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Abstract

The codesign is a robust methodology, used in modern embedded systems with the objective of achieving the functional
specifications and meeting the non-functional requirements. The most interesting step in the codesing is the process of
Hardware/Software Partitioning. The aim is to decide which functionalities of the system should be implemented in
hardware (HW) or in software (S W). In this article, a new heuristic algorithm is proposed to simultaneously optimize the
hardware area (cost) and the execution time (performance) of a multiprocessor system. The proposed algorithm is inspired
from game theory and especially from the GO game. The system is modeled using the DAG graph (Data Acyclic Graph),
and two players (HW player and SW player) play in turn and choose a block (functionality) from the graph (system). The
HW player has the goal of optimizing the global HW area while the SW player has the objective of minimizing the global
execution time. After the game termination, and based on the 0-1 Knapsack algorithm, a step of refinement is used to
meet the constraint on the total hardware area or on the overall execution time if a constraint is pre-defined. Experimental
results show that the proposed algorithm gives better solutions compared to the Simulated Annealing algorithm and the
Genetic Algorithm.

Keywords: Multi-Processors Embedded Systems, HW/SW Partitioning, GO Game, MiniMax Algorithm, Bellman-Ford
Algorithm, Heuristic Algorithms

1. Introduction

The increasing complexity in the design of modern embedded systems necessitates the adoption of new methodologies.
The objective is to allow concurrent development of hardware (HW) and software (S W), and to improve the interaction
between the hardware and the software in order to meet the performance requirements and the functional specifications.
The Co-design (compound design) is one of the best methodologies used to achieve those objectives. The Co-design is
divided into four steps, Co-specification, Co-synthesis, Co-simulation and Co-verification. The system architecture is
defined in the Co-synthesis step. The most important process in this step is the Hardware Software Partitioning (HS P)
process.

The HS P aims to decide for each functionality of the system, whether it is more advantageous to be implemented in
HW or in S W. A number of non-functional factors are involved in the HS P process, the most influencing factors are the
performance (execution time) and the hardware area (cost). Several works were proposed to find the best possible balance
between these two factors. The first studies specifically used exact algorithms such as the Branch and Bound method
(Jigang and Thambipillai, 2004a), the Integer Linear Programming (ILP) algorithm (Niemann and Marwedel, 1996) and
Dynamic Programming (Knudsen and Madsen, 1996). These algorithms give the exact solution and they are very useful
for systems with a small number of blocks; however when the number of the blocks increases, they tend to be very slow.
To overcome this issue, the recent studies focus on heuristic algorithms. Heuristic algorithms give an approximation to
the exact solution in a short time, the most classical algorithms are the Genetic Algorithm (Feng et al., 2014), Simulated
Annealing algorithm (Banerjee and Dutt, 2004b), Tabu Search algorithm (Lin et al., 2014), Hill Climbing Algorithm (Sim
et al., 2008) and Greedy Algorithm (Bhuvaneswari and Jagadeeswari, 2015). The majority of previous works studied the
optimization of one metric (cost or performance) while respecting a given constraint on the other metric.

In this article we propose a novel heuristic algorithm, the objective is to simultaneously optimize the cost and the per-
formance of the system. The system is considered to be multiple processors, which guarantees a parallel execution and
leads to a higher performance. Directed Acyclic Graph (DAG) is used to represent the system, and the execution time of
the system is considered to be equal to the execution time of the critical path (CP) in the graph. The proposed algorithm
is in a form of a game inspired from the GO game. Two players (HW player and S W player) are playing in turn and
choosing a node (block) from the graph. The game terminates when all the blocks of the system are attributed to either
to the HW partition or to the S W partition. The HW player has the objective of minimizing the global cost and the S W
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player has the objective of minimizing the overall performance of the system. To choose the best move (block), each of
the two players uses the MimiMax algorithm. At the end of the game, if a constraint is pre-defined either on the cost
or on the performance, and additional optimization is used for meeting the constraint; this optimization is based on the
0-1 Knapsack algorithm, the objective is to choose the best blocks to move from one partition (HW or S W) to the other
partition.

