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Abstract

In many areas of natural science non-stationary problems on internal wave motion arise. For example, such prob-
lems appear in aerophysics, geophysics, oceanology, in theory of rotating fluid, and at design and construction of
mining constructions (Gabov & Sveshnikov, 1990). It is a complicated mathematical problem to obtain accurate
analytical solutions for such problems. In such cases a natural apparatus for study of internal wave motion pro-
cesses is in numerical methods. In this work, the schemes of the finite element method with high accuracy in space
and time for solution of a mixed boundary problem for internal wave equation for stratified fluid are proposed and
studied. The schemes constructed have specific advantages compared to the other schemes: a scheme with high or-
der of accuracy (more than two); besides the solution itself one finds along which that its derivative (velocity) with
the same accuracy; at use of interpolation representation of the solution one can obtain, if needed, the solution and
its derivative for an arbitrary instant; since the schemes are two-layer ones, one can use variable step without loss
of accuracy; the scheme is conventionally stable and requires 4 times more arithmetical operations compared to
ordinary ones, though this scheme makes it possible to choose larger time steps to get given accuracy. Besides that,
evaluations of accuracy of the schemes for the problem under consideration are obtained. By means of dispersion
analysis comparison to known schemes is carried out.
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1. Problem Statement

Let us consider a problem (Gabov & Sveshnikov, 1990)

∂2

∂ t2 (L1u − β2u) + L2u = f (x, t), (x, t) ∈ QT = {x ∈ Ω, t ∈ (0,T ]},

u = 0, x ∈ Γ1;
∂u
∂n
= 0, x ∈ Γ2; t ∈ [0,T ], u(x, 0) = u0(x),

∂u
∂ t

(x, 0) = u1(x). (1)

Here L1u = ∆2u ≡ ∂2u
∂x2

1
+ ∂

2u
∂x2

2
, L2u = ω2

0∆1u ≡ ω2
0
∂2u
∂x2

1
; ω0 - Väisälä-Brunt frequency; Ω = {x = (x1, x2) : 0 < xα <

lα, α = 1, 2}, Γ1 ∪ Γ2 = Γ = ∂Ω; β - parameter that characterizes stratification of fluid.

Let us identify as generalized solution of the problem (1) the function u(x, t) that at each t ∈ (0, T ] belongs to space

H =
◦

W 1
2(Ω), has a derivative ∂

2u
∂t2 ∈ W1

2 (Ω) and almost everywhere for all the t ∈ (0,T ] obeys the relationships
∀ϑ(x) ∈ H :

a1(
d2u(t)

d t2 , ϑ) + a2(u(t), ϑ) = ( f (t), ϑ), u(0) = u0,
du
dt

(0) = u1, ∀ϑ(x) ∈ H. (2)

Here a1(u(t), ϑ) =
∫
Ω

(
∂u
∂x1

∂ϑ
∂x1
+ ∂u
∂x2

∂ϑ
∂x2
− β2uϑ

)
dx, a2(u(t), ϑ) = ω2

0

∫
Ω

∂u
∂x1

∂ϑ
∂x1

dx. Let us denote as |u|m =
√

am(u, u),

m = 1, 2, the energetic semi-norms in H that correspond to bilinear forms am(u, ϑ). The energetic space HA1 , gen-

erated by a semi-norm |u|1 , is equivalent to space H =
◦

W 1
2(Ω), so estimations c1 ∥u∥21 6 a1(u, u) 6 C1 ∥u∥21 and

0 6 a2(u, u) 6 C2 ∥u∥21 are valid. Here c1, C1, C2 - positive constants that depend on β, ω0.
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The existence, continuity, and uniqueness of the solution of this problem are discussed in (Gabov & Sveshnikov,
1990).

2. Discretization by Space and Time

Let us perform discretization of the problem by spatial variables by means of the finite element method. Let

Hh ⊂ H is a set of elements of the type ϑh =
N∑

i=1
aiφi(x). Here {φi = φi(x)}Ni=1 is a basis of piecewise-polynomial

functions that are polynomials of power k at each finite element (Quarteroni & Valli, 1994).

Let us bring into correspondence with (2) a semi-discrete problem for t ∈ [0,T ] :

a1

(
d2uh(t)

dt2 , ϑh

)
+ a2 (uh, ϑh) = ( f (t), ϑh) , uh(0) = u0,1,

duh

d t
(0) = u1,h, ∀ϑh ∈ Hh. (3)

To the problem (3) a Cauchy problem corresponds:

D
d2uh(t)

d t2 + Auh(t) = fh(t), uh(0) = u0,h,
duh

d t
(0) = u1,h. (4)

Operators D, A act from Hh to Hh. To those rigidity matrices D =
(
a1(φi, φ j)

)N

i, j=1
and A =

(
a2(φi, φ j)

)N

i, j=1
corre-

spond. Here u0,h = uI(0) - interpolant of initial value of the solution uI(0) = Phu0(x), and Ph - projection operator
Ph : H → Hh.

