
Computer and Information Science; Vol. 14, No. 1; 2021

ISSN 1913-8989 E-ISSN 1913-8997

Published by Canadian Center of Science and Education

8

An O(nlogn/logw) Time Algorithm for Ridesharing

Yijie Han1, & Chen Sun1

1 School of Computing and Engineering, University of Missouri at Kansas City, USA

Correspondence: Yijie Han, School of Computing and Engineering, University of Missouri at Kansas City,

Kansas City, MO 64110, USA.

Received: July 29, 2020 Accepted: December 28, 2020 Online Published: January 8, 2021

doi:10.5539/cis.v14n1p8 URL: https://doi.org/10.5539/cis.v14n1p8

Abstract

In the ridesharing problem different people share private vehicles because they have similar itineraries. The

objective of solving the ridesharing problem is to minimize the number of drivers needed to carry all load to the

destination. The general case of ridesharing problem is NP-complete. For the special case where the network is a

chain and the destination is the leftmost vertex of the chain, we present an O(nlogn/logw) time algorithm for the

ridesharing problem, where w is the word length used in the algorithm and is at least logn. Previous achieved

algorithm for this case requires O(nlogn) time.

Keywords: data engineering, efficient algorithms, ridesharing, time complexity

1. Introduction

A road network is expressed by a (undirected) graph G connecting a set V(G) of vertices and a set E(G) of edges.

Each edge (u, v), where u, v are vertices represents a road between u and v. G is weighted if each edge is

assigned a weight (distance of the road). When G is unweighted we assume that each edge has weight 1. A path

is a sequence of edges e1, e2, …, ek, where ei=(vi-1, vi) (G), 1  i  k and no vertex is repeated in the sequence

(i.e. there is no loops), where k is for vk, the source. The length of the path P is the sum of the weights of its

edges.

In our case we consider the situation that the road network is one line v0, v1, .., vn and the left most vertex v0 is

the destination for all trips. A trip t is from vi for some i to v0, i.e. vi, vi-1, …, v0.

A trip t from vi to v0 has load load (i) (which is a nonnegative number) at vi and capacity capacity(i) (which is a

nonnegative number) at vi. capacity (i) is the maximum load the driver can carry from vi to v0. Thus

load(i)capacity(i). free(i)=capacity(i)-load(i) is called the free load for trip t. When free(i) > 0 then on the path

from vi to v0 the driver of trip t can carry additional free(i) load from other trips at vi-1, vi-2, …, v1. When all the

load at vi is carried by other trips with sources vk, k>i, then the trip from vi to v0 can be canceled. This is to say,

when a driver at source vj, j>i, pass by vi and is not fully loaded, he can carry some of the load at vi. If all load at

vi are carried by such drivers, then the trip from vi to v0 can be canceled. The objective is to remove as many

trips as possible and to minimize the number of trips and thus keep the number of drivers needed at minimum.

The minimization problems in the general ridesharing problem (Gu, Q.-P., Liang, J. L. & Zhang, G., 2017) are

complex and NP-hard because each trip may have many parameters. They can be solved as an Integer

Programming (IP) or Mixed Integer Programming (MIP) problem and solves the IP or MIP problem by an exact

method or heuristics (Alonso-Mora, J., Samaranayake, S., Wallar, A. , Frazzoli, E., D. Rus, D. 2017) (Baldacci,

R., Maniezzo, V., Mingozzi, A. 2004) (Herbawi, W., Weber, M. 2012). The case considered in this paper is a

situation where polynomial time algorithm can be obtained.

This version of the ridesharing problem has been studied by Gu, Liang and Zhang (Gu, Q.-P., Liang, J. L. &

Zhang, G., 2019). (Gu, Q.-P., Liang, J. L. & Zhang, G., 2018). (Gu, Q.-P., Liang, J. L. & Zhang, G., 2017). In

(Gu, Q.-P., Liang, J. L. & Zhang, G., 2017) they obtained O(n2) time algorithm for the problem but in (Gu, Q.-P.,

Liang, J. L. & Zhang, G.,, 2019) they achieved O(nlogn) time.

As an example, the following Figure 1 shows the initial situation of a ridesharing problem.

http://cis.ccsenet.org Computer and Information Science Vol. 14, No. 1; 2021

9

Figure 1. Initial situation of a ridesharing problem

source, v : 0 1 2 3 4 5 6 7

free :
load :

 2
7

4
2

1
10

3
5

5
5

1
4

1
2

For example, in Figure 1 shows that at v2 the load is 2 and the free is 4. This means when the driver at v2 can

carry the load 2 and also can add additional load 4 when he drives to the destination v0. If he pick additional load

4 at v1, then at v1 the load becomes 3 and the free becomes 2+4=6.

