Computer and Information Science

The Application of AHP in Electric Resource Evaluation

Chunlan Qiu & Yonglin Xiao Library of Jiangxi Science and Technology University Ganzhou 341000, China E-mail:jxust@163.com

Abstract

This article utilizes the analytic hierarchy process (AHP) method to study and establish the hierarchy model and its evaluation system for the electric resource evaluation.

Keywords: AHP, Electric resource, Evaluation system

1. Introduction

In recent years, with the continual increase of electric resource, the purchasing of electric resource has becoming the important part of the construction of library literature resource. The outlay used in electric resource in many libraries has exceeded 25%, so whether for purchasing new electric resource or continuing order and maintaining present electric resource, a new problem occurs, i.e. how to select and evaluate the electric resource, and how to enhance benefits and make the construction of electric resource more reasonable and scientific through the evaluation of electric resource?

However, present scholars' researches only focused on the evaluation of internet information resource or single database, and there are few researches to study the integrated evaluation to the collection of electric resource, and the evaluation and system are not perfect, the present evaluation methods include qualitative method and quantitative method. In this article, we will adopt the AHP method which combines qualitative analysis with quantitative analysis, and try to establish the electric resource evaluation system that can be applied in the pre-evaluation before purchasing and the after-evaluation in the purchasing.

The AHP method (Cai, 2005, p.58-63) was put forward by US famous operational research expert T. L Saaty in 1970s, which tried to simulate three human basic characters (i.e. decomposing, estimation and integration) to deal with complex problems through analytic hierarchy, quantitative analysis and standardization, and added statistical test in the whole process. It adapts to solve those decision problems that have complex structure and many decision rules and are difficult to be quantified.

The basic approach of AHP method include following steps. (1) Establish the concept of the complex problem and find out main factors involved in the study objective. (2) Analyze the association and subjection relationships among factors and establish orderly ladder hierarchy model. (3) Compare both relative essentialities of various factors on the same layer to the certain rule on the upper layer, and establish the evaluation matrix. (4) Compute the relative weight of the compared factor to the rule on the upper layer according to the evaluation matrix and implement the coherence test. (5) Compute the integrated weight of various layers to the total objective of the system and implement total compositor of the layers.

2. Establishment of electric resource evaluation system

2.1 Establishing hierarchy model

Base on many evaluation indexes of electric resource, we build a ladder hierarchy model (Xiang, 2004, p.26-29 & Wang, 2005, p.67-70 & Xiao, 2002, p.35-42) (seen in Figure 1, the 3rd index are not be concretely explained, which are seen in Table 4).

2.2 Constructing comparison evaluation matrix

We adopt the 1-9 standard degree method (seen in Table 1) to evaluate the relative essentialities of the indexes, and evaluate the proportion degree of the relative essentiality through both comparison among them.

For example, for electric resource, we think the content of database is comparatively more important than the searches system and function and endows it 3 points, and it is more important than the uses and endows it 4 points, and it is little more important than the cost accounting and endows it 2 points, and it is more important than the manufacturer than manufacturer service and endows it 4 points, and in this way, we can establish A-B evaluation matrix (seen in Table 2).

Analogously, we can establish evaluation matrixes B1-C, B2-D, B3-E, B4-F, B5-G, C1-P, C2-P, C3-P, C4-P, C5-P, C6-P, C7-P,

D₁-P, D₂-P, D₃-P, D₄-P, E₁-P, E₂-P, E₃-P, E₄-P, F₁-P, F₂-P, F₃-P, F₄-P, F₅-P, G₁-P, G₂-P, G₃-P, G₄-P, G₅-P.

2.3 Computing the weights W_I of various indexes

The information base of AHP is the evaluation matrix, and it utilizes the compositor principle to obtain the matrix compositor vector and compute the weight coefficients of various indexes. The computation approach (Li, 2004, p.75-78) includes following steps.

(1) Compute the product M_i of factors on every raw of the evaluation matrix B: $M_i = \prod_{j=1}^n b_j$, j=1, 2... n.

(2) Compute the root of n of M_i on every raw: $w_i = \sqrt[n]{M_i}$, i=1, 2... n, and n is the order number of the matrix in the equation.

(3) Implement normalized processing to $(w_1, w_2 \dots w_n)^T$, and make $W_I = \frac{w_i}{\sum_{i=1}^n w_i}$, so $W_I = [W1, W2, \dots Wn]^T$ are the $\sum_{i=1}^n w_i$

eigenvectors, i.e. the weighted coefficients of various indexes.

The concrete evaluations of various layer index weights are seen in Table 4.

