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Abstract 
Association rule mining (ARM) is the task of identifying meaningful implication rules exhibited in a data set. 
Most research has focused on extracting frequent item (FI) sets and thus fallen short of the overall ARM 
objective. The FI miners fail to identify the upper covers that are needed to generate a set of association rules 
whose size can be readily exploited by an end user. An alternative to FI mining can be found in formal concept 
analysis (FCA). FCA derives a lattice whose concepts identify closed FI sets and connections identify the upper 
covers. However, most FCA algorithms construct a complete lattice and therefore include item sets that are not 
frequent. An iceberg lattice, on the other hand, is a lattice whose concepts contain only FI sets. This paper 
presents the development of the Quick Iceberg Concept Lattice (QuICL) algorithm. QuICL uses recursion 
instead of iteration to navigate the lattice and establish connections, thereby eliminating costly processing 
incurred by past algorithms. The QuICL algorithm was evaluated against a leading FI miner and lattice 
construction algorithms using cited benchmarks. Results demonstrate that QuICL provides performance on the 
order of FI miners yet additionally derive the upper covers. Beyond this, QuICL has proved to be very efficient, 
providing an order of magnitude gains over other lattice construction algorithms. 

Keywords: data mining, concept lattice, knowledge discovery, association rule mining 

1. Introduction 
Association rule mining (ARM) is the task of identifying meaningful implication rules of the form X  Y 
exhibited in a data set, where X and Y are subsets of the items (i.e., possible distinct values of columns of a data 
set) and X  Y is  (Agrawal et al., 1993). The degree to which a rule is meaningful is defined by: i) support, 
the number of times both X and Y occur in the data set, and ii) confidence, the number of times that X  Y 
holds true relative to all occurrences of X. Mining association rules typically involves two steps: i) identifying 
frequent item (FI) sets (i.e., X  Y that meet a minimum support threshold), and ii) deriving association rules 
from the item sets that meet a level of confidence. 

A well known algorithm to extract FI sets from a data set is Apriori (Agrawal & Srikant, 1994). Apriori searches 
the space of all patterns in an iterative bottom-up breadth-first manner. Each iteration obtains counts for its 
current set of candidate patterns and removes from further consideration any candidate patterns that are not 
frequent or cannot be frequent. Apriori has proved to be efficient for mining frequent patterns of small length. 
However, for long patterns Apriori can be I/O intensive since each iteration requires a full scan of the data set. 
Furthermore, a bottom-up algorithm must obtain counts for each set in the power set of all items composing each 
frequent pattern. Thus, Apriori may be an intractable solution for FI sets of even moderate length (Han & 
Kamber, 2006). 

ARM has be an active area of research (Pei et al., 2000; Zaki & Hsiao, 2002; Wang et al., 2003, Uno et al., 2004; 
Lucchese et al., 2006). However, this research has primarily focused on innovative theory and techniques for 
efficient extraction of FI sets. As such, they have fallen short of the overall task of mining association rules 
(Yahia et al., 2006). Key information not generated by these works is the derivation of upper covers of each FI 
set. An upper cover of a FI set I is a set of FI sets U such that  Iu  U, Iu  I and there does not exist a FI set I2 
where Iu  I2  I. Upper covers are needed to produce a set of association rules whose size is constrained to a 
number that can be readily exploited by an end user (Zaki & Hsiao, 2005; Yahia et al., 2006). 
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An alternate approach to frequency counting can be found in formal concept analysis (FCA) (Ganter & Wille, 
1997). FCA is a branch of applied mathematics that has been applied to a wide variety of applications including 
linguistics, text retrieval, and economics (Ganter et al., 2005). It originated in the early 1980’s and was first 
formalized in 1982 (Wille). It has since inspired numerous publications (Priss, 2006). According to FCA, a 
concept is defined as: 

Definition 1: Given a set of object identifiers (ids) O, a set of items I, and a relation R such that R  O  I, a 
formal concept is a pair of sets O  O and I  I iff: O = {o  O |  i  I, oRi} and I = {i  I |  o  O, oRi}, 
where oRi denotes object o has item i in relation R. 

Furthermore, between any two concepts C1 = (O1, I1) and C2 = (O2, I2) an order < exists between C1 and C2 iff O1 
 O2 (or equivalently I1  I2). The set of object ids of a concept is its extent and the set of items is its intent. 

Let L be the set of all concepts derived from a data set where the attribute-values define the set of items and the 
tuple ids define the set of object ids. The concepts of L can be arranged in a lattice such that a connection (i.e., 
edge) is made between any two concepts C1 and C2 for which order < exists and there is no concept C3 for which 
C1 < C3 < C2. Given this property, tree terminology can be applied to a lattice. An ancestor concept Ca of 
concept C1 is any concept for which an order C1 < Ca exists. A descendent concept Cd of concept C1 is any 
concept for which an order C1 > Cd exists. A parent concept Cp of concept C1 is ancestor concept for which there 
is no concept C3 such that C1 < C3 < Cp. A child concept Cc of concept C1 is descendent concept for which there 
is no concept C3 such that C1 > C3 > Cc. An example of a concept lattice is depicted in Figure 1. 

 

 
Figure 1. Example concept lattice 

 

A concept lattice holds a number of interesting properties including: 

Property 1: Extent of concept C is the  of sets of O defined by each Ii  I of C; dually the intent of C is the  of 
the sets of I defined by each Oi  O of C. 

Property 2: If Ii  I of concept C1 then  C2 | C2 < C1, Ii  I of C2; dually if Oi  O of concept C1 then  C3 | C3 > 
C1, Oi  O of C3. 

Property 3: Extent of concept C is the  of the O of all parent concepts of C,  with the set of O defined by each 
Ii  I of C that is not  I of a parent concept of C; dually the intent of a concept C is the  of the I of all child 
concepts of C,  with the set of I defined by each Oi  O of C that is not  O of any child concept of C. 

Concept lattices are of benefit to ARM. A concept’s intent corresponds to an item set and the cardinality of 
extent corresponds to the item set support. Furthermore, the definition of a concept embodies the mathematical 
notion of closure. Thus, nodes of the concept lattice represent only closed item sets (i.e., an item set whose 
closure yields the same set), whose number can be orders of magnitude lower than the number of all item sets 
(Stumme, 2002). The concept lattice still contains the necessary and sufficient information to extract association 
rules and to compute both support and confidence. For example, from the concept ({O1O2O8}, {a1b1}) of Figure 1, 

({O3O4O5O9O10},{a1b2c1})

({O6O7},{a2b2})

({O3O4 O5O6O7O9O10},{b2})

({O7},{a2b2c2d3})

({O1O2O3O4O5O8O9O10},{a1})

({O1},{a1b1c3d1}) ({O2O8},{a1b1c1d2})

({O1O2O8},{a1b1})

({O2O3 O4O5O6O8O9O10},{c1})

({O1O2O3O4O5O6O7O8O9O10},)

({O1O3O5O9O10},{a1d1}) 

({O2O3O4O5O8O9O10},{a1c1})

({O3O5O9O10},{a1b2c1d1}) ({O6},{a2b2c1d2})({O4},{a1b2c1d4})

({O3O4O5O6O9O10 },{b2c1})

({O2O6O8},{c1d2})

(,{a1a2b1b2c1c2c3d1d2d3d4})

R      A  B  C  D
O1 a1 b1 c3 d1

O2 a1 b1 c1 d2

O3 a1 b2 c1 d1

O4 a1 b2 c1 d4

O5 a1 b2 c1 d1

O6 a2 b2 c1 d2

O7 a2 b2 c2 d3

O8 a1 b1 c1 d2

O9 a1 b2 c1 d1

O10 a1 b2 c1 d1
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the association rule a1  b1 can be mined. The support for a1  b1 can be extracted from the lattice by traversing 
any path from the bottom of the lattice through concepts where {a1b1} is a subset of a concept’s intent. Support is 
the size of the extent of the highest concept where {a1b1} is a subset of a concept’s intent. In this case, support 
for a1  b1 is 3, or 30%. Likewise support for a1, the antecedent of a1  b1, can be extracted. The support for a1 

is 8, or 80%. Confidence is computed as support(rule) / support(antecedent(rule)). Thus, the confidence of a1  
b1 is 37.5%. On the other hand, the confidence for b1  a1 is 100%, since the antecedent, now b1, has a support 
of 30%. In the same manner the association rules a1  b2 50%supp 62.5%conf, b2  a1 50%supp 71.4%conf, and 
a1b2  c1 50%supp 100%conf can be mined from the concept ({O3O4O5O9O10}, {a1b2c1}). While a concept lattice 
contains the necessary and sufficient information to compute confidence and support, it includes concepts that do 
not meet the minimum support. Thus, use of a lattice construction algorithm for ARM a may incur substantial 
overhead, since such concepts are essentially unnecessary artifacts.  