In this paper we show an O(nlogn/logw) algorithm for the ridesharing problem, where w is the word length, i.e.

the number of bits used in a word. w is at least logn and therefore our algorithm has complexity no worse than

O(nlogn/loglogn). Thus we improve the result achieved by Gu.et al.

2. Preliminary

As an example, we show a case in which the load at some sources can be removed:

Figure 1. Initial situation of a ridesharing problem

source, v : 0 1 2 3 4 5 6 7

free :
load :

 2
7

4
2

1
10

3
5

5
5

1
4

1
2

In this system, we can let the trip from v3 carry load 1 from the load at v2 and the trip from v4 carry additional

load 1 from v2 and thus the load at v2 can be carried by the trips starting at v3 and v4. The modified situation is

shown here.

Figure 2. As modified in Figure 1

source, v : 0 1 2 3 4 5 6 7

free :
load :

 2
7

6
0

0
11

2
6

5
5

1
4

1
2

Thus the trip from v2 can be removed. Now the load 7 at v1 can be carried by trips starting at v3 and v5. The

modified situation is shown here.

Figure 3. As modified in Figure 2

source, v : 0 1 2 3 4 5 6 7

free :
load :

 9
0

6
0

0
11

0
8

0
10

1
5

1
2

Thus we reduced 7 trips in the initial input to 5 trips.

3. How This Works in Previous Papers

In (Gu, Q.-P., Liang, J. L. & Zhang, G., 2018) it shows that there is an algorithm to reduce the number of trips to

minimum in O(n3) time. This algorithm was improved to O(n2) time in (Gu, Q.-P., Liang, J. L. & Zhang, G.,

2017). Here we describe the algorithm in (Gu, Q.-P., Liang, J. L. & Zhang, G., 2018) and explain how it works

as some principles used in (Gu, Q.-P., Liang, J. L. & Zhang, G., 2018) are also used in our algorithm.

The algorithm in (Gu, Q.-P., Liang, J. L. & Zhang, G., 2018) computes GAP(i, j). GAP(i, j) is the remaining load

after redistributing load at vertex i : load(i), to vertices k, i < k < j, provided that load(k) >0.

GAP(i, j)=| Sj |-∑ 𝑓𝑟𝑒𝑒(𝑎)𝑎𝑆𝑡,𝑗<𝑎<𝑖

Find out the minimum GAP.

In our previous example:

Figure 1. Initial situation of a ridesharing problem

source, v : 0 1 2 3 4 5 6 7

free :
load :

 2
7

4
2

1
10

3
5

5
5

1
4

1
2

http://cis.ccsenet.org Computer and Information Science Vol. 14, No. 1; 2021

10

GAP(2, 3)=2, this is because when we redistribute load 2 at v2 to v3 and when we arrive at v3 the load coming

from v2 is 2. And GAP(2, 4)=1, this is because when we redistribute load 2 at v2 all the way to v4 we can

distribute load 1 from 2 to v3 as v3 has free 1, thus when we arraive at v4 we have load 1 remaining.

In our previous example

Figure 2. As modified in Figure 1

source, v : 0 1 2 3 4 5 6 7

free :
load :

 2
7

6
0

0
11

2
6

5
5

1
4

1
2

GAP(1,3)=7 (note that load(2)=0), GAP(1,4)=7, GAP(1, 5)=5, GAP(1, 6)=0, this is because load 7 at v1 can be

redistributed to v4 (redistribute load 2 as v4 has free 2) and redistribute to v5 (redistribute load 5 as v5 has free 5).

The algorithm in (Gu, Q.-P., Liang, J. L. & Zhang, G., 2019) has a loop iterating through v1, v2, …, vn. When

working on vj, the minimum of GAP(i, j), 1  i < j, is found. Let G(ij, j) be the minimum, if G(ij, j)  free(j) then

load(ij) will be redistributed to vi
j
+1, vi

j
+2, …, vj to make free(ij+1), free(ij+2), …, free(j-1) to 0’s. If G(ij, j)>free(j)

no redistribution of load will happen as redistribution, if taken, cannot remove any driver. Thus if G(ij, j) > free(j)

then the loop will iterate to j+1.