2.4 Implementing coherence testing to various evaluation matrix

Because of the complexity of things and human difference of objective evaluation, every evaluation can not achieve completely identical, and to ensure the rationality of the conclusion of AHP method, we need to implement coherence test to various evaluation matrix, so we introduce the negative square values of other latent roots except for the maximum latent root of the evaluation matrix in AHP method and take them as the deviation coherence index of the matrix departures, i.e. use $CI = \frac{\lambda \max - n}{n-1}$ to test the coherence of the evaluation thinking. The maximum latent root

$$\lambda_{\max} = \sum_{i=1}^{n} \frac{(AW)_i}{nW_i} \, .$$

To test whether different evaluation matrixes have satisfactory coherence, we must introduce the average random coherence index RI value of the evaluation matrix, and RI values of 1-9 order evaluation matrixes can be seen in Table 3.

To the 1st and 2nd evaluation matrixes, they always have satisfactory coherence, but the order number exceeds 2, the ratio of the coherence index CI with the some order random coherence index RI is called the random coherence ratio CR, and when $CR = \frac{CI}{RI} < 0.10$, we think this evaluation matrix has satisfactory coherence, i.e. the thinking on various

layers is coherent, the conclusion obtained by the AHP is coherent, or else, the evaluation matrix should be adjusted to make it possess satisfactory coherence.

The maximum latent roots of the evaluation matrixes are obtained by the computer program, and according to them we can obtain the coherence index CI and random coherence ratio CR, and then we implement the coherence test, and the results are complete coherence or satisfactory coherence.

2.5 Integrated weight

Though above approach, we can only obtain the weighted vectors of a group of factor to the certain factor on its upper layer. To obtain the relative weights of various factors to the total objective, especially to obtain the compositor weights of various indexes on the lowest layer to the objective, i.e. "integrated weights", we need superincumbent computation and integrate weights under the single rule, and obtain the relative weight of every evaluation objective in the layer objective to the total objective and implement total evaluation coherence test layer by layer. Relative to the total objective, the integrated weights of various indexes can be denoted as $W=a_ia_{ij}a_{ijk}$, where a_i , a_{ij} and a_{ijk} respectively are 1st, 2nd and 3rd class index weight. Then we implement total compositor to the relative weights.

So we can obtain a clear evaluation index system of electric resource (seen in Table 4).

Though confirming the evaluation grading (seen Table 5), we can evaluate various indexes of the electric resource evaluation system, and the method is to use the weighted adding method, multiply the evaluation value of every evaluation index with the corresponding weight of this index, obtain the weighted evaluation value of the index, add these weighted evaluation values and obtain the total evaluation valves of the evaluation objective. The formula is $S=\sum W_i P_i$ (here, W_i is the integrated weight of the i'th index, P_i is the evaluation value of evaluated object on the i'th index, and i is the sequence number of the concrete index on the lowest layer in the evaluation model).

If the quantity of electric resources participated in the evaluation has Ql, Q2, Q3...Qn, we should adopt the AHP method. We respective establish evaluation matrixes aiming at 63 evaluation indexes, and obtain the compositor vectors

of 63 evaluation matrixes. Multiply every compositor vector with weighted coefficient of corresponding index and add them, we can obtain the total compositor vector of Ql, Q2, Q3...Qn, and its result is also the compositor of the electric resources Ql, Q2, Q3...Qn.

3. Conclusions

The character of AHP is to combine qualitative analysis with quantitative analysis, which has high validity, reliability, conciseness and extensive applicability. But AHP still has limits, and its result only aims at the evaluation index in the rule layer, so the confirmation of evaluation index largely influences the system evaluation, in addition, human subjective evaluation has certain influence to the evaluation results of the system, so this method usually is combined with Delphi method to confirm the values of various indexes.

The evaluation of electric resources by AHP compensates human limit of subjective blur ability, which quantifies decision-makers' experiences and judgments, compares relative factors layer by layer, tests the rationality of comparison result layer by layer, avoids the subjective random of simple evaluation to make the result more exact and make the evaluation decision possess more objectivities and persuasions.

References

Cai, Haipeng & Yang, Kunyu. (2005). Determining the Evaluation Criterion Weight of Digital Campus Based on AHP. *Journal of Changsha Aeronautical Vocational and Technical College*. No. 5(2). p. 58-63.

Li, Chaokui & Tao, Weiguo. (2004). The Application of Analysis Hierarchy Process on the Evaluation of the Navigation System for Network Information Resources. *Journal of the Library Science of Sichuan*. No. 3. p. 75-78.