The rest of this article is organized as follows. Section II gives the related work. The problematic is presented in Section
III. The proposed approach is described in Section IV . The results of experiments are shown in Section V . Finally,
conclusions are summarized in Section VI.

2. Related Works

In recent decades, The Hardware Software Partitioning (HS P) problem has taken big interest in the design of embedded
systems. Among the most important objectives is to achieve the best tradeoff between the system performance (execution
time) and the cost (hardware area). Several studies have been made to solve the HS P problem while considering these two
metrics, and there is principally two families of the proposed algorithms, the family of exact algorithms and the family of
heuristic algorithms.

Exact algorithms include mainly Branch and Bound (B&B), Integer Linear Programming (ILP) and Dynamic Program-
ming (DP). Branch and Bound is based on binary tree, the algorithms aims to find the optimal path from the top to the
bottom of the tree, the optimal path has the minimum cost under some given constraints, examples of using B&B in the
HS P problem are given in (Jigang and Thambipillai, 2004a; Strachacki, 2008; Jigang and Thambipillai, 2004b). Integer
Linear Programming is composed of a linear function (objective function) with a set of variables and a set of linear in-
equalities, (Niemann and Marwedel, 1996, 1997) present examples of using the ILP to solve the HS P problem. In the
dynamic programming method, a large problem is broken down into smaller problems, and by solving the smaller prob-
lems, the solution to the initial problem is established, example of using DP in HS P problem are described in (Knudsen
and Madsen, 1996; Wu and Srikanthan, 2006). Exact algorithms are very efficient for small systems, but as the HS P is
an NP-hard problem (Arató et al., 2005), they become difficult to use and time consuming for large scale HS P problems.
Thus, heuristic algorithms are generally used to explore the search space in order to find close to optimal solutions in a
reasonable amount of computation time.

Traditional heuristic methods include hardware-oriented (Gupta et al., 1992; Gupta and De Micheli, 1993) and software-
oriented (López-Vallejo and López, 2003) approaches. The hardware-oriented (software-oriented) approach starts with a
complete hardware (software) solution, and iteratively moves blocks of the system to the software (hardware) partition
while respecting the given constraints. Modern heuristic methods include, inter alia, Genetic Algorithm (GA), Simu-
lated Annealing (S A), Greedy Algorithm (GR), Hill Climbing Algorithm (HC), Tabu Search (TS ) and Particle Swarm
Optimization (PS O). GA algorithm is based on the survival of the fitness principle, the main steps are, the initializa-
tion of the first population, the parents’ selection, performing the crossover to produce the offspring and the mutation of
the offspring, the algorithm iterates from the selection step and evaluate each newly generated population, the algorithm
terminates when the best individual that meet the termination condition is found; different approaches based on GA al-
gorithm were proposed to solve the HS P problem, some of those approaches are given in (Feng et al., 2014; Zhao et al.,
2013; Purnaprajna et al., 2007; Knerr et al., 2007; Li et al., 2014). S A algorithm consists of an analogy between the
combinatorial optimization problem and the solid annealing process; the algorithm starts with an initial solution S and
a parameter T (temperature), and at each iteration the algorithm generates some neighbors of the current solution, and
probabilistically decides between keeping the current solution or replacing it by the best neighbor, and gradually decreases
the temperature T ; the algorithm iterates until a good enough solution is found for the system. Like the GA algorithm, the
S A algorithm was used in many studies to deal with the HS P problem, some examples are cited in (Banerjee and Dutt,
2004b,a). GR algorithm starts by a candidate set, and iteratively adds the element that gives the best optimization, the
algorithm stops when no improvement is obtained, (Bhuvaneswari and Jagadeeswari, 2015; Wu et al., 2010; Lin, 2013)
are examples of approaches based on the GR algorithm for the HS P problem. HC algorithm starts with a sub-optimal
solution, and repeatedly improves the solution until some conditions are met; unlike the GR algorithm, the HC algorithm
has the possibility to avoid the local minima; an example of using the HC algorithm for the HS P problem is given in
(Sim et al., 2008). TS algorithm begin with a starting current solution; then, at each iteration, it creates a candidate list
of moves and choose the best admissible candidate, the algorithm iterates until the stopping criterion is satisfied; to avoid
the local minima, TS uses a tabu table to discourage the search from coming back to a previously selected candidate;
different studies used the TS algorithm to solve the HS P problem, some examples are presented in (Lin et al., 2014; Wu
et al., 2013; Hou et al., 2016). PS O is an optimization technique inspired from the natural social behavior and dynamic
movements with communications of swarms, PS O uses a number of particles (candidate solutions) that constitute a swar-
m moving around in the search space looking for the best solution, each particle keeps track of its best solution (pbest)
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Figure 1. Example of DAG representation