An iceberg lattice is a lattice that contains only the concepts whose support meets a given threshold. For 
example, Figure 2 depicts the concept lattice of Figure 1 as an iceberg lattice for both a minimum support 
threshold of 60% and 40%. As the threshold is lowered, more detail of the underlying concept lattice is revealed. 

 

 

Figure 2. Examples of an iceberg concept lattice. Top – iceberg concept lattice at 60% support. Bottom – iceberg 
concept lattice at 40%. These are derived from the lattice of Figure 1 by discarding concepts not meeting the 

minimum support threshold 

 

An iceberg lattice provides a model from which association rules can be efficiently mined (Stumme, 2002). 
Consider the alternate notation of an iceberg lattice depicted in Figure 3 that corresponds to the bottom iceberg 
lattice of Figure 2. Each concept node is labeled with a percentage representing the support together with any 
items, if any, for which there does not exist a greater concept containing the item. The edges are labeled with a 
percentage indicating the effective drop in confidence between two concepts. This notation enables association 
rules to be directly read from an iceberg lattice. An association rule α1  α2 will hold with 100% confidence for 
any concepts C1 and C2 where C1 is labeled with α1, C2 is labeled with α2, and C1 < C2. The support for the 
association rule is the support of C1. For example, association rule d1  a1 50%supp 100%conf can be read from 
lattice. Furthermore, an association rule α1α2  α3 will hold with 100% confidence for any concepts C1, C2, and 
C3 where C1 is labeled with α1, C2 is labeled with α2, C3 is labeled with α3, and C3 > meet (i.e., greatest common 
sub-concept) of C2 and C1. The support of the association rule is the support of the meet concept. For example, 
the association rule a1b2  c1 50%supp 100%conf can be read. An association rule α1  α2 with less than 100% 
confidence can be read from any concepts C1 and C2 where C1 is labeled with α1, C2 is labeled with α2, and C1 < 

(,{a1a2b1b2c1c2c3d1d2d3d4})

({O3O4 O5O6O7O9O10},{b2})

({ O2O3O4O5O8O9O10},{a1c1}) ({O3O4O5O6O9O10},{b2c1})

({O1O2O3O4O5O8O9O10},{a1})

({O2O3 O4O5O6O8O9O10},{c1})

({O1O2O3 O4O5O6O7O8O9O10},)

(,{a1a2b1b2c1c2c3d1d2d3d4})

({O3O4 O5O6O7O9O10},{b2})

({ O2O3O4O5O8O9O10},{a1c1}) ({O3O4O5O6O9O10},{b2c1})

({O1O2O3O4O5O8O9O10},{a1})

({O2O3 O4O5O6O8O9O10},{c1})

({O1O2O3 O4O5O6O7O8O9O10},)

({ O1O3O5O9O10},{a1d1}) 
({ O3O4O5O9O10},{a1b2c1})

({O3O5O9O10},{a1b2c1d1})
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C2. The support will be the support of C2. The confidence will be the product of the confidences noted on the 
edges along the path from C1 to node C2. For example, the association rule a1  d1 50%supp 62.5%conf can be read 
from the lattice of Figure 3. By a combination of the previous steps further association rules can be read. For 
example, the association rule a1b2  d1 40%supp 80%conf can be read from the lattice (the meet of a1b2  the node 
labeled 40% support with 80%conf, and d1 is an ancestor of that node). Similarly, c1b2  d1 40%supp 66.7%conf (the 
meet of c1b2  the node label 60% support with 100%conf, the node label 60%  the node label 50% with 83.4% 
conf, the node label 50%  the node label 40% with 80% conf, therefore c1b2  the node label 40% with a 
66.7%conf drop in overall confidence (Note 1), d1 is an ancestor of the node label 40%). 

Extracting association rules from a list of FI sets may yield an excessive number, even when applying strict 
thresholds to both support and confidence. The rules may contain highly redundant information, for example 
α1  α2, α2  α3, α1  α3, α1  α4, α1  α2α4. The excessive size and redundancy impedes the usefulness of 
the extracted rules. What is desired is a meaningful subset that can be exploited by an end user. A basis is a 
minimal subset of association rules that can be combined to form all association rules without any loss of 
information. A basis can be extracted from an iceberg concept lattice using a systematic traversal of the lattice. 
The Duquenne-Guigues (1986) basis provides extraction of a minimal set of association rules with 100% 
confidence and the Luxenburger (1991) basis provides extraction of a minimal set of association rules with less 
than 100% confidence. Stumme et al. (2001) offer algorithms to traverse and extract the Duquenne-Guigues 
basis and the Luxemburger basis from an iceberg concept lattice. 

 

 
Figure 3. Iceberg lattice using an alternate notation. Each concept node is labeled with a percentage representing 
the support together with any items, if any, for which there does not exist a greater concept containing the item. 

Edges are labeled with a percentage indicating the effective drop in confidence between the two concepts 

 

Given that an iceberg concept lattice provides an analysis tool to succinctly identify a basis of association rules, 
algorithms to construct an iceberg lattice are needed. This paper presents the Quick Iceberg Concept Lattice 
(QuICL) algorithm used to efficiently construct an iceberg lattice. When combined with lattice traversal 
algorithms, such as Stumme et al. (2001), QuICL provides an efficient ARM solution to generate of a basis of 
association rules that can be exploited by an end user. Beyond application to ARM, QuICL is a very efficient 
lattice construction algorithm that offers orders of magnitude improvement over past algorithms. 

2. Background 
2.1 Classical Association Rule Mining – Mining of Frequent Item Sets 

There have been a number of algorithms developed to address the mining of long FI sets. Most notable are 
CLOSET (Pei et al., 2000), CHARM (Zaki & Hsiao, 2002), and CLOSET+ (Wang et al., 2003). CHARM 
constructs an itemset-tidset (IT) tree whose nodes are similar to the nodes of a concept lattice. It is a top-down, 
depth-first search that exploits a notion of equivalence classes to skip levels in order to quickly identify closed FI 
sets. CHARM involves a vertical data representation (i.e., list of object ids per item) and uses a difference based 
representation to enumerate the sets of object ids below the first level of its IT tree. It uses intersection to 
incrementally add data to its IT tree. The IT tree is dynamically pruned during processing using properties of set 
union and closure. Intersection is noted as an expensive operation that impedes the performance of the CHARM 
algorithm (Wang et al., 2003). Alternatively, CLOSET uses a frequent pattern (FP) tree to provide a compact 
representation of the data in memory. The FP tree is a horizontal representation that maintains counts, each 

a1 c1
b2

d1

80% 80% 70%

70% 60%

40%

62.5%

50%

50%

87.5% 87.5%
75 %

80%

83.3%71.4%

80%

85.7%
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relative to a context of an ordered list of frequent items. Branches are added to the FP tree upon processing an 
object whose items omit one or more items in the path of an existing branch. Following construction of the FP 
tree, a divide and conquer algorithm that performs physical bottom-up projections on the FP tree together with 
item set merging and sub-item set pruning is used to identify the set of closed FI sets. CLOSET is shown to be 
effective for dense data sets (i.e., many items per transaction with few distinct items), but CLOSET’s 
performance degrades rapidly on sparse data sets (i.e., few items per transaction with many distinct items) as the 
minimum support threshold is lowered. CLOSET+ offers enhancements to CLOSET; top-down pseudo 
projection algorithm to address sparse data sets and item and skipping to further prune the search space.  

A survey provides an analysis of algorithms for mining closed FI sets from both a theoretical and analytical 
viewpoint (Yahia et al., 2006). Algorithms evaluated include TITANIC (Stumme et al., 2002), CLOSET, 
CLOSET+, and CHARM. TITANIC is a test and generate algorithm along the lines of Apriori that leverages 
theory from FCA. Yahia et al. draw several conclusions. There has been “frenzied activity” in developing 
algorithms to efficiently mine FI sets. These algorithms have made significant progress by leveraging theory in 
combination with carefully designed compact data structures. However, this activity has lost sight of the overall 
goal of producing a set of association rules that is “of exploitable size by end users”. All algorithms fail to 
produce the upper covers and therefore unable to generate a reasonable basis of association rules. Without the 
upper covers, the derivation of association rules from the FI sets of even a modest context will generate an 
excessive number of rules that cannot be reasonably comprehended by end users. Other studies derive the same 
conclusion (Valtchev et al., 2004; Zaki & Hsiao, 2005; Lakha & Stumme, 2005). 

