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Abstract 
The model identification of the nonlinear system has been concerned by the industrial community all along. The 
relationship of the nonlinear dynamic system is contained in the data accumulated in the scene. To better utilize the data 
about the industrial objects, in this article, we put forward the nonlinear system predictor driven by the 
Bayesian-Gaussian neural network (NN) model, use the trained threshold matrix and sliding window data to realize the 
online output prediction for the nonlinear dynamic system. The simulation experiment indicates that the 
Bayesian-Gaussian NN based on the sliding window data can fulfill the demands of the online identification and 
prediction of the adaptive nonlinear system. 
Keywords: Sliding window data, Bayesian-Gaussian neural network, Predictor, Nonlinear 
1. Introduction 
Most industrial control objects are nonlinear objects with time-varying, time-lag and saturation, so the input and output 
relationship model of the controlled system can not be exactly established. And general classic control method is 
designed based on the exact model of the system, so the model is difficult to be established and many antinomies exist 
in many control designs. On the other hand, in the dynamic running process, much input and output data will be 
produced, and these data are exterior representations of the nonlinear structure characteristics of the system, and these 
data can help us to establish the structure model of the system. 
The confirmation of the input and output nonlinear structure model of the nonlinear dynamic system is the identification 
problem essentially, and it is composed by the identification model with proper parameters and the performance 
function which adjusts the parameters through optimizing the errors between the unknown system identification and the 
model output (Zhang, 2000, P.566-568). The NN model is a sort of effective function approximation tool, and it has 
been applied in the nonlinear system identification (Li, 2001, P.499-502, Zeng, 2009, P.2293-2300, Yan, 2007, 
P.232-236). In theory, any three-layer forward NN can approximate any nonlinear function, but the disadvantage of the 
NN is that the confirmation of the hidden layer mainly depends on the experiments and experiences, and if the network 
weight parameters are too much, the adjustment process of the weights will get in the local minimum. Otherwise, when 
the structure character of the nonlinear dynamic system changes, the trained NN model always can not fit the nonlinear 
system after structure change, so the NN must be retrained, and the pure forward NN doesn’t adapt the time-varying 
identification and prediction of the dynamic system. 
However, in the response process of the nonlinear dynamic system, large numbers of input and output data have 
described the structure characters of the nonlinear dynamic system from the exterior. As viewed from the probability 
theory, the structure character of the dynamic system should be included in the relationship of these data. Based on 
Bayesian inference and Gaussian hypothesis, in this article, we put forward a sort of Bayesian-Gaussian NN reasoning 
model based on sliding window data which can integrate sliding window data into the structure of the reasoning model. 
Only through confirming same threshold matrix parameters with the nonlinear system, we can use the historical data in 
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the sliding window to realize the output prediction of the present system, and when the structure of the system changes, 
we can realize the online follow identification output of the system. 
2. Description of nonlinear dynamic system 
In the nonlinear dynamic system of the discrete time seen in Figure 1, suppose the system is stable, and the input and 
output nonlinear relationship of the system is 

))(,),1(),();(,),2(),1(()( mkukukunkykykyfky −−−−−= LL                                            (1) 
Where, )(ky  denotes the output of the k’th step of the system, )( iky − (i=1, 2… n) denotes the system output of the 
former n steps, )(ku  denotes the input of the k’th step of the system, )( iku − (i=1, 2… m) denotes the system control 
inputs of the former m steps, f denotes the dynamic relationship between input and output of the dynamic system, and 
the nonlinear function relationship can be approximated by the identification method, and the target of the article is to 
use the Bayesian-Gaussian NN model based on sliding data window to approximate the structure of the nonlinear 
function f and the online identification and prediction of the dynamic system. 
3. Bayesian-Gaussian NN based on sliding window data 
Suppose the input vector of the nonlinear system identification model can be denotes as 

Τ−−−−−= )](,),1(),(),(ˆ),2(ˆ),1(ˆ[ mkukukunkykykyX k LL                                              (2) 

kX  denotes the input of the system at the k’th sampling, and it is the column vector with n+m+1 lines. The output 
)(ˆ kyYk =  is real number, and the input and output relationship of the system can denoted as 

