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Abstract

Electroencephalography (EEG) signals were analyzed in many research applications as a channel of
communication between humans and computers. EEG signals associated with imagined fists and feet movements
were filtered and processed using wavelet transform analysis for feature extraction. The proposed work used
Neural Networks (NNs) as a classifier that enables the classification of imagined movements into either fists or
feet. Wavelet families such as Daubechies, Symlets, and Coiflets wavelets were used to analyze the extracted
events and then different feature extraction measures were calculated for three detail levels of the wavelet
coefficients. Intensive NN training and testing experiments were carried out and different network configurations
were compared. The optimum classification performance of 89.11% was achieved with a NN classifier of 20
hidden layers while using the Mean Absolute Value (MAV) of the Coiflets wavelet coefficients as inputs to NN.
The proposed system showed a good performance that enables controlling computer applications via imagined
fists and feet movements.

Keywords: Discrete Wavelet Transform (DWT), Electroencephalography (EEG), Brain-Computer Interface
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1. Introduction

Electroencephalography (EEG) is defined as the process of measuring the electrical voltage fluctuations along
the scalp as a result of the current flows in brain’s neurons and the brain’s neural activity (Niedermeyer & da
Silva, 2005). In typical EEG tests the brain’s electrical activity is monitored and recorded using electrodes that
are fixed on the scalp (Sleight et al., 2009). Brain-Computer Interface (BCI) is a combination of hardware and
software systems that enables the use of the brain’s neural activity to communicate with others or to control
machines, artificial limbs, or robots without direct physical movements (Levine et al., 1999; Donoghue, 2002;
Wolpaw et al., 2002; Vallabhaneni et al., 2005). BCI captures EEG signals in conjunction with a specific user
activity then uses different signal processing algorithms to translate these records into control commands for
different machine and computer applications (Graimann et al., 2010). It is proved in (Vidal, 1973) that a user’s
intent could be effectively represented by signals recorded from brain activity.

During the last few years, BCI has become an attractive field of research and applications specially in helping
disabled individuals by providing a new channel of communication with the external environment and offering a
feasible tool to control artificial limbs (Selim et al., 2008). A variety of BCI applications were described in
(Grabianowski, 2007). BCI is a highly interdisciplinary research topic that combines medicine, neurology,
psychology, rehabilitation engineering, Human-Computer Interaction (HCI), signal processing and machine
learning (Smith et al., 2007).

It can be noted from the literature that the strength of any BCI application depends on the translation approach
used to transform EEG signal patterns into machine commands. In (Pfurtscheller et al., 1997), the authors
recorded EEG signals for three subjects while imagining either right or left hand movement based on a visual
cue stimulus. They were able to classify EEG signals into right and left hand movements using a neural network
classifier with an accuracy of 80% and concluded that this accuracy did not improve with increasing number of
sessions. Sepulveda (2011) used features produced by Motor Imagery (MI) to control a robot arm. Features such
as the band power in specific frequency bands (alpha: 8-12 Hz and beta: 13-30 Hz) were mapped into right and
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left limb movements. In addition, they used similar features with MI, which are the Event Related
Desynchronization and Synchronization (ERD/ERS) comparing the signal’s energy in specific frequency bands
with respect to the mentally relaxed state.

It was shown in (Mohamed, 2011; Alomari et al., 2013) that the combination of ERD/ERS and
Movement-Related Cortical Potentials (MRCP) improves EEG classification as this offers an independent and
complimentary information. The authors of (Farina et al., 2007) presented an approach for the classification of
single trial MRCP using a discrete dyadic wavelet transform and Support Vector Machines (SVMs) and they
provided a promising classification performance. A single trial right/left hand movement classification is
reported in (Kim et al., 2003). The authors analyzed both executed and imagined hand movement EEG signals
and created a feature vector consisting of the ERD/ERS patterns of the mu and beta rhythms and the coefficients
of the autoregressive model. Artificial Neural Networks (ANNs) is applied to two kinds of testing datasets and
an average recognition rate of 93% is achieved.

