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Abstract  
Accurate power estimation has an important role for power control and handoff decisions in mobile communications. 
Window based weighed sample average power estimators are commonly used due to their simplicity. In practice, the 
performances of these estimators degrade severely when the estimators are used in the presence of correlated samples. In 
this paper performances of the three local mean power estimators namely, sample average, optimum unbiased and 
maximum likelihood estimators, are analysed in the presence of correlated samples. The variance of the estimators is used 
as performance measures. Finally, the simulation results show that the performances of the optimum unbiased and 
maximum likelihood estimators are very good as compared to the performance of the sample average estimator. 
Keywords: Power estimation, Local mean power, Rayleigh fading, Mobile communications 
1. Introduction  
In mobile communication systems, local mean power estimation is very important and it must be an accurate estimate of 
the received signal power. Some system function like channel access, handoff, and power control use local mean signal 
level to indicate the wireless communication link quality. 
Mockford, Turkmani and Parsons (1990) analysed local mean signal variability in rural areas. The local mean of the 
signal envelope was described by a lognormal distribution. The power spectral density of the local mean signal was 
estimated along rural routes. Goldsmith, Greenstein and Foschini (1994) studied the error statistics of real time power 
measurements in cellular channels with multipath and shadowing. The authors considered two measurement methods 
(filtering the squared envelop, and filtering the logarithm of the squared envelop) and two filter types (integrate-and-dump 
and RC). Accurate measurements were obtained by filtering either the logarithm of the detected power or the power itself. 
Valenzuela, Landon and Jacobs (1997) explored techniques for the measurement of local mean signal strength at 900 
MHz and 2 GHz. Linear averaging technique was used to estimate the local mean and ray tracing propagation model was 
used to evaluate different methods of calculating the local mean signal strength for indoor environment. Manohar Das and 
Cooprider (1997) introduced new techniques for detection of changes in the local mean of a signal. The first one utilized 
a discrete cosine transform (DCT) based data compression principle, and the second one was based on a robust piecewise 
linear approximation (PLA) of the given signal. The results of experimental studies were compared with the performance 
of the two methods with the existing filtered derivative method. Wong and Cox (1999) derived the optimal local mean 
signal level estimator for the Rayleigh fading environment and compared with the sample average estimator. Variance of 
the two estimators were estimated and compared with the Cramer-Rao Lower bound. The 5th and 95th percentiles of the 
estimators were obtained by computer simulation. Antilog Rayleigh (ALR) distribution was used to estimate the signal 
variation in a Rayleigh fading environment. 
Young-Chai Ko and Mohamed-Slim Alouini (2001) presented two local mean power estimation techniques over 
Nakagami fading channels. Chai Ko and Mohamed-Slim Alouini presented maximum likelihood as well as minimum 
variance unbiased estimators for the local mean signal power estimation. De Jong and Herben (2001) presented new 
method for the computation of local mean power from individual multipath signals predicted by two-dimensional ray 
tracing based on an expression for the spatial average of the received power, which takes into account the spatial 
correlation between signals. The presented method is based on the spatial average of the received power over each pixel 
area. Avidor and Mukerjee (2001) investigated the possibility of obtaining better estimates or prediction of the path loss 
between a mobile and the surrounding base station by processing more measurements, including older measurements of 
received power that are not used by current deployed algorithm. The current or near future value of the local mean 
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received power including the shadow loss was estimated by using the algorithm. Tepedelenlioglu, Sidiropoulos and 
Giannakis (2001) derived the maximum likelihood and median filtering for power estimation in mobile communication 
system. Linear filtering techniques for power estimation was compared with the maximum likelihood (ML) estimator and 
the median filtering techniques for power estimation was compared with the linear filtering, maximum likelihood (ML) 
estimator and uniformly minimum variance unbiased (UMUV) estimator. Jiang, Sidiropoulos and Giannakis (2003) 
proposed a scalar Kalman-Filter-based approach for improved local mean power estimation. The performance of the 
Kalman filter (KF) was compared with the window based estimators, like the sample average estimator of (Goldsmith, 
Greenstein & Foschini, 1994) the uniformly minimum variance unbiased (UMVU) estimator of (Wong & Cox, 1999) and 
the maximum likelihood (ML) estimator of (Tepedelenlioglu, Sidiropoulos and Giannakis, 2001).  
In this paper, the performances of the sample average estimator, the optimum unbiased estimator and maximum 
likelihood estimator are studied with the use of uncorrelated and correlated samples (Rayleigh fading signal). For 
correlated samples, the variances of the three estimators are obtained while varying the correlation between the samples.  
The first part of this paper introduces the system model for the local mean power estimation using uncorrelated and 
correlated samples. Following that, the three estimators details are included. The performances of the three local mean 
power estimators and conclusion  are included in the subsequent sections. 
2. System Model  
2.1 Uncorrelated Fading Samples 
The model for the uncorrelated fading samples at the log amplifier output of the receiver is shown in Fig .1. The 
uncorrelated samples can be expressed as  
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The output of the amplifier is expressed as   
Ylog20X =        (2) 