)( kk XfY =                                                                                     (3) 
Based on historical input and output data, utilizing Bayesian inference and Gaussian hypothesis, the Bayesian-Gaussian 
model can realize the prediction )(ˆ ky  of the system output )(ky , and the superscript “Λ ” denotes the identification 
output of the model. 
3.1 Deducing of Bayesian-Gaussian reasoning model 
Suppose ),(X ii y  (i=1, 2… N) is the sample set of the training, iX  is the sampling input of the i’th step, and it denotes 
the column vector of the m’th line, Xi=( Xi1, Xi2,……,Xim)T. iy  denotes the output of the system, and based on Bayesian 
inference and Gaussian hypothesis, the output y can be generated by the method of probability under the new input X. 
3.1.1 When the single historical data (Xi, yi) is known, what is the probability that X exports Y? 
Under Gaussian hypothesis, Y possesses the probability density function p(Y) and fulfills the Gaussian normal 
distribution Y~N ( 2

00 ,σy ), where 0y  is the mean value and 2
0σ  is the variance. Suppose Y is appointed, Yi fulfils the 

normal distribution Yi~N( 2, iY σ ) and possesses the probability density function p(yi|Y=y). 
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And the Bayesian theorem is 
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Substitute above (4) and (5) into (6), and simplify it and we can obtain 
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Where, 1c  is the normalization parameter, and the mean parameter 
iy ,0
 and the variance parameter 2

,0 iσ  can be 

expressed as 
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3.1.2 When the historical data sample (Xi, yi) ( Ni ,,2,1 L= ) is known, what is the probability that X exports Y? 

Suppose the prior probability of yi to Y is )|( iyYp , iy  and 
jy ( jiNji ≠= ,,,2,1, L ) are independent each other 

under the appointed condition Y, so the conditional probability that N data samples generate the output Y for the new 
input X is 
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K is the normalization constant independent with Y and Ye Haiwen’s ariticle (Haiwen Ye, 1999, P.21-36) gives the proof 
process in detail. 

3.1.3 Bayesian-Gaussian reasoning model 

Substitute (7) into (10), we can obtain 
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2c  is a normalization constant independent of Y, because the distribution of the prior probability approximate as the 

constant, so the prior variance 2
0σ  is big, and (8) and (9) can be respectively approximated as 22

,0
−− = ii σσ  and 

ii yy =,0
. 

Under the Gaussian hypothesis, (11) can be simplified as 
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In the above formula, 4c is the normalization constant independent of Y, and the estimated mean )(' Ny  and the 
variance )(Nσ  are respectively expressed as 
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Suppose the variance fulfills (15) 
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In (15), D is called as the threshold matrix. 
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Therefore, the formulas (13), (14) and (15) composes the Bayesian-Gaussian reasoning model, and the parameters of 
the whole model mainly include the threshold matrix D and the initial estimation variance 2

0σ , and the dimension of the 
threshold matrix is equal to the input amount of the nonlinear dynamic system, so the parameters which need to be 
confirmed from the network are few, and the operation time of the reasoning model can be largely saved. 
3.2 Bayesian-Gaussian NN 
Based on above Bayesian-Gaussian reasoning model, we can obtain the Bayesian-Gaussian NN seen in Figure 2, and it 
adopts the nerve cell nodes (seen in Figure 3) as same as general NN, and the network includes five layers. 
The first layer: Store present system input, ],,,[ 21 mxxxX L= . 
The second layer: Store N groups historical input data samples, and each group of sample includes m input variables. 
For the j’th node in the i’th group, its input and output relationship can be expressed as 
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The superscript “[2]” denotes the second layer of the Bayesian-Gaussian NN, and the corresponding third layer and the 
fourth layer are denoted as “[3]” and “[4]”. The threshold matrix parameter of the second layer has been included in the 
encouragement function. From the experiment process, the N groups of historical input data samples are very important 
to the prediction of the system, and to reduce the operation of the Bayesian-Gaussian NN and follow the dynamic 
responses on line, we adopt the sliding window data method to select the historical input data in N groups. 
The third layer: In N nodes, the i’th node corresponds with the i’th input sample in the second layer, and the input and 
output relationship is denoted as 

∑
=

−
=

m

j jj

ijj
i d

xx
s

1
2

2
]3[ )( , 22

0
]3[]3[ ]3[

)( −−− == i
s

i
iesf σσ                                                          (18) 

The fourth layer: Includes two nodes and the relationship of the first node and the second layer can be expressed as 

∑
=

−=
N

i
iiys

1

2]4[
1 σ , ]4[

1
]4[

1
]4[

1 )( ssf =                                                                     (19) 

∑
=

−=
N

i
is

1

2]4[
2 σ , ]4[

2
]4[

2
]4[

2 )( ssf =                                                                     (20) 