A three-class BCI system was presented in (Wang et al., 2007) for the translation of imagined left/right hands
and foot movements into commands that operates a wheelchair. This work used many spatial patterns of ERD on
mu rhythms along the sensory-motor cortex and the resulting classification accuracy for online and offline tests
was 79.48% and 85.00%, respectively. The authors of (Guger et al., 1999) proposed an EEG-based BCI system
that controls hand prosthesis of paralyzed people by movement thoughts of left and right hands. They reported
an accuracy of about 90%.

In Su et al. (2011), a hybrid BCI control strategy is presented. The authors expanded the control functions of a
P300 potential based BCI for virtual devices and MI related sensorimotor rhythms to navigate in a virtual
environment. Imagined left/right hand movements were translated into movement commands in a virtual
apartment and an extremely high testing accuracy results were reached.

Homri et al. (2012) applied the Daubechies, Coiflet and Symmlet wavelet families to a dataset of MI to extract
features and describe right and left hand movement imagery. The authors reported that the use of Linear
Discriminate Analysis (LDA) and Multilayer Perceptron (MLP) Neural Networks (NNs) provided good
classification results and that LDA classifier achieved higher classification results of up to 88% for different
Symmlet wavelets. Toli¢ and Jovi¢ (2013) used the discrete wavelet transform (DWT) to create inputs for a NNs
classifier and the authors reported a very high classification accuracy of 99.87% for the recognition of some
mental tasks.

We proposed a system that could efficiently discriminate between executed left and right fist movements in our
previous study (Alomari et al., 2013). The current work is an extension for our studies to classify both imagined
fists and feet movements by analyzing EEG signals recorded during a large number of experiments for 100
different subjects. Many wavelet families were used to calculate wavelet coefficients and then all the possible
feature candidates were extracted and used in the training/testing and optimization experiments of a NNs
classifier.

2. The PhysioNet EEG Dataset

In this work, we used the EEG dataset that was created and contributed to PhysioNet (Goldberger et al., 2000) by
the developers of the BCI2000 (Schalk et al., 2004) instrumentation system. The dataset is publically available
online at http://www.physionet.org/pn4/eegmmidb. It consists of more than 1500 one or two minutes-duration
EEG records obtained from 109 healthy subjects. Subjects were asked to execute and imagine different tasks
while 64 channels of EEG signals were recorded from the electrodes that were fitted along the scalp.

In the records of the dataset that are related to the current research, each subject performed three experimental
runs of imagining the movement of both fists or both feet. During each two-minute run, either the top or the
bottom of a computer screen shows a target. The subject imagines opening and closing either both fists (if the
target is on top) or both feet (if the target is on the bottom) until the target disappears where he relaxes. This was
repeated 15 times during each two-minute run. Then the obtained EEG signals were recorded according to the
international 10-20 system as seen in Figure 1. For this work, we created a subset of three two-minute runs for
100 subjects for a total of 4500 events (45 imagined events per subject).
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Figure 1. The International 10-20 system (Jasper, 1958) as seen from (A) front and (B) left of the head

3. Preprocessing
3.1 Channel Selection

It was shown in the literature that most of the EEG channels are representing redundant information (Sleight et
al., 2009). In addition, it was concluded that the neural activity that is mostly correlated to the fists movements is
almost exclusively contained within the channels C;, Cy4, and C; of the EEG channels as depicted in Figure 1.A
(Deecke et al., 1982; Neuper & Pfurtscheller, 2001). So, we assumed that there is no need to analyze all the
available EEG channels and it is more efficient to process the Cs, C,, and C; channels of data.

3.2 Filtering

EEGs are noisy and non-stationary signals that have to be filtered to get rid of the unnecessary content from the
raw signals (Romo-Vazquez et al., 2007). As shown in Figure 2, the first step of the proposed system is to filter
the selected channels for the purpose of removing the DC (direct current) shifts and minimizing the presence of
filtering artifacts at epoch boundaries. This was accomplished by applying a band pass filter from 0.5 Hz to 50
Hz using the interactive MATLAB toolbox EEGLAB (Delorme & Makeig, 2004).