X has a probability density function called the Antilog Rayleigh (ALR). The ALR probability density function is given by  
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where 2/)Y(Ep 2= is the power of each phase component. 

2.2 Correlated Fading Samples 
Fig.2 shows the simulator model for correlated samples (Rayleigh fading signal). A block of Nf = 1024 uncorrelated 
samples are generated and the maximum Doppler frequency shift fm=50 Hz is specified to produce proper Doppler shift. 
The (Smith, 1975) steps are used to generate series of simulated Rayleigh fading signal with proper Doppler spread and 
correlation between the samples. The correlated output samples are fed  into the lograthemic amplifier. The output of the 
amplifier can be expressed as in   eq.2. 
3. Local Mean Power Estimators 
In this section, the conventional local mean power estimators for the Rayleigh fading channel are briefly reviewed. 
3.1 Sample Average Estimator 
Due to the rapid changing characteristics of the Rayleigh fading process, an estimate of local mean power is obtained by 
averaging the samples X. The average of the received samples as follows, 

   ∑
=

=
N

1j
jSA X

N
1E        (4) 

where N is the window size, Xj is the received power measurement.  
3.2 Optimum Unbiased Estimator 
The optimum unbiased estimator was derived in (Wong , 1999) as follows. 
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for N= 1,2,3,… HN is known as the Nth harmonic number. 
3.3. Maximum Likelihood Estimator 
In (Tepedelenlioglu, 2001), the maximum likelihood estimator for local mean power estimation was derived as follows. 
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4. Simulation Results and Comparisons 
In this section, the performances of the three estimators, sample average estimator, optimum unbiased estimator and 
maximum likelihood estimator are compared. Simulations are carried out in uncorreleated and correlated samples 
environment. The channel parameters are  obtained by the multipath fading generator as in Fig. 1 and 2.  
4.1 Effect of Number of Samples, N 
Fig.3 and 4 show the performance of the three estimators for uncorrelated and correlated samples. All the three 
estimators’ variance gradually decreases for increasing number of samples. The variance obtained with optimum 
unbiased estimator and maximum likelihood estimators are consistently lower than that obtained with sample average 
estimator. From Fig. 3, the sample average estimator requires 50 samples to achieve 0.65 dB2 variance, but optimum 
unbiased and maximum likelihood estimators need 30 samples to achieve the 0.65 dB2 variance for uncorrelated samples. 
Fig.4 shows the variance of the three estimators for correlated samples. From the Fig.4, the sample average estimator 
requires 200 samples to achieve 0.65 dB2 variance but the optimum unbiased and maximum likelihood estimators require 
only 100 samples to achieve the same performance. Optimum unbiased and maximum likelihood estimators consistently 
perform better than the sample average estimator over the entire range of number of samples tested for correlated samples. 
Fig.5 and 6 compare the performance of the 5th and 95th percentiles of the three estimator output for uncorrelated and 
correlated samples.In Fig.5, 50 samples are needed for the difference between the two percentile lines to be 2 dB for 
optimum unbiased and maximum likelihood estimators. About 85 samples are needed for sample average estimator to 
obtain the 2 dB differences between the two percentile lines. In Fig.6 approximately 150 samples are required to achieve 
the 2 dB differences between the two percentile lines for optimum unbiased and maximum likelihood estimators. About 
400 samples are required to achieve the similar performance with the sample average estimator for correlated samples.  
4.2 Effect of Doppler Frequency, fm 