The fifth layer: Includes two nodes and the input output relationships are 
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3.3 Working procedure of Bayesian-Gaussian NN based on sliding window data 
The work process can be divided into the network off-line training and the online prediction application, and the 
Bayesian-Gaussian NN training is mainly to confirm the threshold matrix parameter D, and the online prediction 
application is to predict the present system output by N groups of historical input sample, and N groups of prediction 
sample set adopts the sliding window method to confirm, and above two approaches can be respectively described as 
follows. 
3.3.1 Off-line training of Bayesian-Gaussian NN 
First, to the N1 training sample ( ii yX , ), 1,,2,1 Ni L= , use the following performance evaluation function 
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Where, iy  denotes the actual system output, iŷ  denote other N1-1 training samples except for iX , use (13) and (15) to 
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train the Bayesian-Gaussian NN and obtain the prediction value. 
The target of the train is to find out proper threshold matrix D which can make the output of actual system and the 
prediction value better fit, and make (23) to be least or fulfill the application precision demand of the engineering. 
Above process is the process to minimize the formula (23), and we can adopt the optimization algorithm based on the 
grads such as the least square method and the simplex method (Yin, 2003, P.135-137, 145), and we can also adopt the 
genetic algorithm, the ant colony algorithm, the particle swarm optimization and other random evolutionary 
optimization algorithms which have been deeply researched and applied in recent years (Guo, 2003, P.70-73, Aaron, 
2005, P.175-191, Susuki, 2008, P.249-253). According to the foraging process of the colon bacillus (Liu, 2007, 
P.991-994), we put forward the improved foraging optimization algorithm (seen in (24) and (25)), and validate they can 
be used to optimize these parameters through the experiment. 
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The concrete contents and symbol parameters of the improved foraging optimization algorithm are in Liu’s article (Liu, 
2007, P.991-994), and in this article, we use the improved foraging optimization algorithm to optimize the threshold 
matrix parameter in (23), and the concrete optimization includes following six approaches. 
Approach 1: Initialize relative parameters, and the approach includes optimizing the field range of the parameter θ , the 
step number of the chemical trend cN , the step number of the walking operator sN , the step length )(iC , the number 
of the species group S , the initial position of E.Coli iX ( Si ,,2,1 L= ), the weighted coefficient 21, ww  and the 
condition that the algorithm ends in advance. 
Approach 2: To every E.Coli individual, update the position by (23), and evaluate the adaptive function 1+n

ieval . 

Approach 3: If n
i

n
i evaleval <+1 , suppose the walking counter Counter is 0, and keep the walking direction )(nφ  

unchangeable, implement the walking operator until the walking step number sN  achieves maximum or doesn’t fulfill 
n
i

n
i evaleval <+1 . And update iPbest , pbest

iP , Gbest  and gbestG . 

Approach 4: If n
i

n
i evaleval >+1 , update the position of E.Coli by the formula (25). 

Approach 5: If fulfilling the end condition, quit from the computation, or else, go on. 
Approach 6: Go to the next chemical trend step. 
Through above optimization process, we can obtain the threshold matrix D, and realize the training and learning process 
of the nonlinear dynamic system. 
3.3.2 Bayesian-Gaussian NN based on sliding window data 
Through above network training by the threshold matrix D, to realize the online prediction in the dynamic response 
process of the system, Yinli (Yin, 2003, P.135-137, 145) adopted the self-adjusted Bayesian-Gaussian NN model to 
sustain the constant of the number of N. Suppose there are N historical input data samples ( ii yX , ), i=1,2,…,N, when 
add one sample (

uyX ,μ
), predict the i’th sample by other N samples, and compute the mean square prediction error 

(MSPE) of the i’th sample. 
22 )())(( NNYyEMSPE iiii σ+−=                                                                  (26) 

If one sample can be predicted by other data samples, so its MSPE computed by (26) should be small, i.e. the sample 
can be obtained by the prediction from other samples. So we can eliminate the same from N+1 samples and keep the 
number of the input data samples of the online prediction unchangeable. 
Above self-adjusted process of the Bayesian-Gaussian NN can bring extra computation time, especially when the input 
data sample number N is numerous. So the self-adjusted method has deficiencies for the online prediction application of 
the nonlinear dynamic system. 
In this article, we use the sliding data window to confirm the input samples of Bayesian-Gaussian NN in the online 
prediction application. The data near the present time contribute most to the output of the present system, i.e. the data 
sample near the present time can predict the present output with higher precision. 
The aim adopting the sliding data window is to sustain the prediction data sample scale N unchangeable for the 
Bayesian-Gaussian NN when predicting the output y , and the concrete method is seen in Figure 4. 
Figure 4 shows three windows, and the data sample quantity of every sliding window, i.e. the width of the sliding 
window is N, and in the change from window 1 to window 2, only eliminate the data which is farthest to the present 
time of the window 1, and compose the window 2 with the data sample which is nearest to the present time, and the 
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change from window 2 to window 3 is similar with above process, and in this way, the sliding window data form. 
4. Simulation experiments 
To validate the online identification effect of the Bayesian-Gauss NN based on sliding data window, we adopt following 
two nonlinear dynamic systems to test. 
4.1 Single input and single output nonlinear system 