Feature
EEG | of Chamel L o b oing b EVent Lyl piraction (b Command Ly pe (Bel)
Signals Selection Extraction (DWT) Translation

Figure 2. A block diagram of the proposed system

It is shown in (Bartels et al., 2010) that EEG signals are usually masked by physiological artifacts that produce
huge amounts of useless data. Eye and muscle movements could be good examples of these artifacts that
constitute a challenge in the field of BCI research. Automatic Artifact Removal (AAR) automatically removes
artifacts from EEG data based on blind source separation and other various algorithms. The AAR toolbox
(Gomez-Herrero, 2008) was implemented as an EEGLAB plug-in and was used to process our EEG data subset
on two stages: Electrooculography (EOG) removal using the Blind Source Separation (BSS) algorithm then
Electromyography (EMG) Removal using the same algorithm (Joyce et al., 2004).

3.3 Event Splitting

As described previously, each two-minute EEG record includes 15 events that are separated by a short neutral
period where the subject relaxes. A subject imagines opening and closing his fists or feet and keeps doing this for
4.1 seconds then he takes a rest for the duration of 4.2 seconds. These events count up to a sum of 120.3 seconds
representing the two-minute record. In our experiments, data that are time locked to a specific event type were
split in a separate vector. As the Physionet EEG dataset was sampled at 160 samples per second, each vector
includes 656 samples (values) of the original recorded EEG signal.
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4. Wavelet Transform Analysis
4.1 Wavelet Analysis for EEG Signals

The Wavelet transform analysis was used in a wide range of research topics within the field of signal processing
(Riouel & Vetterli, 1991; Silverman, 2000; Oliver et al., 2005; Phinyomark et al., 2011, 2012; Awada & Alomari,
2013). Based on a multi-resolutions process, the wavelet properties of a scalable window allow pinpointing
signal components. These properties of dilation and translation enable the extraction of all components for every
position by creating different scales and shifted functions (in time domain) of a signal (Tuntisek &
Premrudeepreechacharn, 2007; Qingyang & Zhe, 2012). As a result, wavelet finer and large scaling, permit all
information of the signal (the big picture), while small scales shows signal details by zooming into the signal
components.

For discrete data, such as the datasets used in the current work, the Discrete Wavelet Transform (DWT) is better
fit for analysis. It was shown in (Phinyomark et al., 2010) that a suitable wavelet function must be used to
optimize the analysis performance. A large selection of DWT mother wavelets is available to be used in our
work. But the Daubechies (Db), Symlets (Sym), and Coiflets (Coif) wavelets were proved to be the most suitable
families in similar applications (Mahaphonchaikul et al., 2010; Phinyomark et al., 2010; Homri et al., 2012;
Kharat & Dudul, 2012; Michahial et al., 2012). So, in this work it was decided to calculate the Daubechies
orthogonal wavelets Db2-Db20 (even indices), the Symlets wavelets Sym2-Sym20 (even indices), and the
Coiflets wavelets Coif1-Coif5.

As shown in Figure 3, the main purpose of the DWT is to decompose the recorded EEG signal into
multi-resolution subsets of coefficients: a detailed coefficient subset (cD;) and an approximation coefficient
subset (cA,) at the level i. So, at the first decomposition level we obtain cD; and cA; then the first approximation
cA; can be transformed into cD, and cA, at the second level, and so on. For our experiments, the decomposition
level was set to generate four level details.

f{ One Channel of an EEG Signal — Sampled at 160 Hz |1

cA, cD,
cD,
. ":::\ e s
|cA4|cD4| cD, | cD, | cD,
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IEEG,
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Figure 3. Feature Extraction by the multi-resolution decomposition of EEG signals

4.2 Feature Vectors Construction

The wavelet transformation of any EEG record at four levels results in four details and one approximation with
the frequency ranges listed in Table 1. There are many electrophysiological features that are associated with the
brain’s normal motor output channels (Wolpaw et al., 2002; Bashashati et al., 2007). Some of these important
features are the mu (8—12 Hz) and beta (13-30 Hz) rhythms (Alomari et al., 2013). We concluded from Table 1
that the details cD,, cD;, and cD,4 provide proper representation for the mu and beta rhythms and we decided to
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extract the vectors of features from these details only as shown in Figure 3.