Wang, Hongfei. (2005). The Purchasing and Evaluation on Electronic Analysis Resources. *Researches in Library Science*. No. 4. p. 67-70.

Xiang, Yingming, Tan, Yiman & Linhuan. (2004). Research on Evaluation Method and Mathematical Model for Electronic Resources. *Library Journal*. No. 1. p. 26-29.

Xiaolong & Zhang, Yuhong. (2002). On the Development of the Electronic Resources Evaluation System. *Journal of Academic Libraries*. No. 3. p. 35-42.

Comparison between index A and index B	Extremely important	Very important	Important	Little important	equal	Little unequal	unimportant	Very unimportant	Extremely unimportant
Evaluation value of index A	9	7	5	3	1	1/3	1/5	1/7	1/9
Remark	Taking 8, 6,	Taking 8, 6, 2, 1/2, 1/4, 1/6, 1/8 as the middle values of above evaluations							

Table 1. 1-9 standard degree method

Table 2. Evaluation matrix

А	B_1	B ₂	B ₃	B_4	B ₅
B_1	1	3	4	2	4
B ₂	1/3	1	3	2	3
B ₃	1/4	1/3	1	1/3	1
B_4	1/2	1/2	3	1	3
B ₅	1/4	1/3	1	1/3	1

Table 3. RI values of evaluation matrix

Order number	1	2	3	4	5	6	7	8	9
RI	0.00	0.00	0.58	0.90	1.12	1.24	1.32	1.41	1.45

Table 4.	Evaluation	index	system	table	of elec	tric resource
14010 1.	Dialation	maon	5,500111	<i>iuoi</i>	01 0100	

A electric	1st index (a _i)	2nd index (a _{ij})	3rd index (a _{ijk})	Integrated weight W
resource			Knowledge range P_1 (0.33)	0.0460
		Embodied content	Magazine sorts $P_2(0.17)$	0.0236
		C ₁ (0.34)	Article periodical proportion $P_3(0.17)$	0.0236
			Nuclear periodical proportion $P_4(0.33)$	0.0460
		Fixed number of year of data C_2 (0.09)	Database time limit P_5 (1.00)	0.0369
		Data turna C	Article database P_6 (0.50)	0.0472
		Data type C_3 (0.23)	Tabloid database P_7 (0.25)	0.0236
	Contents of database	(0.23)	Reality database P_8 (0.25)	0.0236
	B_1	Data repetition ratio	$\geq 30\% P_9(0.10)$	0.0020
	(0.41)	C_4	10%~30% P ₁₀ (0.25)	0.0051
		(0.05)	$\leq 10\% P_{11} (0.65)$	0.0133
		Data undata/lac C	Daily update P_{12} (0.65)	0.0400
		Data update/lag C ₅ (0.15)	Weekly update P_{13} (0.25)	0.0154
		(0.13)	Monthly update P_{14} (0.10)	0.0062
		Data source C ₆	Data credibility P_{15} (0.50)	0.0184
		(0.09)	Information provider's reputation P_{16} (0.50)	0.0184
		Information	Classifying according to topic and subject P_{17} (0.40)	0.0082
		resource organization C ₇ (0.05)	Rationality of classification P_{18} (0.40)	0.0082
		(0.05)	Frame structure P_{19} (0.20)	0.0041
		Searches function	Browse searches P_{20} (0.10)	0.0084
		D_1	Simple searches P_{21} (0.16)	0.0134
		(0.35)	Second time searches P_{22} (0.28)	0.0235
		(0.55)	Checkable field P_{23} (0.46)	0.0386
			Boolean searches P_{24} (0.20)	0.0168
		Searches technology	Truncate searches P_{25} (0.20)	0.0168
		D ₂	Quotation searches P_{26} (0.20)	0.0168
		(0.35)	Clustering searches P_{27} (0.20)	0.0168
		(0.55)	Position logic P_{28} (0.10)	0.0084
			Weight searches $P_{29}(0.10)$	0.0084
	Searches system and		Completely exact P_{30} (0.43)	0.0196
	functions B ₂	Searches results D ₃	Output format P_{31} (0.27)	0.0123
	(0.24)	(0.19)	Hyperlink P_{32} (0.10)	0.0046
		(0.17)	Compositor mode P ₃₃ (0.10)	0.0046
			Marker $P_{34}(0.10)$	0.0046
			Help document P_{35} (0.37)	0.0100
			User training $P_{36}(0.24)$	0.0063
			Word and table tool P_{37} (0.15)	0.0040
		User service D_4 (0.11)	Adjustment of searches interface P_{38} (0.08)	0.0021
			Searches history record $P_{39}(0.08)$	0.0021
			Literature transfer service P_{40} (0.08)	0.0021
	Uses B ₃ (0.08)	Entry time E_1 (0.12)	Database opened time P_{41} (1.00)	0.0096