and the best value obtained so far by any particle in its neighborhood (gbest), at each iteration, each particle adjusts its
position according to its current position and current velocity and its distance to pbest and to gbest, the algorithm iterates
until reaching the terminating condition; (Abdelhalim et al., 2006; Abdelhalim and Habib, 2011; Yan et al., 2018) present
examples of using PS O in the HS P problem.

Other heuristic approaches were also proposed; In (Zhang et al., 2009), the proposed algorithms are based on Ant Colony
Optimization. In (Zhang et al., 2008), the authors proposed an approach based on Artificial Immune System. In (Iguider
et al., 2017), the authors proposed a method based on a shortest path in a Direct Acyclic Graph. another path-based
HW/SW partitioning was proposed in (Wu et al., 2010). In (Mann et al., 2007), the possibilities of applying the Kernighan-
Lin algorithm to the HS P problem were evaluated. In (Zhang et al., 2018), the authors proposed an algorithm for multi-
processing embedded systems, the optimization objective is minimizing the critical path which demonstrates the longest
path in a DAG graph, the critical path would determine the time required to execute the tasks on the embedded platform,
the hardware area is set as a constraint, the proposed algorithm is based on Shuffled Frog Leaping Algorithm and Greedy
Algorithm. In (Ouyang et al., 2016), the proposed algorithm aimed to minimize the overall execution time of the system
while meeting the constraint on the hardware area in a heterogeneous multi-processing system, concerning the parallel
execution of hardware and software, the finishing time of the system can be defined as the finishing time of the critical
path in a tree based graph. Another example of minimizing the execution time of the critical path in a multiple processing
embedded system in given in (Zhang et al., 2019), the proposed algorithm is based on Brainstorm Optimization Algorithm.

In this article, the proposed approach has the goal of optimizing the total hardware area and the overall execution time of a
multi-processing embedded system, as in (Zhang et al., 2018; Ouyang et al., 2016; Zhang et al., 2019), the optimization of
the execution time consists of minimizing the execution time of the critical path in a DAG graph representing the system.

3. Problem Definition

The system (ES) is composed of N block denoted B, such as B = {B1, B2, . . . Bn}. Where each block Bi can be implemented
either in HW or in S W. The aim of the HS P is to divide the system into two sets H and S , where H (S ) is the set of the
blocks to be implemented in HW (S W), such that H ∩ S = ∅ and H ∪ S = B while optimizating the defined objective
function with the respect of the given constraints.

The system is represented in the form of a DAG as shown in the example in Fig. 1. Each node in the graph represents
a block in the system and each vertex represents the communication of a block with its adjacent blocks. Each node can
have multiple predecessors and multiple successors.

Each block (node) Bi has five parameters:

• cih: Hardware area cost of Bi if it is implemented in HW

• cis: Hardware area cost of Bi if it is implemented in S W

• tih: Execution time of Bi if it is implemented in HW

• tis: Execution time of Bi if it is implemented in S W

• xi: The block’s implementation (in HW xi = 1, in S W xi = 0).
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Figure 2. System architecture (Shi et al., 2019)

Each edge (source Bi, destination B j) in the graph has two parameters:

• ci j: The cost communication

• ti j: The execution time communication

Tools such as Lycos as described in (Madsen et al., 1997) can be used to give an estimation of each of these parameters. It
is noted that the cost communication and the execution time communication are considered only if the two attached nodes
are implemented differently (HW − S W or S W − HW). The values ci j and ti j are equal to zero for any (i, j) for which the
edge with the source Bi and the destination B j doesn’t exist in the graph.

Let X = (x1, x2, . . . , xn) the vector solution to the HS P problem. The global hardware cost C as described in 1 is the sum
of the cost of all the blocks (HW or S W) plus the communication cost.