Because GAP(i, j) takes O(j-i) time and therefore the computation of GAP(i, j), 1  i < j, takes O(j2) time.

Because the loop has n iterations and therefore the algorithm has O(n3) time.

4. Our Algorithm

We speed up the algorithm using the dynamic integer set and redesigned the algorithm so that dynamic integer

set operations can be applied. Our algorithm time complexity is O(nlogn/logw), where w  logn. We use

dynamic integer sets (Phtrbcu M. & Thorup M., 2014, 166-175) that support insert, delete, min operations

among other operations in O(logn/logw) time. The reason we can use dynamic integer sets because load and

capacity are integers (they are seats on the vehicle). We will name such a dynamic integer set as set H.

We intend to compute

S0=∑ 𝑓𝑟𝑒𝑒(𝑖)𝑛
𝑖=1 =2+4+1+3+5+1+1=17

S1=S0-free(1)=17-2=15, S2=S1-free(2)=15-4=11, S3=S2-free(3)=11-1=10

S4=S3-free(4)=10-3=7, S5=S4-free(5)=7-5=2, S6=S5-free(6)=2-1=1

And use load(i)-Si as a key. After put keys in a dynamic integer set and find the minimum key we can identify

GAP(i, j) which is minimum.

In our case

Figure 1. Initial situation of a ridesharing problem

source, v : 0 1 2 3 4 5 6 7

free :
load :

 2
7

4
2

1
10

3
5

5
5

1
4

1
2

Our algorithm precedes as follows:

Precomputation: Compute S0 =17 in our case) in O(n) time.

Step 1 : Works on v1. Compute S1=S0-free(1) (=17-2=15 in our case). Enter key1=load(1)-S1 (=7-15=-8 in our

case) into set H.

Step 2 : Works on v2. Compute S2=S1-free(2) (=15-4=11 in our case). Find min in set H which is key1. Compare

load(1) (1 here because key1) with S1-S2 (1 because of key1 and 2 because of v2) which is free(2). In our case

load(1)=7 > 4=S1-S2 therefore load(1) cannot be redistributed. Thus we enter key2=load(2)-S2 (=2-11=-9 in our

case) into set H.

Step 3 : Works on v3. Compute S3=S2-free(3) (=11-1=10 in our case). Find min in set H which is key2. Compare

load(2) (2 here because key2) with S2-S3 (2 because of key2 and 3 because of v3) which is free(3). In our case

load(2)=2 > 1=S2-S3 therefore load(2) cannot be redistributed. Thus we enter key3=load(3)-S3 (=10-10=0 in our

http://cis.ccsenet.org Computer and Information Science Vol. 14, No. 1; 2021

11

case) into set H.

Step 4 : Works on v4. Compute S4=S3-free(4) (=10-3=7 in our case). Find min in set H which is key2. Compare

load(2) (2 here because key2) with S2-S4 (2 because of key2 and 4 because of v4) which is free(3)+free(4). In our

case load(2)=2  4=S2-S4 therefore load(2) can be redistributed. After redistribution the situation becomes :

Figure 2. As modified in Figure 1

source, v : 0 1 2 3 4 5 6 7

free :
load :

 2
7

4
0

0
11

2
6

5
5

1
4

1
2

Note up so far it works fine as when we are working on vj and find min ki in set H then GAP(i, j) is the minimum

among all GAP(k, j) for k<j. However, it does not take us O(j2) time to find the minimum GAP, it takes us only

O(logn/logw) time to find the min in set H to find the minimum GAP.

However, after redistribution, the Si values have been changed and thus it looks like that we have to recompute

the key values for the keys already in set H. What we do instead is:

Because load(2)=0, it can be removed. We used 1 from free(3), 1 free(4) to carry the load at v2.

Since now free(3) is decremented by 1 and free(4) is decremented by 1, we should increase key1 by 2. However,

to change the value for the keys already in the dynamic integer set will make the O(nlogn/logw) time for our

algorithm unachievable. What we do is to decrement 2 for all the keys entered starting form v4. That is for every

key starting from key4, we will subtract 2 from the key value before entering it into set H. Here we call

-load(2)=-2 as the adjusting value.