Fig.7 and 8 show the relation between the variance of the estimators with normalised Doppler frequency. Doppler 
frequency of the Rayleigh fading signal is varied from 15 Hz to 300 Hz. M=2 sample distances is used in the simulation. 
Sample average estimator has 17.6 dB2 variance at low normalised frequency (0.01). The performance of the sample 
average estimator is improved at high Doppler frequency. The variance of the optimum unbiased and maximum 
likelihood estimators is 13 dB2 at low normalised frequency (0.01). The optimum unbiased and maximum likelihood 
estimators have better performance as compared to the sample average estimator for the tested range of Doppler 
frequency. 
In Fig.8, the variance of the three estimators is compared over various normalized Doppler frequencies. Sample distance 
used in the simulation is M=20 and the Doppler frequency is varied from 15 Hz to 300 Hz. Variance of the sample average 
estimator is 3.2 dB2 at 0.01 normalized Doppler frequency. Sample average estimator achieves the same performance at 
0.08 normalized Doppler frequency for 2 sample distance. Optimum unbiased and maximum likelihood estimators 
require 20 sample distance to obtain 2.4 dB2 variance for 0.01 normalized Doppler frequency.  Both estimators achieve 
the similar performance for 2 sample distance at 0.09 normalized Doppler frequency. The optimum unbiased and 
maximum likelihood estimators have very low variance as compared to the sample average estimator for 20 sample 
distance. The variance of the estimators is very high at low Doppler frequency and decreases at high Doppler frequency. 
4.3 Effect of Correlation Between Samples 
Fig.9 shows the relation between the variance of the estimators with the autocorrelation between the samples. 2 sample 
distances is used in the simulation. Optimum unbiased and maximum likelihood estimators have very low variance as 
compared to sample average estimators. The variance of all the estimators is very high at 0.9 to 1 auto-covariance. The 
variances of the estimators reduce for decreasing value of the autocorrelation between the samples. 
In Fig.10, the performance of the three estimators is compared with the autocorrelation between the samples. 20 sample 
distance is used in the simulation and the Doppler frequency is varied from 15 Hz to 300 Hz. The variance of the 
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estimators is reduced by six times at 0.9 to 1 autocorrelation of the samples as compared to 2 sample distance simulation. 
Optimum unbiased and maximum likelihood estimators have very low variance as compared to the sample average 
estimators for the tested range of the autocorrelation of the samples. Performance of the estimators improves for 
increasing value of the sample distance used in the simulation. The variances of the three estimators reduce for increasing 
value of the sample distance. 
5. Conclusions 
In this paper, the performance of the local mean power estimators is analysed for uncorrelated and correlated samples 
(Rayleigh fading channel). The comparisons are made between the sample average estimator with optimum unbiased and 
maximum likelihood estimators. Optimum unbiased and maximum likelihood estimator requires much less samples to 
achieve the desired result as compared to the sample average estimator using uncorrelated samples. All the three 
estimators require more test samples to achieve the desired result using correlated samples as compared to the 
performance of the estimators using uncorrelated samples. The performances of the three estimators improve for the 
increased number of tested samples.  
Finally, for the correlated samples, the required sample distance is investigated to achieve a similar performance of the 
uncorrelated samples. Large numbers of samples distances are required for the correlated samples to achieve similar 
performance of the uncorrelated samples. It is also noted that the higher the normalized Doppler frequency, the better is 
the estimator performance. Similarly, the higher the correlation between two samples, the poorer is the estimator 
performance. 
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Figure 1. Simulator of uncorrelated fading samples. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Simulator of correlated fading samples. 
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