2.2 Missaoui, Godin, and Alaoui Algorithm 

Missaoui, Godin, and Alaoui (1995) algorithm (GMA) is an often cited lattice construction algorithm. It is an 
incremental algorithm. That is, given a concept lattice L and a new object Oi with its set of items I, GMA will 
insert the new object into the lattice to produce a new concept lattice L+. Figure 4 depicts the incremental 
insertion of the first six objects relation R of Figure 1. As seen in Figure 4, the insertion of an object can result in 
modifying the extent of several existing concepts, generation of several new concepts, addition of links, and 
occasional removal of links. The insertion of a single object may result in numerous modified concepts and 
addition of many new concepts. 

The strategy for GMA is to partition the current set of concepts into three groups: modified, generator, and old. 
Modified are concepts into which the object id of the next object is added. Generators are concepts are used to 
generate new concepts. All other concepts are considered old and play no role in the insertion process. Modified 
concepts are readily identified. They are concepts with an intent that is a subset of the next object’s items. The 
identification of generator concepts, on the other hand, is more involved. Any concept whose intent intersects 
with, but not a subset of, the object’s items is potentially a generator. However, not all such concepts are 
generators. A concept is a generator provided there does not exist an ancestor whose intent when intersected with 
the next object’s items produces the same intersection set. For example, when inserting O6 in Figure 4 the 
concepts ({O3O4O5}, {a1b2c1}), ({O3O5}, {a1b2c1d1}), and ({O4}, {a1b2c1d4}) all have an intersection set of {a1c1}, only 
({O3O4O5}, {a1b2c1}) is a generator. Each generator concept is used to create a new concept having the extent of the 
generator union the object id as its extent and the intersection set as its intent.  

New concepts must be further linked into the lattice by searching for the parents. A potential parent is any 
concept, existing or generated, whose intent is a subset of the new concept’s intent. In order to preserve the 
lattice property (i.e., connection exists between two concepts C1 and C2 provided there is no concept C3 for 
which C1 < C3 < C2), the potential parent is a parent only if it does not have a child whose intent is a subset of the 
new concept. 
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Figure 4. Progression of incremental object insertion into a concept lattice. Bold text indicates new concepts, 
inserted items or inserted objects, G a generator concept, m a modified concept, and dashed lines are removed 

links 

 

The search for potential parents can be constrained to only consider concepts that are modified or generated. 
Occasionally a link between a parent and a child must be removed. This occurs when a parent for a concept is 
found and that parent is currently the parent of the generator concept that created the new concept. An example is 
the insertion of object O4 shown in Figure 4. In these cases the new concept is being inserted between the parent 
and the generator. The removal of the link is required to preserve the lattice connection property. 

The complete GMA algorithm is given in Algorithm 1. Lines 1 through 10 bootstrap the lattice upon insertion of 
the first object; for subsequent objects ensure the bottom concept contains all of the object’s items. Line 11 
declares a vector of sets that is used to: i) verify a potential generator is valid, and ii) limit the search for parents. 
Only modified and generated concepts are placed into this vector (lines 15 and 22). Line 12 provides the main 
loop to iterate over all concepts in the lattice in a top-down breath-first order (Note 2). Lines 13 through 17 
identify and process modified concepts. Line 20 tests if a concept is a generator. If so, a new concept is generated 
(line 21) and linked into the lattice (line 23). Lines 24 through 33 search the Processed vector for the parents and 
links them to the new concept. 

2.3 Other Lattice Construction Algorithms 

Other notable lattice construction algorithms include Valtchev, Missaoui, and Lebrun divide and conquer (2002b), 
GALICIA-T (Valtchev et al., 2002), and Nourine and Raynaud (2002). Lindig and Datensystene begins by 
constructing a known concept, such as the top (or bottom concept), and then proceeds to generate its children (or 
parents). The process repeats for each found concept until the lattice is complete. Valtchev et al. divide and 
conquer recursively partitions the input data set into two sets, either based on items or objects. At each level a 
concept lattice is constructed for each set and the resulting lattices are then merged. GALICIA-T uses a trie data 
structure to represent the set of concept intents whereby each edge of the trie denotes the addition of an item in 
an item set. GALICIA-T algorithm inserts the next object into the lattice through a guided traversal of the trie to 
produce an independent trie data structure. The generated trie represents a set of new concepts that are then 
merged back into the source trie. The lattice is thus an adjunct to the core trie structure. Similarly, Nourine and 
Raynaud use a trie to represent its lexicographic tree. Each edge in the lexicographic tree denotes an object and 
nodes corresponding to concepts are augmented with an item list. The incremental insertion is performed on an 
item by item basis by using a union operation on object ids of concepts represented in the trie. If the result of 
union is present in the trie and augmented with an item list, the item is added to the node; otherwise it will be a 
new concept. For new concepts, the extent will be will be added to the trie as needed. Identification of children is 
performed by a test union and count procedure for each item in I that is  new concept’s intent. 

R     A  B  C  D
O1 a1 b1 c3 d1

O2 a1 b1 c1 d2

O3 a1 b2 c1 d1

O4 a1 b2 c1 d4

O5 a1 b2 c1 d1

O6 a2 b2 c1 d2

Inserting O1 ({O1},{a1b1c3d1})m

Inserting O2

(,{a1b1c1c3d1d2})G

({O1},{a1b1c3d1})G ({O2},{a1b1c1d2})

({O1O2},{a1b1})

Inserting O3

(,{a1b1b2c1c3d1d2})MG

({O1},{a1b1c3d1})G ({O2},{a1b1c1d2})G

({O1O2},{a1b1})G

({O3},{a1b2c1d1})

({O1O2O3},{a1})

({O1O3},{a1d1}) ({O2O3},{a1c1})

Inserting O4

(,{a1b1b2c1c3d1d2d4})MG

({O1},{a1b1c3d1}) ({O2},{a1b1c1d2})

({O1O2},{a1b1})

({O3},{a1b2c1d1})G

({O1O2O3O4},{a1})m

({O1O3},{a1d1}) ({O2O3O4},{a1c1})m

({O4},{a1b2c1d4})

({O3O4},{a1b2c1})

Inserting O5

(,{a1b1b2c1c3d1d2d4})

({O1},{a1b1c3d1}) ({O2},{a1b1c1d2})

({O1O2},{a1b1})

({O3O5},{a1b2c1d1})m

({O1O2O3O4O5},{a1})m

({O1O3O5},{a1d1})m ({O2O3O4O5},{a1c1})m

({O4},{a1b2c1d4})

({O3O4O5},{a1b2c1})m

Inserting O6

(,{a1a2b1b2c1c3d1d2d4})MG

({O1},{a1b1c3d1}) ({O2},{a1b1c1d2})G

({O1O2},{a1b1})

({O3O5},{a1b2c1d1})

({O1O2O3O4O5},{a1})

({O1O3O5},{a1d1}) ({O2O3O4O5},{a1c1})G

({O4},{a1b2c1d4})

({O3O4O5},{a1b2c1})G

({O6},{a2b2c1d2})

({O2O3O4O5O6},{c1})

({O3O4O5O6},{b2c1})({O2O6},{c1d2})
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Let Concept be a tuple {O, I, Children} where O is a set of object ids, I

is a set of items, and Children is a list of child concepts. 