Table 1. Frequency range for the decomposed details and approximation

Signal Component Frequency Range

cD, 40 — 80 Hz
cD, 20-40 Hz
cDs 10-20 Hz
cD, 5-10Hz
cAy 0-5Hz

Phinyomark et al. (2013) provided the mathematical definitions of many amplitude estimators for neurological
activities. If we assume that the n™ sample of a wavelet decomposed detail at level i is D{(n), then we can define

the following features:
1 N
RMS, = NZDf(n) (1)
n=1

e Root Mean Square (RMS)

e  Mean Absolute Value (MAV)

N
MAV, = 3|D,(n) @
N n=1
e Integrated EEG (IEEG)
N
IEEG, = |D,(n)| 3)
n=1
e Simple Square Integral (SSI)
N
SSI,= Y |D,(m) (4)
n=1
e Variance of EEG (VAR)
VAR, = Lil)ﬁ(y[) (%)
N-1"7
e Average Amplitude Change (AAC)
N
AAC = YD+~ D () ©)

n=1

The Daubechies, Symlets, and Coiflets wavelets were used to analyze the channels C;, Cy4, and C, of each EEG
record. Then, as depicted in Figure 3, the features RMS, MAV, IEEG, SSI, VAR, and AAC were calculated for
the wavelet coefficients using Equations 1 through 6. This process was repeated for each event in our dataset of
4500 vectors. At the end of these calculations, 9 RMS features (3 channels X 3 details), 9 MAV features, 9 IEEG
features, 9 SSI features, 9 VAR features, and 9 AAC features were generated for each wavelet. These features
were numerically represented in a format that is suitable for use with NN algorithms (Qahwaji et al., 2008;
Al-Omari et al., 2010) as described in the next section.

5. Neural Networks Experiments

Neural networks learning algorithms were used in (Pfurtscheller et al., 1997; Homri et al., 2012; Kharat & Dudul,
2012; Toli¢ & Jovié, 2013) and provided good classification performance. A detailed description of NN can be
found in (Qahwaji et al., 2008). The MATLAB NN toolbox was used for all the training and testing experiments.

The training experiments were handled with the aid of the back-propagation learning algorithm (Fahlmann &
Lebiere, 1989).
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Six networks were created with one output node representing the target function of fists/feet movement:

e Network 1: 9 inputs representing the MAR Features.

e Network 2: 9 inputs representing the RMS Features.

e Network 3: 9 inputs representing the AAC Features.

e Network 4: 9 inputs representing the IEEG Features.

e Network 5: 9 inputs representing the SSI Features.

e Network 6: 9 inputs representing the VAR Features.

The number of hidden layers for these networks was varied from 1 to 20. At each specific number of hidden
layers, 80% of the samples (3600 events) were randomly selected and used for training and the remaining 20%
for testing. This process was repeated 10 times, and in each time the datasets were randomly mixed. For each
number of hidden layers, the average accuracy was calculated for the ten training-testing pairs.

A huge number of training and testing experiments were carried out for each of the six networks. The
performance of each network, for a specific wavelet family, is optimized by plotting all classification results on
the same graph as shown in Figure 4. Table 3 through Table 4 lists the number of hidden layers associated with
the neural network that provided the best average accuracy, for a specific wavelet function.

Average Classification Accuracy
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Figure 4. Optimization graph comparing the NN performance using the MAV feature for all Coiflets functions

Table 2. Best Average Accuracy (Avg Acc) results achieved using different Coiflets functions with different
features and a variable number of Hidden Layers (HL) for the NN classifier

Features MAV RMS AAC IEEG SSI VAR

Coiflets HL Avg HL Avg HL Avg HL Avg HL Avg HL Avg

wavelet Acc Acc Acc Acc Acc Acc
Coifl 19 0.6945 11 07537 9 07395 5 0.7205 14 0.7348 16 0.7561
Coif2 19 0.7419 13 0.6874 16 0.7419 20 0.7892 19 0.7348 6  0.6495
Coif3 7 07324 17 07656 18 0.7395 11 0.7490 20 0.7040 15 0.7158
Coif4 20 08911 19 0.7442 16 0.7916 12 0.7277 18 0.7111 17 0.7845
Coif5 19 07111 14 0.7324 19 0.7750 11  0.7111 19 0.6684 15 0.6874

22



www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 2; 2014

Table 3. Best Average Accuracy (Avg Acc) results achieved using different Daubechies functions with different
features and a variable number of Hidden Layers (HL) for the NN classifier