Let us approximate the problem (4) with a two-parameter difference scheme obtained by the finite element method
in time (Moskal’kov, 1980; Moskalkov & Utebaev, 2005):

(D − τ
2

12
A)

∧
ẏ−ẏ
τ
+ A

∧
y+y

2
= φ1, (D − ατ2A)

∧
y−y
τ
− (D − βτ2A)

∧
ẏ+ẏ

2
= φ2, (5)

y0 = u0, ẏ0 = u1. (6)

Here it is denoted: y = yn = y(tn),
∧
y = yn+1, ẏ = ẏn =

dy
dt (tn), n = 0, 1, ..., yn, ẏn ∈ Hh. Then, φk =

1∫
0

f (tn+τξ)ϑk(ξ)dξ,

k = 1, 2, ξ = (t− tn)/τ, ϑ1(ξ) = 1, ϑ2(ξ) = s1ϑ
(1)
2 (ξ)+ s2ϑ

(2)
2 (ξ), ϑ(1)

2 (ξ) = τ (ξ − 1/2), ϑ(2)
2 (ξ) = τ

(
ξ3 − 3ξ2/2 + ξ/2

)
,

s1 = 180β − 40α, s2 = 1680β − 280α.

The solution looks like a Hermite polynomial that interpolates yn, yn+1, ẏn, ẏn+1 at interval t ∈ (tn, tn+1) :

y(t) = ynφn
00(t) + ẏnφn

10(t) + yn+1φn
01(t) + ẏn+1φn

11(t), t ∈ (tn, tn+1), n = 0, 1, ..., (7)

where φn
00(t) = 2ξ3 − 3ξ2 + 1, φn

01(t) = 3ξ2 − 2ξ3, φn
10(t) = τ(ξ3 − 2ξ2 + ξ), φn

11(t) = τ(ξ3 − ξ2). For t ∈ [0,T ] - this
is a Hermite spline of 3-d power (Declu, 1976).

3. Theorems on Accuracy

Let us formulate the result on stability and accuracy of the scheme (5), (6) (Moskal’kov, 1980).

Theorem 1. If A∗ = A > 0, D∗ = D > 0 and

α − β = 1/12, D − δτ2A > εD, 0 < ε < 1, δ = max{α, β, 1/12, 0}, (8)

solution y(t) of the scheme (5), (6) converges to solution of the problem (4) uh(t) ∈ C6[0,T ] and evaluation

∥uh(t) − y(t)∥A + ∥u̇h(t) − ẏ(t)∥D 6 Mτ4

is valid.

The proof is based on bringing the two-layer vector scheme (5), (6) to a three-layer one, separately for the solution
y and its derivative ẏ. Condition (8) for values of parameters α = 1/8, β = 1/24, and thus δ = 1/8, leads to such a
restriction of step in time: τ 6 2

√
2/[ω0(1 − ε)] - condition of stability of the scheme.
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To evaluate accuracy of the scheme one has to estimate the error z = uh − u.With use of the method of such esti-
mation in the theory of difference schemes (Samarskii, 1977) and the theory of finite element method (Quarteroni
& Valli, 1994) we formulate the following result.

Theorem 2. Let conditions of the theorem 1 are satisfied. Then the solution for the scheme (5), (6) converges to a
smooth enough solution of the problem (1), and estimation

∥u(x, t) − y(x, t)∥1 + ∥u̇(x, t) − ẏ(x, t)∥1 6 M(h3 + τ4)

is valid. With application of a special technology for evaluation of accuracy by space and time, one can decrease re-
quirements for smoothness of the solution u(x, t). Following statement takes place (Moskalkov & Utebaev, 2011a).

Theorem 3. Let conditions of the theorem 1 are satisfied. Then for such a solution for the scheme (5), (6)
approximating the solution of the problem (1) that u(x, t), ∂u

∂t (x, t) ∈ C([0,T ]; Wk+1
2 (Ω) ∩

◦
W 1

2(Ω)), ∂
4u
∂t4 (x, t) ∈

C
{

[0,T ] ; W2
2 (Ω)

}
, following evaluation of accuracy is valid:

∥u(x, t) − y(x, t)∥1 6 M

hk

max
t

∥∥∥∥∥∂u∂t (x, t)
∥∥∥∥∥

k+1
+

√√√√√ t∫
0

∥u(x, t′)∥2k+1 dt′

+

+ τ3

√√√√√ t∫
0

∥∥∥∥∥∥∂4u
∂t4 (x, t′)

∥∥∥∥∥∥2

2
dt′

 ∀t ∈ [0,T ], M = M(T, β, ω2
0) > 0.

At choosing at each finite element, by space of polynomial, of degree not lower than the third one, we have the
third order of accuracy by both steps h, τ.