Let CBottom be a reference to the supremum of a concept lattice G 

ADD(Oi, I)     

1. if CBottom = Ø:          

2.  CBottom   new Concept ({Oi}, I) 

3. else: 

4.  if  I  CBottom.I:    

5.   if  CBottom.O = Ø:        

6.    CBottom.I  CBottom.I  I 

7.   else:                          

8.    CNew  new Concept (Ø, I)   

9.    Add CNew to CBottom.Children 

10.    CBottom  CNew 

11. Processed  Ø     

12. for each Ci  G in ascending |I| order: 

13.  if Ci.I  I:     

14.   Add Oi to Ci.O 

15.   Add Ci to Processed[|Ci.I|]   

16.   if Ci.I = I:                 

17.     return 

18.  else: 

19.   Intersect  Ci.I  I 

20.   if  Cj  Processed[|Intersect|] | Cj.I = Intersect:   

21.    CNew  new Concept (Ci.O  {Oi}, Intersect) 

22.    Add CNew to Processed[|Intersect|] 

23.    Add Ci to CNew.Children  

24.    for each Ck  Processed  |Ck.I| < |Intersect|:    

25.     if Ck.I  Intersect:  

26.      IsParent  TRUE 

27.      for each CChild  Ck.Children  IsParent: 

28.       if CChild.I  Intersect: 

29.        IsParent FALSE 

30.      if IsParent: 

31.       if Ci  Ck.Children:  

32.        Remove Ci from Ck.Children  

33.       Add CNew to Ck.Children  

34.    if |Intersect| = |I|:  

35.     return                         

Algorithm 1. Godin, Missaoui, and Alaoui (GMA) lattice construction algorithm 

 

Kuznetsov and Obiedkov (2002) provide a comparative survey of several lattice construction algorithms. 
Algorithms include: GMA, Nourine andRaynaud, and Valtchev et al. divide and conquer. Findings indicate that 
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there is no “best” algorithm and the each algorithm exhibit different performance depending on the data set. 
GMA is a good choice for sparse data sets, and batch algorithms are good for dense data sets. Valtchev et al. 
(2002) arrive at the same conclusions. Their study reports that GMA has good performance for data set with 
density (Note 3) less than 0.10, but lags with densities greater than 0.50. 

2.4 Iceberg Lattice Construction Algorithms 

Three algorithms to construct an iceberg lattice were found in literature: CHARM-L (Zaki & Hsiao, 2005), 
SPROUT (Choi, 2006), and Martin and Eklund (2008). CHARM-L, an extension to the CHARM algorithm, is 
an example of a lattice construction algorithm that is an integrated (Note 4) extension of a FI set miner. The 
lattice of the CHARM-L algorithm is maintained as an adjunct data structure from CHARM’s IT tree. When the 
core CHARM processing identifies a new potential FI set, CHARM-L will attempt to insert a new concept 
representing the FI set into the lattice, as a child of the concept corresponding to the parent node in the IT tree. 
What remains is to identify concepts already in the lattice that are to become children of the new concept. Such 
identification is performed by intersecting concept id sets that are maintained within each node of the IT tree. 

SPROUT is a lattice construction algorithm that provides an option to build an iceberg lattice. It begins by 
creating the top concept and then generates children by appending each object not in the concept’s extent and 
inquiring the formal context for the item sets. Generated concepts are tested for closure and pre-existence. If not 
closed, the concept is discarded. If pre-existent, a parent-child link is added. The process repeated for each new 
concept. 

Martin and Eklund is another algorithm that generates a lattice from a set of closed FI set found by a FI set miner. 
It maintains a border set of concepts that have been inserted into the lattice thereby limiting the concepts that 
must be examined during the insertion of the next closed FI set. 

3. Methodology 
While GMA and like algorithms are not directly suitable to construct an iceberg lattice, adapting the algorithm to 
add data incrementally on an item by item basis (i.e., vertical representation) and interchanging the roles of the 
set of object ids (O) and the set of items (I), results in an algorithm that can construct an iceberg concept lattice. 
The algorithm still performs a top-down level-wise search and insert process; however, these changes effectively 
invert the lattice. The addition of a predicate to ensure that the minimum support threshold has been met is the 
only remaining change needed to construct an iceberg lattice. 

Preliminary tests (Note 5) validated the modified GMA algorithm functioned correctly. The Mushroom (Note 6) 
data set was used as the test case. The converted algorithm was tested with minimum supports of 50%, 30%, 
10%, 1%, and 0%. The algorithm reported a number of concepts of 45, 427, 4,897, 51,672 and 238,709 
respectively with execution times of 0.04, 0.39, 7.17, 160.28, and 1,198.08 seconds. The reported number of 
concepts is the same as found by the CHARM-L algorithm. While the execution time for high supports was 
comparable to CHARM-L, the performance significantly degraded by an order of magnitude as support is 
lowered. Thus, the modified GMA algorithm cannot compete with the leading ARM algorithms. 

This section describes the development of the Quick Iceberg Concept Lattice (QuICL – pronounced kwi-kəl) 
algorithm. QuICL provides incremental construction of a concept lattice along the lines of GMA, but approach 
the insertion process from the bottom of the lattice as opposed to a top-down, level-wise search for generators. 
The structure of the lattice is used to navigate to a point of change. Recursion is used to facilitate the location of 
additional points of change and enable linkage between parent and child concepts. The result is an algorithm that 
constructs all 238,709 concepts derived from the Mushroom data set in less than three seconds, a performance 
improvement over GMA that is near three orders of magnitude. 

3.1 A Step Towards an Efficient Incremental Algorithm 

A step towards an efficient incremental insertion algorithm for an iceberg lattice is to apply a few minor 
modifications to the representation of the lattice. In addition to interchanging the roles of the set of object ids (O) 
and the set of items (I) to invert the lattice, the cardinality of I in a given concept can be significantly reduced by 
exploiting the lattice property: if Ii  I of concept C1 then  C2 | C2 < C1, Ii  I of C2. Thus, an item Ii  I of 
concept C1 does not need to be physically recorded in a concept if there exists a concept C2 such that C2 > C1 and 
Ii  I of concept C2. Instead, the item Ii is implied by the lattice structure. An item Ii need only be recorded in a 
concept at its maximal position (i.e., lowest position in the inverted lattice). This representation is also desirable 
for direct extraction of association rules (see Section 1). Another modification is to omit a topmost concept 
whose intent is the set of all items in the concept lattice. As a result, the concept lattice becomes a semi-lattice. 
The semi-lattice can be readily converted to a complete lattice by a post-construction step to add a common 
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topmost parent for all concepts in the lattice that do not have parents. For the purpose of ARM, this post-step is 
not needed. The final modification is to redefine the bottom concept simply as an entry point into the lattice. 
Thus, the bottom concept does not hold any objects or items. It is created upon initial construction of an empty 
lattice and its intent and extent are not updated.  

The previously mentioned changes will simplify the processing in the GMA algorithm without any loss of 
necessary information. The steps of GMA that add an item to the intent of concepts whose extent is a proper 
subset of the next item’s objects are not needed, since the lattice structure will imply the item. As a result, 
concepts whose extent is a proper subset of the next item’s objects will not need to be visited. Furthermore, the 
pre-steps to ensure the extent of the bottom concept includes new object ids can be eliminated. There is, however, 
one small side effect. In the event an item exists common to all objects, GMA would place that item and its 
object ids into the bottom concept. With the proposed changes, the item and object ids will be in a new concept 
that is the sole parent to the bottom concept. 

 

 
Figure 5. Progression of incremental item insertion into a concept lattice. Bold text and weighted lines identify 

new elements. Dashed lines indicate removed links. Rv is the vertical representation of R of Figure 1 

 

Given the proposed modifications to the lattice structure, Figure 5 depicts the progression of incremental item 
insertions of the data in relation R of Figure 1 into an inverted concept lattice. The final lattice of Figure 5 is the 
inverted form of the lattice given in Figure 1. Before presenting an algorithm to construct a lattice using the 
proposed structure, a few observations are noteworthy:  

 Insertion of an item whose extent  the extent of a concept Ci within the lattice is accomplished by simply 
adding the item to Ci. Ci can be found by traversing the lattice from the bottom along any path where the 
item’s extent  a concept’s extent. An example is inserting d3 in Figure 5. 

 Except for the previous case, a new concept CNew will be added to the lattice. That concept will forever hold 
the item.  

 If an empty lattice is defined as a bottom concept with an empty intent and extent, then any subsequent 
insertion of the new concept CNew will always be performed above another concept. Let the concept above 
which CNew is to be inserted be denoted as CBase. CBase can be identified by traversing the lattice along any path 
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where the item’s extent is  of a concept’s extent. For example, when inserting d4 with object id set {O4} into 
the lattice of Figure 5 the base concept will be (, {O3O4O5O9O10}). 

 For all parent concepts Cp of CBase such that the extent of Cp is not =, , or  of new item’s extent, the new 
concept CNew will be a sibling of each Cp. CBase will be a child of the new concept. If the extent of a Cp  
item’s extent is not empty then another new concept with an extent = extent of a Cp  item’s extent must be 
found or inserted above Cp. Such concept can be found, or if needed created, by recursing using a null item 
and extent of Cp  item’s extent as the set of object ids. The concept returned from the recursive call will also 
be a parent of CNew. An example of finding already existing concepts in the recursive call is inserting d2 in 
Figure 5. An example of creating a new concept in the recursive call is inserting b2. 