Features MAV RMS AAC IEEG SSI VAR
I - v
Db2 17 08403 12 0.8203 20 0.8028 19 0.8003 15 0.8478 19 0.8028
Db4 11 08378 18 0.8053 18 0.7628 20 0.8478 8 0.7278 17 0.7528
Db6 17 07678 17 0.7178 11 0.7578 15 0.7503 15 0.8328 10 0.7153
Db8 8§ 08103 20 0.7753 17 0.7353 17 08678 14 0.7353 20 0.7978
Dbl0 12 0.7853 11 0.8078 14 0.8228 16 0.8353 12 0.6803 9  0.6903
Dbl2 17 07678 8 0.7228 18 0.7653 19 0.7578 18 0.7203 18 0.7128
Dbl14 20 07503 13 0.7728 13 0.7678 12 0.8303 17 0.7128 18 0.7353
Dbl6 16 08178 13 0.7453 19 0.7753 14 07178 18 0.7128 12 0.7153
Dbl18 16 08028 16 0.7303 20 0.7203 18 0.7328 10 0.7303 20 0.7278
Db20 14 07803 15 0.8153 15 0.7478 12 0.7703 17 0.6978 17 0.8003

Table 4. Best Average Accuracy (Avg Acc) results achieved using different Symlets functions with different
features and a variable number of Hidden Layers (HL) for the NN classifier

Features MAV RMS AAC IEEG SSI VAR

e N wm A ow MmN ow 3 owm
Sym2 16 0.8451 14  0.8378 17 0.8549 17 0.8256 20 0.7620 14 0.8744
Sym4 20 0.7522 14 0.7644 16 0.7816 18 0.7669 14 0.6789 19 0.7278
Sym6 14 0.7596 13 0.7840 14 0.8036 9 0.7889 18 0.6764 19 0.6838
Sym8 15 0.6984 17 0.7009 15 0.7473 16 0.7596 10 0.6936 19 0.7107

Sym10 13 0.7180 8 0.7009 16 0.8500 15 0.7473 16 0.6911 20 0.6984
Sym12 19 07718 14 0.7473 20 0.7424 18 0.7156 11  0.7449 13  0.6838
Sym14 18 0.8084 11 0.7449 19 0.7889 20 0.7840 19 0.7180 18 0.6960
Sym16 19 0.7327 14 0.7498 16 0.7816 18 0.7596 17 0.6667 20 0.6740
Sym18 14 0.7327 18 0.8231 11 0.8182 20 0.7547 16 0.7204 19 0.7204
Sym20 19 0.7376 16 0.7522 19 0.8427 19 0.7669 15 0.7204 15 0.6862

By comparing the results, it was found that the optimum classification accuracy that can be achieved using our
system is 89.11%. This performance was achieved by inputting the MAV feature of a Coif4 wavelet into a neural
network of 20 hidden layers. This result is consistent with the conclusions reported in (Phinyomark et al., 2013)
where it was shown that both MAV and RMS were accurate inputs for recognition and classification systems.

If we compare the highest accuracies in all tables, we can note that the Symlets wavelet outperforms the other
wavelet families in most cases. The VAR feature for the Sym2 wavelet provided an accuracy of 87.44% using a
NN of 14 hidden layers. In addition, the AAC feature for the same wavelet provided a 85.49% performance
using a NN of 17 hidden layers.

On the other hand, it can be concluded from all tables that the MAV feature provides the best overall
performance using any wavelet family. It is associated with the performances of 89.11%, 84.03%, and 84.51
while applying the Coiflets, Daubechies, and Symlets, respectively. The next best feature is the VAR then the
IEEG. It can be mentioned here that The IEEG feature for the Db8 wavelet provided an accuracy of 86.78%
using a NN of 17 hidden layers.
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6. Conclusions

This work describes a classification system that can classify imagined EEG signals into fists and feet movements.
Symlets, Daubechies, Coiflets wavelet families were compared for their abilities to decompose EEG signals and
extract features that can be used as inputs to neural networks. Extensive experiments were carried out and the
neural networks were optimized. The optimum classification performance of 89.11% was achieved with a NN
classifier of 20 hidden layers while using the mean absolute value of the Coiflets wavelet coefficients as inputs
to NN. It is believed that this work is one of the best to achieve such classification performance while working
on imagined fists and feet activities. Real-time applications of this work can be implemented in the near future.
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