C =
n∑

i=1

(xi × cih + (1 − xi) × cis) +
n∑

i=1

n∑
j=1

(xi × (1 − x j) × ci j + (1 − xi) × x j × ci j) (1)

As the system is multi-processors, we consider the target architecture shown in Fig. 2 as described in (Shi et al., 2019).

Providing the parallel execution on multiple processors systems, the total execution time is defined to be the execution
time of a critical path cp in the graph. The critical path is the path having the maximum execution time. The execution
time of the path cp, is the sum of execution time of all nodes and communication time of all edges in cp. Thus, the total
execution time T can be formulated as in 2.

T =
∑

Bi∈cp

(xi × tih + (1 − xi) × tis) +
∑

Bi∈cp

∑
B j∈cp

(xi × (1 − x j) × ti j + (1 − xi) × x j × ti j) (2)

The HS P problem discussed in this article consists of minimizing C and T as formulated by P1 in 3.

P1 :


minimize C(X),
minimize T (X),
X ∈ {0, 1}n

(3)

If a constraint is pre-defined on the hardware cost (Cmax) or on the execution time (Tmax), the HS P problem can be
formulated respectively by P2 in 4 or by P3 in 5.
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Figure 3. Game Initialization

P2 :


minimize T (X),
s.t C(X) ≤ Cmax,

X ∈ {0, 1}n
(4)

P3 :


minimize C(X),
s.t T (X) ≤ Tmax,

X ∈ {0, 1}n
(5)

4. Proposed Approach

The proposed approach for solving the problem P1 is in form of a game inspired from the GO game. The DAG graph
(Fig. 1) represents the board of the game. The game is consists of two players,, a hardware player A and a software player
B. The two players play in turn and choose a node from the graph (board). At the end of the game, the nodes (blocks)
belonging to player A will be attributed to the hardware set H and the nodes belonging to player B will be attributed to
the software set S . player A has the objective of minimizing the global cost given by 1 while player B has the objective of
minimizing the system execution time given by 2.

4.1 Game Strategy

At the beginning of the game, the board is empty. The game is composed of three steps; in the first step the board is
initialized; then in the second step, the two players play iteratively in turn according to the rules of the game; the third
step represents the termination of the game.

4.1.1 Initialization

The initialization of the board consists of affecting two nodes to player A and two nodes to player B. The nodes attributed
to player A are the nodes with the less possible value of HW cost, and the nodes attributed to player B are the nodes with
the less possible value of S W execution time; the nodes attributed to A and the the nodes attributed to B must be as far as
possible from each other. Fig. 3 gives an example of the graph (board) initialization.

4.1.2 Rules of the Game

The rules of the game are inspired from the GO game; the difference is that in this game, each player plays with the
objective of minimizing its score; The score of player A is calculated using the equation 1 and the score of player B is
calculated using the equation 2. The rules of the game are defined as follows:

• Rule 1: The list of possible moves for each player, is the list of empty nodes (not attributed) which are adjacent
(predecessors and successors) to the nodes belonging to that player. For example, in Fig. 3, the list of possible
moves for player A is {4, 7, 9}, and the list of possible moves for player B is {3, 8, 11}.

• Rule 2: A player can choose and play one move from the list of its possible moves; once a move is played, the node
will be attributed to that player.

• Rule 3: As the objective of each player is to minimize its score, the rule called ’play and conquer’ in the Go game
is modified (inversed) in this game. When a player plays a move, if the corresponding node is adjacent to the
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Figure 4. Example of play and conquer move: Before move

Figure 5. Example of play and conquer move: After move

opponent’s nodes, the played node will be attributed to the opponent, and each node which is adjacent to the played
node and belonging to player will be converted to the opponent. The example in Fig. 4 and Fig. 5 gives a more
detailed explanation of this rule. Before playing (figure a), the list of possible moves for player A is { 7, 10}, the
node 10 is adjacent to the nodes of player B, the list of the nodes belonging to A and adjacent to the node 10 is {9},
consequently, by applying this rule, if player A plays the move 10, the node 10 and the node 9 will belong to player
B as shown in figure b.