 For all parent concepts Cp of CBase such that the extent of Cp is  of extent of CNew, CNew will be inserted 
between CBase and Cp. CBase will no longer be a child of Cp. Instead the CNew will be a child of Cp and CBase will 
be a child of the CNew. An example is inserting c1 with object id set {O2O3O4O5O6O8O9O10} into the lattice of Figure 
5. The object ids are a superset of the extent of concept (, {O3O4O5O9O10}). Thus, concept (, {O2O3O4O5O8O9O10}) 
is inserted between the base concept ({a1}, {O1O2O3O4O5O8O9O10}) and concept (, {O3O4O5O9O10}). 

Given these observations, an alternative algorithm to GMA can be formulated. For each insertion, GMA 
processes all concepts in a top-down, breath-first manner to modify existing concepts and to generate new 
concepts. The top-down traversal is used to facilitate identification of generators and limit the search for parent 
concepts. The noted observations, however, suggest alternate approach. The identification of generator concepts 
can be performed from the bottom up using the lattice structure to navigate to a generator (i.e., a base concept). 
Furthermore, recursion can be used to find, or if needed create, the parent concepts. 
Algorithm 2 presents an incremental insertion algorithm to construct a concept lattice. For this algorithm, each 
concept is a tuple composed of a list of items, a list of object ids, and a list of parent concepts. A designated 
empty concept named CBottom provides an entry point into the lattice. The algorithm begins with the 
BUILD-LATTICE function. This function accepts a formal context K{I, O, R}. BUILD-LATTICE creates an empty 
concept lattice consisting of the bottom concept (line 1) and then incrementally adds each item into the lattice 
using the INSERT function (lines 2 and 3). After inserting all items, the bottom concept is returned (line 4). The 
INSERT function provides the incremental insertion of an item into the lattice or sub-lattice. INSERT is passed a 
reference to a concept, referred to as the base concept CBase, above which an item id Ii together with its extent O 
is to be inserted. The item id can and will often be omitted when inserting into a sub-lattice (i.e., a subset of a 
lattice consisting of a concept and all its ancestors). INSERT involves three phases; i) navigate into the lattice and 
identify a list of concepts to be further processed, ii) if needed, construct a new concept, and iii) process the list 
of concepts identified by the first phase and link the new concept into the lattice. Both the navigation phase and 
link phase recursively call the INSERT function as needed. 

INSERT first defines an empty list of tuples consisting of a type indicator with values SUP or ISET, an intersection 
set, and a reference to the concept that generated the intersection set (line 5). This list is populated during a 
navigate-prepare phase and is processed during the link phase. The intersection set is the result of intersecting 
the object set O passed to the INSERT function with the extent of a parent concept. A type SUP indicates O is a 
superset of the extent of the parent concept. Type ISET indicates that O is neither superset nor subset. INSERT 
proceeds to compare O with the extent of each parent of the base concept (lines 8 through 17). If O is equal to a 
parent concept’s extent then the item Ii, if supplied, is added to the concepts list of items (lines 9 and 10). The 
insertion is complete. For purposes discussed later, INSERT returns a reference to the modified concept (line 11). 
If O is a subset the extent of any parent concept then INSERT recurses using the parent as the new base concept 
(lines 12 and 13). This effectively navigates into the concept lattice to locate the position above which the item 
will be inserted. If O is superset of the extent of a parent then a tuple composed of SUP, a reference to the parent 
concept, and the parent’s extent is added to the ToProcessList for later processing (lines 14 and 15). If O is neither 
equal to, subset, nor superset of the extent of a parent concept, and O intersect the extent of a parent is 
non-empty, then a tuple composed of ISET, a reference to the parent concept, and O intersect the extent of the 
parent is added to the ToProcessList (lines 16 and 17). 

If comparison of O with the extents of all parent concepts does not encounter a parent concept where O is equal 
to or a subset of the parent’s extent, then a new concept node will be constructed (line 18). The new concept will 
contain the item Ii in its intent and O as its extent. The new concept will be a child of all SUP concepts in the 
ToProcessList, a sibling to the ISET concepts, and a parent to the base concept. 
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Let Concept be a tuple {I, O, Parents} where I a list of Items, O is a 

list of Object Ids, and Parents a list of parent concepts. 

BUILD-LATTICE(K{I, O, R}) 

1. CBottom  new Concept (, ) 

2. for each Ii  I: 

3.     INSERT(CBottom, Ii, o(Ii))  // o(Ii) is the set O derived from R 

4. return CBottom     

INSERT(CBase, Ii, O) 

5. ToProcessList     // list of tuples {Type, Concept, O} where 

6. // Type  {SUP, ISET}, Concept the intersecting concept, and 

7. // O a set of object ids resulting from intersection 

8. for each CParent  of CBase.Parents:  // Navigate-prepare phase 

9.   if  O = CParent.O:         

10.    Add Ii to CParent.I 

11.    return CParent     

12.   else if O  CParent.O: 

13.    return INSERT (CParent, Ii, O)  

14.   else if O  CParent.O: 

15.    Add {SUP, CParent, CParent.O} to ToProcessList 

16.   else if O  C.O  : 

17.    Add {ISET, CParent, O  CParent.O} to ToProcessList 

18. CNew  New Concept({Ii}, O)         

19. for each Ti  ToProcessList:        // Link phase 

20.   if  Ti.Type = SUP: 

21.    Remove Ti.Concept from CBase.Parents 

22.    Add Ti.Concept  to CNew.Parents 

23.   else if  Ti.Type = ISET: 

24.    CParent  INSERT (Ti.Concept, , Ti.O) 

25.    Add CParent to CNew.Parents 

26. Add CNew to CBase.Parents 

27. return CNew  

Algorithm 2. A recursive incremental lattice construction algorithm 

 

After creating the new concept, the final phase of the algorithm processes the concepts in the ToProcessList and 
links the new concept into the lattice. For a parent concept in the ToProcessList with a SUP type, the parent will no 
longer be a parent of the base concept (line 20). Instead it will be the parent of the new concept. Thus, the parent 
concept is removed from the base concept’s list of parents (line 21) and added to the new concept’s parents (line 
22). Each parent concept for which O is neither equal to, a subset of, nor superset of the parent’s extent will be a 
sibling to the new concept. Furthermore, if O intersect the extent of a sibling is not empty then additional 
processing is required to add the information about O intersect the extent of a sibling into the lattice. Such 
siblings are the concepts in the ToProcessList that have an ISET type. A concept representing O intersect the extent 
of a sibling must be found within the lattice, or if absent created, and added as a parent of the new concept. To 
do this, the algorithm recurses using the sibling as the base concept, a null item, and O intersect the extent of the 
sibling as the set of object ids (line 24). The concept returned by the recursive call is added to the new concept’s 
parents (line 25). Finally, the new concept is added to the parents of the base concept and the new concept is 
returned (lines 26 and 27). 
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Figure 6. Sample walkthrough of Algorithm 2 execution 

 

3.2 Walk Through of the Algorithm Execution 

Figure 6 provides a sample walkthrough of executing Algorithm 2. This walkthrough corresponds to the insertion of 
b2 in Figure 1. Execution begins with a call to INSERT with the CBase referencing the bottom concept {,}, Ii = 
b2, and O = {O3O4O5O6O7O9O10}. The navigate-prepare phase tests the intersection of O with each parent of {,}. 
The intersection test of O intersect the extent of ({a1}, {O1O2O3O4O5O8O9O10}) results in adding an ISET tuple to the 
ToProcessList. The tuple contains the intersection set {O3O4O5O9O10} and the concept ({a1},{O1O2O3O4O5O8O9O10}). The 
intersection test of O intersect the extent of ({a2},{O6O7}) results in adding a SUP tuple to the ToProcessList. Since the 
navigate-prepare phase did not encounter a parent concept where O  parent’s extent, a new concept 
({b2},{O3O4O5O6O7O9O10}) is created and the tuples of the ToProcessList are then processed. Processing the 
{ISET,({a1}, {O1O2O3O4O5O8O9O10}),{O3O4O5O9O10}} tuple involves a recursive call to INSERT with the CBase referencing 
the concept ({a1}, {O1O2O3O4O5O8O1O10}), Ii = , and O = {O3O4O5O9O10}. The navigate-prepare phase of the recursive 
call to INSERT produces an empty ToProcessList since the extent of ({b1}, {O1O2O8}), the sole parent of concept ({a1}, 
{O1O2O3O4O5O8O9O10}), has an empty intersection with {O3O4O5O9O10}. Thus, the recursive call completes by creating 
the concept (, {O3O4O5O9O10}) and adding it as a parent of ({a1}, {O1O2O3O4O5O8O9O10}). The new concept is returned 
from the recursive call. The returned concept is added as a parent of ({b2}, {O3O4O5O6O7O9O10}) by the base 
invocation of INSERT. 