4. Analysis of Dispersion of Difference Schemes

The Equation (1) relates to equations with strong dispersion. Dispersion equation for solutions of harmonic type

u = exp[i(ωt + k1x1 + k2x2)], i2 = −1,

gives the following frequency value

ω = ±ω0k1/
√

k2
1 + k2

2 + β
2. (9)

Phase velocity depends on the components of the wave vector k⃗ = (k1, k2) :

v = ω/
√

k2
1 + k2

2 = ±ω0k1/

√(
k2

1 + k2
2

)2
+ β2

(
k2

1 + k2
2

)
and is evidence of decrease of phase velocity of harmonics with increase of k1, k2. For uneven solutions of the
equation, harmonics with higher values of components of the wave vector k⃗ = (k1, k2) make a substantial input to
solution of the problem (1). Let us consider how harmonics are transferred in numerical solution. To simplify the
study, let us consider a uniform test equation:

ü + ω2u = 0. (10)

Here frequency ω corresponds to (9). Accurate solution (10):

u(t) = a1 cosωt + a2 sinωt. (11)

Constant parameters a1, a2 from (11) are determined by initial conditions.

We look for the solution for difference Equations (5) (φ1 = φ2 = 0) that correspond to (9) in form y = yn =

Yqn, ẏ = ẏn = Ẏqn with amplitudes Y and Ẏ . At satisfaction of stability condition τ2 6 1/(mω2), m =
max {α, β, γ, 0} > 0 we have

y = yn = b1 cos
φ

τ
tn + b2 sin

φ

τ
tn,

where φ = 2 arcsin
[

z
2

√
(1 − βz2)/

(
(1 − αz2)(1 − γz2) + z2

4 (1 − βz2)
)]
. Here γ = 1/12, z = ωτ.
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Difference for the accurate and approximate solutions one can characterize by value δω = φ/τω - relative error of
frequency of oscillations ω̄ = φ/τ for the difference Equation (5). At δω closer to 1, more accurate approximate
solution is.

Let us expand δω in series by powers of z2 :

δω = 1 + r1z2 + r2z4 + O(z6),

r1 = (α + γ − β − 1/6) /2, r2 = (β − 6αγ + 1/40) /12 + (α + γ − β − 1/6) r̄2.

With minimization of |r1| and |r2| , one can improve quality of approximate solution. For all the schemes considered
further we require satisfaction of the condition r1 = 0. Hence

α + γ = β + 1/6.

At that δω = 1 + r2ω
4τ4 +O(ω6τ6), r2 = (β − 6αγ + 1/40) /12. In this case one can say of coincidence of velocity

of propagation of harmonics of differential equation and difference scheme with accuracy up to values of fourth
order by step τ. It is obvious that at that estimation of error of the solution of Equation (4) z = u(t) − y(t) = O(τ4)
takes place.

Examples of schemes with fourth order of accuracy are the schemes (5), (6) with parameters:

(1) γ = 1/12, α = 1/8, β = 1/24 and stability condition τ2 6 8/ω2;

(2) γ = 1/12, α = 1/10, β = 1/60 and stability condition τ2 6 10/ω2. Let us give one more example of a scheme
with sixth order of accuracy (r2 = 0) from this class;

(3) γ = 0.302705, α = 0.197295, β = 1/3. Stability condition τ2 6 3/ω2. Let us compare those to the known
Numerov’s scheme of the 4-th order of accuracy (Bakhvalov, Zhidkov, & Kobelkov, 1987). For the problem (4) it
looks like

(D + τ2A/12)yt̄t + Ay = φ. (12)

As applied to the Equation (10) this leads to

(1 + τ2ω2/12)(yn+1 − 2yn + yn−1)/τ2 + ω2y = 0.

For solution of type yn = qn we have a characteristic equation

q2 − 2(1 − µ/2)q + 1 = 0, µ = ω2τ2/(1 + ω2τ2/12). (13)

For µ 6 4 the roots (13) are: q1,2 = cosφ ± i sinφ, where cosφ = 1 − µ/2. Hence φ = 2 arcsin
√

z2

4 /(1 +
z2

12 ).

At expansion by powers z = τω, we have φ = z(1 + r̄2z4 + O(z6)), i.e.

δω = 1 + r̄2ω
4τ4 + O(ω6τ6), r̄2 = 7/1152 = 0.00608.

So, the Numerov’s scheme has for the test equation the same order of accuracy. Let us compare coefficients at
major term of the error - ω4τ4. For instance, for the scheme (5) at γ = 1/12, α = 1/8, β = 1/24, we have
r2 = (β− 6αγ + 1/40)/12 = 0.00035. So, the error for the Numerov’s scheme is r̄2/r2 ≈ 17 times higher compared
to that for the scheme (5), (6). Besides that, stability condition µ 6 4 leads to restriction for the step by time
τ2 6 6/ω2 that is more rigid compared to the schemes named above.

Even worse is accuracy of a common scheme with second order of accuracy (Samarskii, 1977)

Dyt̄t + Ay = φ. (14)

Since for it δω = 1 + r1z2 + O(z4), where r1 = 1/12 = 0.083333.

5. Conclusion

Thus, this paper presents a method of high accuracy solution of boundary value problem for the equation of internal
waves of a stratified fluid. The estimates of precision of the method with sufficient smoothness of the solution of the
differential problem. On the basis of analysis of variance shows the benefits of the scheme (5), (6) over the known
schemes, in particular, the Numerov scheme (12) and second-order accuracy scheme (14). Using the interpolation
representation of the solution (6), if necessary, to obtain a solution and its derivative at any point in time. Numerical
implementation of the scheme (5), (6) given in (Moskalkov & Utebaev, 2011b).
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