4.1.3 Termination

The game terminates when each node in the graph is attributed to either to player A (HW) or to player B (S W). By the
end of the game, the two partitions H and S are constructed.

4.2 Execution Time Computation

The execution time of the system is the execution time of the critical path in the graph. Two fictional nodes (E and S ) are
added to the graph (board) to represent respectively a unique entry point of the graph and a unique exit point of the graph.
The node E is attached to the entry nodes of the system and the node S is attached to the exit nodes of the system. The
constructed graph is shown in the example of Fig. 6.

The nodes of this graph don’t have a value. Each edge in the graph (source Bi, destination B j) has one value (weight),
this value represents the execution time of the source block plus the execution time communication with the destination
block, the value of each edge is calculated following the combinaison given in table 1.

The execution time of the critical path is the longest path in this graph from the entry point E to the exit point S . Finding
the longest path in a graph is hard to solve using dynamic programming, because it lacks the optimal substructure property
(an optimal solution that can be constructed from optimal solutions of sub-problems). Fortunately, a positive edge weight
connected DAG does have the optimal substructure property. Therefore, to calculate the longest path, we use the Bellman-
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Figure 6. Graph with Entry and Exit nodes

Table 1. Edge’s value calculation

Bi Bj value
E any type(HW, S W, not attributed) 0

any type S 0
HW HW or not attributed tih
HW S W tih + ti j

S W S W or not attributed tis
S W HW tis + ti j

not attributed any type 0

Ford algorithm for finding the shortest path by reversing signs on weights in the graph.

4.3 MiniMax Algorithm

To choose the best possible move, each of the two players (A and B) uses the MiniMax algorithm. The MiniMax algorithm
is explained in (Elnaggar et al., 2014) and in (Kang et al., 2019). The Minimax algorithm is applied in two player
deterministic games. The two players are named Max and Min and each player takes turns and has perfect information
of the possible moves of the adversary. From a given position in the game, the objective is to find the best move with
the highest score for the Max player, The principle of the MiniMax algorithm is to build a search tree (game tree) with a
given depth, the search tree represents all the possible evolutions of the game from the current position (the root) until the
given depth. The score of each player is calculated using a utility function (evaluation function) at each state in the game.
The same evaluation function is used for the two players for their scores. In the search tree, the nodes at the bottom level,
are evaluated using the utility function, and then, the upper nodes are filled until the root node. At each level which is
associated to the Max player, the moves that maximize its score are selected, similarly, at each level which is associated
to the Min player, the moves that maximize the score of Min player are selected, in the same time, these moves minimize
the score of the Max player. Fig. 7 gives an example of the search tree for the MiniMax algorithm.

Player A has the objective of minimizing the global hardware area of the system; when using the MiniMax algorithm,
player A is considered to be the Max player that tries to maximize its score, the evaluation function is defined to be equal
to the inverse of the hardware cost given in 1; player A (Max) plays virtually against a player Min that tries to maximize
its own score and consequently minimize the score of A. Similarly, player B has the objective of minimizing the overall
execution time of the system; when using the MiniMax algorithm, player B is considered to be the Max player that tries
to maximize its score, the evaluation function is defined to be equal to the inverse of the execution time given in 2; player
B (Max) plays virtually against a player Min that tries to maximize its own score and consequently minimize the score of
B.

4.4 Refinement

At the end of the game, the two partitions H and S are constructed; consequently H and S represent a solution to the
problem P1. This solution has an execution time T and a cost C. The step of refinement is used for the problem P2 or the
problem P3, where a constraint is pre-defined either on the total cost of the hardware area or on the total execution time
of the system. We consider the problem P2 where the hardware cost must respect a constraint Cmax.

The refinement is based on the 0-1 Knapsack algorithm (KP). After the construction of H and S , the objective of KP is
to select some blocks from the set H and move them to the set S in order to meet the constraint Cmax.
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Figure 7. Search tree example

The principle of the 0-1 Knapsack problem is as follows, given a set A of m items, each item ai has two parameters, a
weight wi and a value vi, the Knapsack has a capacity Wmax (maximum weight). The objectif is to solve the problem
described in 6. maximize

∑m
i=1 vi

s.t
∑m

i=1 wi ≤ Wmax
(6)

A parameter ri is calculated for each item i, ri = vi/wi represents the value-to-weight ratio for each item. The items are
then sorted in the decreasing order according to ri: r1 ≥ r2 · · · ≥ rn. The initial capacity is Ckp = Wmax, at each iteration
of the algorithm, the first item k with the weight wk ≤ Ckp is selected and added to the Knapsack set S kp, and then the
capacity is updated: Ckp = Ckp − wk, the algorithm stops when no item fits in the capacity Ckp.