Processing the {SUP, ({a2}, {O6O7}), {O6O7}} tuple involves removing ({a2}, {O6O7}) from the parents of CBase, being {,}, 
and adding it as a parent to the CNew, being ({b2}, {O3O4O5O6O7O9O10}). At this time all tuples in the ToProcessList have 
been processed. The first invocation of INSERT completes by adding CNew as a parent to CBase and returning a 
reference to CNew.  

The walkthrough of b2 inserting given in Figure 6 demonstrates a majority of the execution paths through the 
algorithm. However, the walkthrough did not execute the paths where the O in the call to INSERT are equal to or a 
subset of the parent’s extent. Such execution paths are readily apparent in many of the other insertions depicted 
in Figure 5. For example, insertion of d3 will call INSERT with CBase referencing the bottom concept {,}, Ii = d3, 
and O = {O7}. The navigate-prepare phase will recurse with CBase referencing the concept ({b2}, {O3O4O5O6O7O9O10}), 
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since the O is a subset of the extent. The navigate-prepare phase of the recursive call will further recurse with 
CBase referencing the concept ({a2}, {O6O7}). The navigate-prepare phase of this recursive call will encounter a 
parent concept whose extent equals O. That concept is ({c2}, {O7}). In this case Ii, being d3, is inserted into the intent 
of ({c2}, {O7}) and a reference to this concept is returned back through all invocations. 

3.3 A Shortcoming and a Correction 

There is currently a defect in Algorithm 2 in that it may violate the lattice connection property (i.e., edge is made 
between any two concepts C1 and C2 for which order < exists and there is no concept C3 for which C1 < C3 < C2). 
These errors are due to relationships between the concepts referenced in the ToProcessList; either between two ISET 
tuples or between an ISET and SUP tuple. 

 

 
Figure 7. Invalid edge generated between new concepts 

 

The processing of all related tuples results in adding invalid parent-child links. If there exists a non-trivial meet 
in the lattice between the referenced concepts then the intersection sets recorded in the tuples of ToProcessList of 
the related concepts will be the extent of the meet, and therefore the intersection sets will be the same. Thus, an 
approach to correcting the flaw is to remove all but one of the tuples in the ToProcessList of any tuples having the 
same intersection set. However, this approach is not sufficient since there exists cases where the invalid link does 
not involve a concept that is currently in the lattice. These cases are still the result of a relationship between 
concepts in the ToProcessList. A case is depicted in Figure 7. Here, the related concepts referenced in the 
ToProcessList are ({I1}, {O1O2O3O4}) and ({I2}, {O1O2O3O5}), and the meet concept is (, {O1O2O3}). The invalid link will 
occur regardless of the order in which the tuples of the ToProcessList are processed. The processing of {ISET, ({I1}, 
{O1O2O3O4}), {O1O2}} before {ISET, ({I2},{O1O2O3O4}), {O1O2O5}}, as shown, will create the concept (, {O1O2}) when 
processing {ISET, ({I1}, {O1O2O3O4}), {O1O2}}, then create concept (, {O1O2O5}) when processing {ISET, ({I2}, {O1O2O3O4}), 
{O1O2O5}}. On the other hand, if {ISET, ({I2}, {O1O2O3O4}), {O1O2O5}} is processed first, then both concepts (, {O1O2}) and 
(, {O1O2 O5}) will be created upon processing {ISET, ({I2}, {O1O2O3O4}), {O1O2O5}}. The subsequent processing of {ISET, 
({I1}, {O1O2O3O4}), {O1O2}} will simply add the violating edge. Therefore a solution is to identify and remove all the 
tuples in the ToProcessList that have an intersection set that is a subset of the intersection set of other tuples. Thus 
to fully correct the problem, an algorithm to purge such tuples from the ToProcessList is needed. 

A purge subsets algorithm involves comparing the intersection set of each tuple with the intersection set of every 
other tuple in the ToProcessList. This will introduce a potential O(n2 m) asymptotic complexity when n is the 
number of tuples in the ToProcessList and m is the size of the intersection sets. While the number of tuples in a 
given ToProcessList is bounded by the number of parent concepts of a given base concept, it is desired that the 
purge subsets algorithm be highly efficient and avoid any unneeded processing. There is no need to compare two 
SUP tuples, since SUP tuples cannot be a subset of other tuples. Furthermore, two ISET tuples cannot be both a 
subset and superset of each other. Therefore, the only tests needed between any two tuples are: i) a subset test 
when the first tuple is an ISET, and ii) a superset test when the second tuple is an ISET. The later will only be 
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performed if the first tuple is not an ISET, or if the result of the subset test is false. Furthermore, to obtain an O(n2 

m) complexity but not O(n2 m2) the sets of object ids must be maintained in sorted order. This is necessary for 
fast determination of subset and superset operations. These operations can be optimized to determine an outcome 
as soon as possible. A subset operation on sorted lists can report false if at any time an id is found in the first set 
that does not exist in the second, or the number of ids yet to be examined in the first set is greater than the 
number of ids yet to be examined in the second. Dually, a superset operation can report false if at any time an id 
is found in the second set that does not exist in the first, or the number of ids yet to be examined in the first set is 
less than the number of ids yet to be examined in the second. 

Algorithm 3 presents an efficient algorithm to purge tuples in the ToProcessList. Function PURGE-SUBSETS accepts 
the ToProcessList tuples. Lines 1 and 2 provide loops to compare each tuple with every other tuple. Lines 3 through 
6 perform the comparisons between the tuples and removal of the subset tuples as needed. 

 

PURGE-SUBSETS(ToProcessList) 

 // ToProcessList is a list of tuples {Type, Concept, O} with 

// Type  {SUP, ISET}, Concept a reference to a concept, 

// and O a set of object ids 

1. for each Pi  ToProcessList: 

2.  for each Pj  ToProcessList  Pj comes after Pi: 

3.   if  Pi.Type = ISET  Pi.O  Pj.O: 

4.    Remove Pi from ToProcessList 

5.   else if  Pj.Type = ISET  Pi.O  PjO: 

6.    Remove  Pj from ToProcessList 

Algorithm 3. PURGE-SUBSETS algorithm 

 

3.4 The QuICL Algorithm 

In addition to calling the PURGE-SUBSETS function, there are three more enhancements; the first maintains the 
parent concepts in an order that may potentially improve performance, the second enables a specification of a 
minimum support threshold in order to construct iceberg lattices, and the third removes redundant intersect 
operations thereby further improving performance. The rationale to maintain parent concepts in a sorted order is 
to reduce the number of times the body of the navigate-prepare loop is executed. If during the iteration over 
parents, a parent concept whose extent is equal to or subset of the set of object ids is encountered the algorithm 
returns without testing the remaining parents. To increase the probability that such parent concepts are 
encountered sooner than later, the parents are maintained in descending order of the cardinality of extents. 

To construct an iceberg lattice the insertion must discard any item whose extent does not meet a minimum 
support threshold. In addition, the processing must prevent construction of concepts whose extent would not 
meet the threshold. Since the extent for a new concept resulting from an intersection with another concept is the 
intersection set that is stored in the tuples of the ToProcessList, a predicate on the size of the intersection set can be 
used to prevent construction of such concepts. The predicate can be tested before adding an ISET tuple to the 
ToProcessList.  

Testing and analysis of the Algorithm 2 revealed that more intersections are being performed than needed. This is 
the result of the same parent concepts being intersected from multiple invocations of the INSERT function. In such 
case, each invocation has a different base concept that shares the given parent. Even though each invocation may 
be passed a different set of object ids, the resulting intersection set will be the same during insertion of a given 
item. This is the case since the intersection set is ultimately the intersection of the parent’s extent and the extent 
of the item being inserted. Thus, an enhancement is to cache (Note 7) each intersection set with its parent 
concept for the duration of an item insertion. Between item insertions all cached intersection sets are discarded.  

While the intersection set of each invocation is the same, the outcome of comparison (i.e., =, , , and ) on 
which Algorithm 2 is dependent can be different. The outcome of comparison can be readily determined by 
performing tests on the cardinalities of the cached intersection set, the parent’s extent, and the object id set 
passed to the INSERT function. Table 1 provides identification of an outcome based on the cardinality of these 
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sets.  