Redistributed:

Figure 2. As modified in Figure 1

source, v : 0 1 2 3 4 5 6 7

free :
load :

 2
7

4
0

0
11

2
6

5
5

1
4

1
2

v2 is removed. Since free(4) has been decremented by 1, we need to change value of key3. We continue working

on Step 4. Because v2 is removed we need change adjusting value=adjusting value -free(2)=-2-4=-6

Step 4 (continued): All vertices v with free(v) set to 0 needs to be worked on. Therefore we work on v3. Remove

key3 from set H. key3=key3+load(2) -free(3) (before load(2) and free(3) were set to 0, load(2) because load(2) is

redistributed, free(3) because load(2)-free(3) is the value taken out from the free’s starting from v4) +adjusting

value = 0+2-1-6= -7. Insert key3 into set H.

Find min in set H again, which is key1= -8. S1-S4+adjusting value=15-7-6=2 < load(1)=7, thus no redistribution

can happen. Thus we put key4=load(4)-S4+adjecting value=6-7-6= -7 into set H.

Step 5 : Working on v5. Computing S5=S4-free(5) = 7-5=2. Find min in set H which is key1=-8. S1-S5+adjusting

value=15-2-6=7  7=load(1). Thus redistribute load(1). After redistribution the situation becomes:

Figure 4. As modified in Figure 2 (use our algorithm redistribution the situation)

source, v : 0 1 2 3 4 5 6 7

free :
load :

 9
0

0
11

0
8

0
10

1
4

1
2

In the remaining steps redistribution cannot happen. Thus our algorithm ends up with 5 drivers.

In general, suppose the first time we redistribute load it is to redistribute load(i) to vi+1, vi+2,…, vi+j. Then

free(i+1), free(i+2),… free(i+j-1) all become 0’s. load(i)=0 and vi can be removed. The adjusting value=

-load(i)-capacity(i) (capacity(i)=load(i)+free(i)). We will remove keyi+1, keyi+2, …, keyi+j-1 from set H and build

another dynamic integer set Hi with capacity(i+1), capacity(i+2), …, capacity(i+j-1) inserted in to set Hi. Here

capacity(i+k) is equal to load(i+k) as free(i+k) = 0, 1 ≤ k < j. In our algorithm the new

key(i+k)=capacity(i+k)-Si+j-1 + (load(i) (before redistribution) –(Si-Si+j-1))(this is the free value amount at free(i+j)

that is used for redistributing load(i))+adjusting value, 1 ≤ k < j. In this quantity the only value relevant to k is

capacity(i+k). We will call Si+j-1 + (load(i) (before redistribution) –(Si-Si+j-1))+adjusting value as the adjusting

http://cis.ccsenet.org Computer and Information Science Vol. 14, No. 1; 2021

12

value for Hi. Thus we build Hi and insert the min key min(k) in Hi into H. If min(k) in H is deleted then we

delete min(k) from Hi and find the new min(k) in Hi and insert it into H. We also have to build a set Ti and put

vertices vi, vi+1, …, vi+j-1 into from Ti in O(j-i) time The use Ti is to let every vertex vi-1, vi, …, vi+j-1 to find vi+j

quickly. Here every vertex vi-1, vi, …, vi+j-1 can find the set Ti which is pointing to vi+j. Because if a load(k), i-1 ≤

k ≤ i+j-1, is to be redistributed, we have to jump through vk+1, vk+2, vi+j-1 without visiting each of them (to keep

the O(logn/logw) time for each vertex), tree Ti will allow us find vi+j from vk in O((n)) time, where (n) is the

inverse Ackermann function, because we will use Union-Find (T.H. Corman, C.E. Leiserson, R.L. Rivest & C.

Stein, 2009) to implement it.

We then start working on vi+j, and we compute keyi+j=load(i+j)-Si+j+adjusting value.

Suppose we are going to do another redistribution from vl to vm. Consider the following cases :

1. l >=i+j. This is the most simply case. Because key values for keyk, k<i+j, need not be changed and we need

only add adjusting values to later keys. Note if l > i+j then we will build another dynamic integer set Hl for the

nodes vl to vm-1. vl will be removed. The new adjusting value=adjusting value-load(l)-capacity(l). The adjusting

value for Hl is Sm + (load(l) (before redistribution) –(Sl-Sm-1))+adjusting value. If l > i+j we will build set Tl in

O(m-l) time. If l=i+j we will build set Tl in O(m-l) time and then union Ti and Tl into one set with the

Union-Find algorithm (T.H. Corman, C.E. Leiserson, R.L. Rivest & C. Stein., 2009) and name it Ti.

