows the training process of the improved BP network.  
5. Conclusions 
The improved BP algorithm improves the accuracy and reduces the possibility of getting into a local minimum. It is also 
inspiring that the training time has been decreased from 92.69s to 9.67s. The improved BP classifier for wood veneer 
defects is more effective. Furthermore, the UD method has optimised the network parameters with effective algorithms 
adopted to further improve the accuracy to 98.99%. For further work, more parameters of the neural networks such as 
the epochs, running time or momentums could also be considered to further be optimised. 
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Table 1. Typical features for wood veneers 

 

Code Features 
1 Mean grey level 
2 Mode grey level 
3 Median grey level 
4 Standard deviation 
5 Skewness 
6 Kurtosis 
7 Number of dark pixels 
8 Number of bright pixels 
9 Lower grey level 

10 Higher grey level 
11 Tail length on the dark side 
12 Tail length on the bright side 
13 Number of edge pixels (threshold=μ) 
14 Number of pixels (threshold=μ-2δ) 
15 Number of edge pixels for feature 14 
16 Number of pixels (threshold=μ+2δ) 
17 Number of edge pixels for feature 16 

 
Table 2. Defect classes for wood veneer 
 

Defect class Desired outputs 
presentation 

Holes 1 0 0 0 0 0 0 0 0 0 0 0 0  
Pin knots 0 1 0 0 0 0 0 0 0 0 0 0 0  
Rotten knots 0 0 1 0 0 0 0 0 0 0 0 0 0  
Roughness 0 0 0 1 0 0 0 0 0 0 0 0 0  
Splits 0 0 0 0 1 0 0 0 0 0 0 0 0  
Streaks 0 0 0 0 0 1 0 0 0 0 0 0 0  
Discoloration 0 0 0 0 0 0 1 0 0 0 0 0 0  
Coloured streaks 0 0 0 0 0 0 0 1 0 0 0 0 0  
Bark 0 0 0 0 0 0 0 0 1 0 0 0 0  
Worm holes 0 0 0 0 0 0 0 0 0 1 0 0 0  
Curly grain 0 0 0 0 0 0 0 0 0 0 1 0 0  
Clear wood 0 0 0 0 0 0 0 0 0 0 0 1 0  
Sound knots 0 0 0 0 0 0 0 0 0 0 0 0 1  
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Table 3. U6 (62) and related design 
 

No. of runs 1 2 X1 X2 Y 
1 5 5 50 0.05 5.1223 
2 4 1 40 0.01 5.0505 
3 2 2 20 0.02 9.0909 
4 3 6 30 0.06 6.0606 
5 1 4 10 0.04 9.0909 
6 6 3 60 0.03 3.0303 

 

 
Figure 1. Response with the learning rate and number of hidden neurons 

 

 
 

Figure 2. Training of Improved BP Network in Group 2 
 
 
 
 
 
 
 