In caching the intersection set in the parent concept, care must be taken to avoid incurring a penalty (Note 8) in 
memory consumption. A penalty can be avoided by using the appropriate reference as the intersection set. If the 
outcome of comparison is equal or a subset, then cached intersection set is set to the object id set passed to 
INSERT. If the outcome of comparison is superset, then cached set is set to CParent.O. If |O  CParent.O| < minimum 
support, the cached set is set to an empty set. Only when the outcome of comparison is intersect and the 
intersection set meets the minimum support threshold will the new intersection set be cached. However, using a 
reference to this same set in the ISET tuples of the ToProcessList will result in no additional memory consumption. 
This set ultimately becomes the extent of a new concept that is added to the lattice. 

 

Table 1. Determination of intersection outcome. Cparent.IS is the cached intersection set of a parent concept, O is 
the object id set passed to INSERT, and Cparent.O is the extent of a parent concept 

Test on Intersect Outcome 

|Cparent.IS| = 0 No relationship 

|Cparent.IS| = |O|  |Cparent.IS| = |Cparent.O|  O = CParent.O  

|Cparent.IS| = |O|  |Cparent.IS| < |Cparent.O| O  CParent.O  

|Cparent.IS| < |O|  |Cparent.IS| = |Cparent.O| O  CParent.O  

|Cparent.IS| < |O|  |Cparent.IS| < |Cparent.O| O  CParent.O  

 

The applying these three changes to Algorithm 2 together with a call to PURGE-SUBSET is the QuICL algorithm, 
given in Algorithm 4. Line 30 provides the call to the PURGE-SUBSETS function. Lines 38 and 39 specify an order 
for parents of a concept. Line 2 discard items that do not meet the minimum support threshold. Line 14 tests that 
the size of the intersection set meets the minimum support threshold. Lines 9 through 12 obtain a reference to the 
intersection set IS. If the intersection set was previously computed then it is obtained from the cache, otherwise it 
is computed. Lines 16, 20, 23, and 26 use tests against the cardinality of the intersection set to determine an 
outcome of comparison. Lines 17, 21, 24 and 27 cache the intersection set during insertion of a given item. Line 
3 clears the cached intersection sets following item insertion. 

In a preliminary test, the QuICL algorithm constructed the complete lattice for the Mushroom data set in three 
seconds. This represents a gain in excess of two orders of magnitude over the GMA algorithm. 

4. Results 
QuICL was empirically evaluated against the CHARM, CHARM-L, and the iceberg enhanced GMA algorithms. 
The C version of the CHARM and CHARM-L were downloaded from the author’s web site and translated to 
Java (Note 9). The CHARM implementation utilized memory mapped I/O to read the object ids from a vertical 
representation of a data set. On translating to Java, the memory mapped I/O was converted to the available 
random access classes. This introduced a performance problem since the CHARM implementation re-reads the 
sets of object ids multiple times when generating the first level of CHARM’s IT tree. The implementation was 
enhanced to cache in memory the object id sets. The GMA algorithm with modifications for iceberg processing 
and QuICL (Algorithm 4) were directly implemented in Java. 
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Let Concept be a tuple {I, O, Parents, IS} where I is a list of items, O is a list of object ids, 

Parents is a list of parent concepts, IS is a reference to a cached intersection set. 

QUICL (K{I, O, R}, MinSupp) 

1. CBottom  new Concept (, )   

1. for each Ii  I  |o(Ii)|  MinSupp:  

2.  INSERT(CBottom, Ii, o(Ii)) // o(Ii) is the set O derived from R 

3.   Ci  CBottom | Ci.IS not , Ci.IS   

4. return CBottom   

INSERT(CBase, Ii, O)  

5. ToProcessList     // list of tuples {Type, Concept, O} where 

6. // Type  {SUP, // ISET}, Concept the intersecting  

7. // concept, and O a set of object ids resulting from intersection 

8. for each CParent  of CBase.Parents:   // Navigate-prepare phase 

9.  if CParent.IS = : 

10.   IS  O  CParent.O  

11.  else: 

12.   IS  CParent.IS 

13.   

14.  if |IS| < MinSupp: 

15.   CParent.IS  {} 

16.  else if  |IS| = |O|  |IS| = |Cparent.O|:     

17.   CParent.IS  Cparent.O 

18.   Add Ii to CParent.I 

19.      return CParent   

20.  else if |IS| = |O|  |IS| < |Cparent.O|:    

21.   CParent.IS  O 

22.   return INSERT (CParent, Ii, O)  

23.  else if |IS| < |O|  |IS| = |Cparent.O|:  

24.   CParent.IS  Cparent.O 

25.   Add {SUP, CParent, CParent.O} to ToProcessList 

26.  else if |Cparent.IS| < |O|  |Cparent.IS| < |Cparent.O|: 

27.   CParent.IS  IS  

28.   Add {ISET, CParent, IS} to ToProcessList 

29. CNew  New Concept({Ii}, O)       

30. PURGE-SUBSETS(ToProcessList) 

31. for each Ti  ToProcessList:          // Link phase 

32.  if  Ti.Type = SUP: 

33.   Remove Ti.Concept from CBase.Parents 

34.   Add Ti.Concept  to CNew.Parents 

35.  else if  Ti.Type = ISET: 

36.   CParent  INSERT(Ti.Concept, , Ti.O) 

37.   Add CParent to CNew.Parents  

38. Sort CNew.Parents in order of decreasing |O| 

39. Add CNew to CBase.Parents in order of decreasing |O| 

40. return CNew 

Algorithm 4. The QuICL algorithm 
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Table 2. Data set and lattice characteristics. |O| is number of objects, |I| is the number of items, and |L| is number 
of concepts. Average degree is the average number of concepts in the upper cover of each given concept. 
Maximum degree is the maximum number of concepts in the upper cover of any concept 

Data Set |O| |I| Density Min Supp |L| Avg Deg Max Deg H 

Chess 3,196 76 0.4933 95% 74 2.64 8 5

  85% 1,885 4.40 13 8

  75% 11,525 5.49 20 11

  65% 49,240 6.17 24 13

      55% 192,863 6.85 27 15

Mushroom 8,124 120 0.1933 50% 45 1.93 9 5

  30% 427 3.00 21 9

  10% 4,897 3.84 31 14

      0% 238,709 5.71 33 22

Pumsb 49,046 7,117 0.0104 95% 110 2.51 12 4

  85% 8,513 5.17 19 9

75% 101,047 7.02 21 12

Pumsb* 49,046 7,117 0.0071 50% 248 2.82 18 8

  40% 2,610 4.22 29 12

30% 16,154 5.14 36 15

T10I4D100k 100,000 1,000 0.0101 0.50% 1,073 1.68 569 5

  0.10% 26,806 3.27 796 10

0.05% 46,993 3.10 832 10

  0.01% 283,397 2.81 846 11

      0.00% 2,347,374 4.29 846 14

T25I10D10k 9,219 1,000 0.0278 1.00% 5,582 3.58 919 10

  0.50% 23,393 3.68 982 12

0.10% 209,436 2.63 996 13

  0.05% 576,020 2.74 996 14

      0.00% 2,557,927 4.30 996 17

T25I20D100k 100,000 10,000 0.0028 0.50% 27,067 4.09 2,131 12

0.10% 150,970 4.64 4,325 14

  

0.05%

0.01%

212,765

3,519,933

4.51 

3.67 

4,703

4,889

14

18

 

Seven public data sets were used as the benchmarks consisting of Mushroom, Chess, Pumsb, Pumsb*, 
T10I4D100k, T25I10D10k, and T25I20D100k. The Mushroom data set contains characteristics of various 
species of mushrooms. The Chess data set is sequence of steps recorded for a game of chess. Pumsb data set 
contains census data. The Pumsb* data set is the Pumsb data set with removal of items whose support is greater 
than or equal to 80%. The T10I4D100k, T25I10D10k, and, T25I20D100k are synthetic data sets generated by 
the IBM Synthetic Data Generator. It generates data sets that emulate retail transactions according to a set of 
input parameters (e.g., number items, number transactions, average transaction length). The Mushroom, Chess, 
Pumsb, Pumsb* and T10I4D100k data sets were downloaded from the University of Helsinki Frequent Item Set 
Mining Data set Repository. The T25I10D10k and T25I20D100k data sets were downloaded from the High 
Performance Computing Laboratory of The Institute of Information Science and Technologies, Pisa, Italy. The 
characteristics of these data sets together with characteristics of their generated concept lattices are given in 
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items, can account for 38% (e.g., T10I4D100k at 0.01%supp using QuICL) to 72% (e.g., T25I10D10K at 0.0%supp 
using QuICL) of memory. Furthermore, for large lattices the number of parent-child links account for another 
15%.  