2. l < i. In this case we will redistribute load(l) to vl+1, vl+2, …, vi-1, then jump over from vi to vi+j-1 and then

start redistribute at vi+j, vi+j+1, …, vm. capacity(l+1), capacity(l+2), …, capacity(i-1), capacity(i+j),

capacity(i+j+1),…, capacity(m-1) will be entered as keys into Hi.The original min(key) in Hi that was entered

into H will be withdrawn from H. We then rename Hi as Hl and find min(key) in Hl and insert it into H. vl will be

removed. The new adjusting value is updated as adjusting value – load(l)-capacity(l). The adjusting value for Hl

is Sm + (load(l) (before redistribution) – (Sl-Si+ Si+j-1-Sm-1)) + adjusting value. We will build a set for vl, vl+1, …,

vi-1 in O(i-l) time, and set for vi+j, vi+j+1,…, vm-1 in O(m-i-j) time. Then union these two sets with Ti and then

rename Ti to Tl.

3. i ≤ l < i+j. In this case redistribute load(l) to vi+j, vi+j+1, …, vm. capacity(i+j), capacity(i+j+1), …, capacity(m-1)

will be entered into set Hi. vl will be removed. New adjusting value=adjusting value – load(l) -capacity(l). The

new adjusting value for Hi is Sm + y(load(l) (before redistribution) –(Si+j-1-Sm-1))+adjusting value. We build a set

for vi+j, vi+j+1, …, vm-1 in O(m-i-j) time and then union this set with Ti.

Thus in our algorithm, each vertex vi and load(i) is processed at most twice. Once is load(j) redistribute to free(i)

for j< i. We count vi as processed for this time only if free(i) changed from nonzero to zero. If part of load(i) is

redistributed to free(i) but free(i) did not become 0 then vi is the last vertex for the distribution. In this case we

attribute the time for processing vi to the time for vj. Another time vi and load(i) is processed is when load(i) is

redistributed and therefore vi is removed. The remaining time for vi is insert keyi into dynamix integer set and

delete keyi from dynamic integer set. It is known that these operation has time O(logn/logw) for processing each

vertex.

Because we spend O(logn/logw) time per vertex and therefore the time complexity of our algorithm is

O(nlogn/logw).

Main Theorem: There is an O(nlogn/logw) time algorithm that finds the minimum number of drivers for the

ridesharing problem.

5. Conclusion

We proposed an O(nlogn/logw) time algorithm to minimize the number of drivers for the ridesharing problem. It

is also worth developing algorithms for rider cases and exploring the algorithmic complexity of other simplified

variants of this problem.

Note that the load and capacity in the algorithm are nonnegative integers and therefore we can use the dynamic

integer set for them. If load and capacity are real values then a different algorithm has to be designed.

References

Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., & D. Rus, D. (2017) On-demand high-capacity

ride-sharing via dynamic trip-vehicle assignment. Proc. Natl. Acad. Sci., 114(3), 462-467.

https://doi.org/10.1073/pnas.1611675114

Baldacci, R., Maniezzo, V., & Mingozzi, A. (2004). An exact method for the car pooling problem based on

Lagrangean column generation. Oper. Res., 52(3), 422-439. https://doi.org/10.1287/opre.1030.0106

http://cis.ccsenet.org Computer and Information Science Vol. 14, No. 1; 2021

13

Corman, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms. Third Edition,

The MIT Press.

Gu, Q. P., Liang, J. L., & Zhang, G. (2019). Efficient algorithms for ridesharing if personal vehicles. Theoretical

Computer Science, 788, 79-94. https://doi.org/10.1016/j.tcs.2019.05.027

Gu, Q. P., Liang, J. L., & Zhang, G. (2018). Algorithmic analysis for ridesharing of personal vehicles.

Theoretical Computer Science, 749, 36-46. https://doi.org/10.1016/j.tcs.2017.08.019

Gu, Q. P., Liang, J. L., & Zhang, G. (2017). Efficient algorithms for ridesharing of personal vehicles.

Proceedings of COCOA’2017, LNCS 10627, 340-354. https://doi.org/10.1007/978-3-319-71150-8_29

Herbawi, W., & Weber, M. (2012). The ridematching problem with time windows in dynamic ridesharing: a

model and a genetic algorithm, in: Proceedings of ACM Genetic and Evolutionary Computation Conference

(GECCO), pp. 1–8. https://doi.org/10.1109/CEC.2012.6253001

Phtrbcu, M., & Thorup, M. (2014). Dynamic integer sets with optimal rank, select, and predecessor search. Proc.

2014 IEEE Foundations of Computer Science. 166-175.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution

license (http://creativecommons.org/licenses/by/4.0/).