exty += )sin()( , )2,0( π∈x                                                                      (27) 
Where, e  is the random white noise, and it is the zero mean in the experiment and its variance is 0.2. Suppose the 
structure of the system changes from the 320th sampling time, and it becomes into exty += )2sin(2)( , and to the 450th 
sampling time, it becomes into the original system. 
The system samples 600 numbers and the input and output curve is seen in the real line of Figure 5. 
First, we use the former 300 training samples in Figure 5, and the initial parameters of the foraging optimization 
algorithm include S=10, Nc=200, w1=0.3, w2=0.2, and the initial walking step length is 0.02, and because the system is 
only relative wit h the input x, so there is one parameter d11 in the threshold matrix of the Bayesian-Gaussian NN model 
to be confirmed, so the parameter dimension in the foraging optimization algorithm p is 1. The threshold matrix 
improved by the foraging optimization algorithm D is [43.3729], and the performance index =)(DVN 0.0128. 
Then we utilize the improved threshold matrix parameters to dynamically predict the output of the nonlinear system, 
and the adopted window width N is 10, and we can obtain the following curve of broken line in Figure 5. From Figure 5, 
the Bayesian-Gaussian NN based on sliding window can realize the prediction and the structure change following to the 
dynamic nonlinear system. 
4.2 Multiple inputs and single output nonlinear system 
For the nonlinear dynamic system, 
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Where, )(ty  denotes the system output of the present time, )( ity − , 2,1=i  denotes the system output of the former 
two steps, )( itu − , 2,1=i  denotes the system control input of the former steps, so the input of the Bayesian-Gaussian 
NN TtututytyX )]2(),1(),2(),1([ −−−−= , so the corresponding threshold diagonal matrix D = diag ( 1

44
1

33
1

22
1

11 ,,, −−−− dddd ). 

The control variable u  is the random sequence which mean is 2 and its variance is 1, and )(te  is the Gaussian white 
noise which mean is 0 and its variance is 0.04. 
From the formula (28), 100 sampling numbers are taken as the training samples, and the initial parameters of the 
improved foraging optimization algorithm include S=20, Nc=80, w1=0.2, w2=0.2, and the initial walking step length is 
0.01, the X of the Bayesian-Gaussian NN model include four inputs, so there are four parameters to need being 
confirmed, and the parameter dimension in the foraging optimization algorithm p is 4. The threshold matrix improved 
by the foraging optimization algorithm D=diag[28.6618, 45.5806, 36.7235, 27.7467], and the performance index 

=)(DVN 0.0247. 
From the 101st time, the system structure changes, and the input output formula is changed to the formula (29). 

)()2()1(1.0)2(2.0)1(
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−−−−+= −−−−

                                              (29) 

We utilize the threshold matrix D obtained by the improved foraging optimization algorithm and select 20 as the width 
of the sliding data window N to implement online prediction of the system, and we can obtain the broken line output in 
Figure 6. 
5. Analysis and conclusions 
From above simulation experiment of the nonlinear dynamic system, we can see that the Bayesian-Gaussian NN based 
on the sliding data window can fully utilize the window data to realize the online prediction of the system and acquire 
better effect of the online prediction and follow. From the experiment, we can also see that the Bayesian-Gaussian NN 
can better adapt the structure change of the nonlinear dynamic system, because the Bayesian-Gaussian NN can integrate 
window data into the structure, sustainably update the structure of the network through the continual sliding of the 
window, and quickly capture the change of the nonlinear system structure, and this character is attractive for the 
dynamic system which characters change often, and it can adapt the online prediction application for the nonlinear 
dynamic system. 
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Figure 1. Nonlinear Dynamic System 
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Figure 2. BGNN Network Model 
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Figure 3. Nerve Cell Node Structure 
 

 

Figure 4. Work Process of Sliding Window 
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Figure 5. Online Prediction of SISO Nonlinear System 
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Figure 6. Online Prediction of MISO Nonlinear System