CHARM-L provides a reduction in memory by not retaining object ids in its lattice. However, CHARM-L does 
maintain object ids in its IT tree. These entries are dynamically constructed during the traversal of the CHARMS 
IT tree and discarded upon completion of a branch. The memory consumed for each concept in the CHARM-L 
lattice is about three times the memory consumed by the concepts of QuICL. Due to very different approaches, 
the reduction or gain in memory usage when compared against QuICL is varied. CHARM-L exhibits the best 
memory usage on the Pumsb, Pumsb*, and chess data sets. These data sets contain large object id sets. Thus the 
difference based representation is providing significant reduction in memory usage. CHARM-L has comparable 
memory consumption on the Mushroom and T25I20D100K data sets, but a loss around a factor of three on the 
T10I4D100k and T25I10D100k data sets. For the later two datasets, the overhead to represent a concept is 
degrading the memory consumption as these involve very large lattices containing concepts whose cardinality of 
extent is small. 

The CHARM algorithm does not construct a lattice. As such, its memory consumption is for processing its IT 
tree and construction its list of FI sets. Since CHARM-L is an extension to CHARM that constructs a concept 
lattice the memory consumption of CHARM is expected to be less than CHARM-L. This is indeed the case. 
However, the difference between the exhibited memory consumption of CHARM-L and CHARM should not be 
interpreted to be the memory for the lattice, since memory used for the IT tree is released upon processing a 
branch and may be reused for the lattice. 

5. Conclusions 
This paper has presented the QuICL algorithm, used to incrementally to construct an iceberg concept lattice. Its 
objective was to offer a lattice based algorithm whose overall performance in constructing a lattice is comparable 
to algorithms used for ARM. Furthermore, it was proposed that such algorithm would provide gains relative to 
the overall task of ARM. This objective has been met. The performance of QuICL is on the order of CHARM, a 
leading algorithm to mine FI sets, and QuICL additionally derives the upper covers. The lattices constructed by 
QuICL are of a form whereby association rules can be directly read and a basis can be readily generated. As 
such, the Stumme et al. (2001) algorithms can be used to extract the Duquenne-Guigues basis and Luxemburger 
basis. Thus, it is postulated that QuICL provides a significant gain in the overall task of ARM. QuICL enables 
the generation of association rules whose size is constrained to a number that can be exploited by the end user. 
Beyond this, it was proposed that new efficient algorithms to construct concept lattices may present a 
contribution to formal concept analysis. QuICL provides an order of magnitude gains in performance over GMA, 
an often cited incremental lattice construction algorithm. It is noted that GMA provides good performance on 
data sets whose density is less than 0.10. QuICL provides excellent performance on both sparse and dense data 
sets. For example, on the T10I4D100k, a sparse data set, QuICL provides a gain over GMA of two orders of 
magnitude (e.g., less than 120 seconds verses near 10,000 seconds at 0.0%supp). On Mushroom, a dense data set, 
the same two order magnitude gain is realized (e.g., three seconds verses 200 seconds at 0.0%Supp), likewise on 
Chess (e.g., less than ten second verses over 1,000 seconds at 55%supp). Literature has noted there is no known 
“best” algorithm for lattice construction and that each algorithm demonstrates different performance on different 
data sets, yet QuICL provides the best all-around performance.  

QuICL differs from past lattice construction algorithms in three notable ways. First, QuICL is a pure incremental 
lattice construction algorithm. That is, its sole data structure driving its processing is the lattice. Many other 
algorithms are driven by some other data structure and separately construct the lattice, although as an integral 
sub-task. For example GALICIA-T (Valtchev et al., 2002) uses a trie, Nourine and Raynaud (2002) uses its 
lexicographic tree, and CHARM-L uses its IT tree as it primary data structure. By being a pure incremental 
lattice construction algorithm, the foundation of QuICL is based solely on FCA. Additional theory derived from 
FCA may provide for further improvements to QuICL. Second, QuICL has recognized that it is sufficient to 
store an item at only its maximal position. There is no need to include the item in all descendent concepts. Thus 
for a given item insertion, the only modified concept will be the one where an item is inserted. This eliminates 
the need to modify a substantial number of concepts thereby significantly improving performance. Third, in 
comparing QuICL to GMA, both identify generator concepts. For QuICL, the generators are the base concepts 
that do not have a parent whose extent is a superset of the incoming object id set. QuICL differs from GMA in 
that it identifies the lowest generator concepts first, whereas GMA first identifies the highest. Thus, QuICL 
eliminates the step to validate a candidate generator is indeed a generator, a potentially time consuming process. 
Furthermore, since QuICL approaches the lattice from the bottom up, its recursion directly identifies the parent 
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concepts. This eliminates the very expensive task of searching for parents incurred by GMA. This task is 
exacerbated on dense data sets. Given this discussion and the results presented herein, it is postulated that QuICL 
is the “best known” all around incremental lattice construction algorithm. An evaluation against a broader set of 
data sets and other lattice construction algorithms is needed to validate this claim. 

An issue for QuICL, as well as FI set miners and lattice construction algorithms in general, is memory 
consumption. The exponential nature of the problem can quickly exhaust available memory. All algorithms used 
in this study failed to produce a complete lattice for four of the seven data sets. In each case the failure was due 
to memory constraints. CHARM and CHARM-L was able to process lower supports than QuICL and GMA. 
Further investigation into CHARM’s difference based representation may shed light on additional improvements 
to QuICL.  

Another issue for QuICL is seen in the runtime execution on the Chess, Pumsb, and Pumsb* datasets. These 
datasets contain items having very large object id sets (e.g., on Chess half the items exceed 1,500 object ids, on 
Pumsb some items have over 40,000 object ids). As a result many concepts have large extents. The time to 
perform intersections for these large sets is a considerable portion of execution time. Again, further investigation 
into CHARM’s difference based representation may provide insights in addressing this issue.  

An enhancement to QuICL that addresses both the memory consumption and large object ids sets is to exploit 
the lattice property: if Oi  extent of concept C1 then  C2 | C2 > C1, Oi  extent of C2. Thus, an Oi  O of 
concept C2 does not need to be physically recorded in a concept if there exists a concept C1 such that C1 < C2 and 
Oi  O of concept C1. Instead, a given object Oi need only be recorded in a concept at its minimal position (i.e., 
highest position in the inverted lattice). This forms a compressed lattice structure. The savings in memory is at 
the cost of a penalty in performance. Analysis of this tradeoff is a subject of future research. 

QuICL was developed in 2009 (Smith). Since then a recent algorithm to generate an iceberg lattice for ARM has 
been developed (Szathmary et. al. 2011). Szathmary et. al. include an empirical evaluation of their algorithm, 
Snow-Touch, against CHARM-L using a number of the same datasets used to evaluate QuICL. A comparison of 
the results of Szathmary et al. against the results presented herein indicates that QuICL will exhibit leading 
performance. For example, on the Mushroom dataset at 25%supp the reported execution time of Snow-Touch is 
around 40 seconds whereas QuICL is under a tenth of a second (at 0%supp QuICL is around 3 seconds). 
Furthermore, the times of QuICL are better than the reported times for Snow-Touch on the Chess and 
T2510D10k datasets.  
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Notes 
Note 1. The overall drop in confidence is derived by 83.4%  80.0%. 

Note 2. Iterating in ascending |I| order effectively performs a top-down breath-first traversal. 

Note 3. Density is a measure of the completeness of a data set. For formal context K{I, O, R}, the density of R 
= |R| / (|I|  |O|) where |R| is the total number of items for all objects. 

Note 4. Construction of the lattice occurs during its core processing. Alternatively, a lattice can be constructed as 
subsequent step to identifying closed FI sets. Such approach, however, impacts efficiency (Zaki & Hsiao, 2005). 

Note 5. Preliminary tests are executions of the algorithm during development. These tests are not performed 
under controlled conditions. The timings are given to illustrate the progression during algorithm development. 

Note 6. An often used data set for ARM and FCA. 

Note 7. The cache is a simple reference to an intersection set from each tuple representing a concept. The 
intersection sets are discarded between item insertions. 

Note 8. Failure to use the appropriate object id sets that are either already present in memory or will be 
subsequently used in the algorithm, will result in the storage of many additional object ids sets. 

Note 9. CHARM and CHARM-L were translated to Java in order to provide a consistent test environment. 
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