		Searches time E_2 (0.23)	Searches mode used time P_{42} (1.00)	0.0184
		Download tabloid/entire article E_3 (0.23)	Article number downloaded to the client computer P_{43} (1.00)	0.0184
		User evaluation E ₄	Easily using character P_{44} (0.33)	0.0111
		(0.42)	Practicability P_{45} (0.67)	0.0225
		Data base price F ₁ (0.48)	Unit price of database P_{46} (1.00)	0.0912
		Searches cost F_2 (0.12)	Cost of database searches $P_4(1.00)$	0.0228
	ost accounting B_4	Entry cost F_3 (0.12)	Cost of database entry P_{48} (1.00)	0.0228
	(0.19)	Investment of hardware and software F_4 (0.21)	Cost to purchasing equipment and software P_{49} (1.00)	0.0399
		System maintenance F_5 (0.07)	Professional maintenance P ₅₀ (1.00)	0.0133
		Data transfer mode	International network P_{51} (0.16)	0.0040
		G_1	Special line mode $P_{52}(0.30)$	0.0074
		(0.31)	Local mode P_{53} (0.54)	0.0134
		Probation time G ₂	Below 6 months $P_{54}(0.54)$	0.0043
		(0.10)	3~6 months P ₅₅ (0.30)	0.0024
		(0.10)	Below 3 months $P_{56}(0.16)$	0.0013
Mai	nufacturer services	Visiting mode G ₃	Password entry P_{57} (0.40)	0.0058
	B ₅	(0.18)	IP limit P ₅₈ (0.40)	0.0058
	(0.08)	(0.10)	Concurrent user P_{59} (0.20)	0.0029
		Technology support	User service P_{60} (0.67)	0.0166
		G ₄ (0.31)	Visiting purview $P_{61}(0.33)$	0.0081
		Relative document	MARC record provision $P_{62}(0.67)$	0.0054
		G ₅ (0.10)	ISSN, web address information provision P_{63} (0.33)	0.0026

Notice: The numbers in the bracket are the weights relative to superior indexes.

Table 5. Evaluation grading	Table	5.	Eval	luation	grading
-----------------------------	-------	----	------	---------	---------

Grading	good	comparatively good	general	comparatively bad	bad
Value interval	10-8	8-6	6-4	4-2	2-0

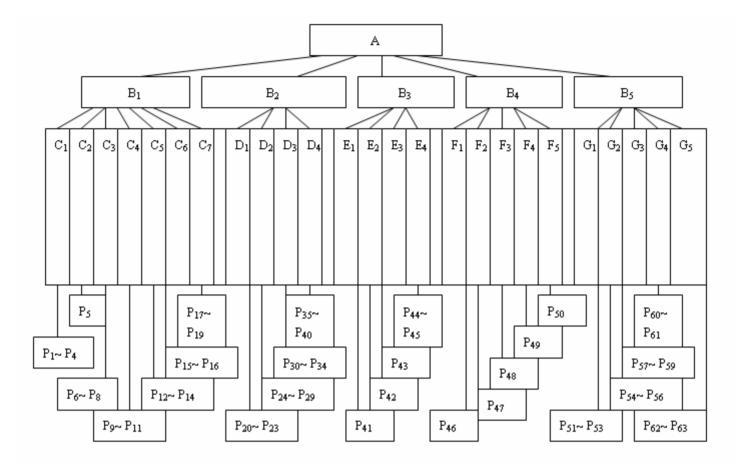


Figure 1. Ladder Hierarchy Model

Notice: A- the evaluation of electric resource, B₁- the contents of database, B₂- searches system and function, B₃- uses, B₄- cost accounting, B₅- manufacturer service, C₁- embodied content, C₂- fixed number of year of data, C₃- data type, C₄- data repetition ratio, C₅- data update/lag, C₆- data source, C₇- information resource organization, D₁- searches function, D₂- searches technology, D₃- searches results, D₄- user service, E₁- entry time, E₂- searches time, E₃- download tabloid/entire article, E₄- user evaluation, F₁- data base price, F₂- searches cost, F₃- entry cost, F₄- investment of hardware and software, F₅- system maintenance, G₁- data transfer mode, G₂- probation time, G₃- visiting mode, G₄- technology support, G₅- relative document.