If C > Cmax, the weight and the value of each block of the hardware set H are calculated. For a block Bi ∈ H, we calculate
the new hardware cost Cnew and new execution time Tnew as if Bi were implemented in S W. The weight and the value of
Bi are as follows:

• wi = Tnew − T

• vi = C −Cnew

The blocks in the hardware set H are then sorted in the decreasing order according to the parameter ri = vi/wi, the blocks
are then moved to the software set S one by one until the meeting of the constraint Cmax.

If C < Cmax, the weight and the value of each block of the software set S are calculated. The objective is to move some
blocks from the set S to the set H in order to get more optimal execution time while respecting the constraint Cmax. For a
block Bi ∈ S , we calculate the new hardware cost Cnew and new execution time Tnew as if Bi were implemented in HW.
The weight and the value of Bi are as follows:

• wi = Cnew −C

• vi = T − Tnew

The blocks in the hardware set S are then sorted in the decreasing order according to the parameter ri = vi/wi, the blocks
are then moved to the hardware set H using the KP algorithm with the capacity Cmax −C.

5. Experiments

In this part, we consider the problem P2 which consists of minimizing the system’s execution time under a constraint on
the hardware cost. We verify the of the proposed approach results with the results of the Genetic Algorithm (GA) and
the Simulated Annealing algorithm (S A). The three algorithms were implemented in Java and executed under Windows
10 on Dell (Intel Core (TM) i5-6300; 2.4 GHz; 8 GB of RAM). The parameters of each block Bi (cih, cis, tih and tis), the
communication cost (ci j) and communication the execution time (ti j) were generated randomly with values between 0 and
10, with the respect of the following conditions:
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Figure 8. Comparison of the system’s hardware cost between the three algorithms and the cost constraint

Figure 9. Comparison of the system’s execution time between the three algorithms

• cis ≤ cih, ci j ≤ cih

• tih ≤ tis, ti j ≤ tis

The constraint of the hardware cost Cmax was also generated randomly between the minimum and the maximum hardware
cost of the system. We made a serie of tests while varying the number of the blocks of the system from 5 to 350.

For the GA algorithm, each individual (chromosome) from a population is encoded using binary encoding scheme, if
the ind gene is equal to 1 (0), then its corresponding block Bi is implemented in HW (SW). For the S A algorithm, each
solution is also encoded using binary encoding scheme. As the objective is to minimize the execution time under the
hardware cost constraint, we defined the fitness function for the GA algorithm and the cost function for the S A algorithm
as follows: F = 1/T

F = F × (Cmax/C)5 i f C > Cmax
(7)

The term (F = F × (Cmax/C)5) is used to add penalty on the fitness (cost) function if the hardware cost constraint is
violated. Fig. 8 gives the comparison in term of hardware cost between the three algorithms; the proposed algorithm and
the S A algorithm give better cost compared to the GA algorithm for systems with small number ob blocks (N ≤ 100),
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Figure 10. Comparison between the speedup of the three algorithms 

 

when the number of blocks increases, the S A algorithm and the GA algorithm don’t respect the cost constraint 

while the cost given by the proposed algorithm is always under the cost constraint. 

Fig: 9 gives the comparison in term of system’s execution time between the three algorithms; the results show 

that the proposed algorithm leads to more optimal execution time for almost all the tests and particulalry when 

the number of the blocks is big. 

Fig: 10 gives the comparison between the speedup of the three algorithms in milliseconds, the figure show that 

the proposed approach is very fast compared to GA and S A algorithms. 

6. Conclusions 

In this article, we proposed a novel heuristic approach to deal with the Hardware Software Partitioning problem 

in Multiprocessors embedded systems. The proposed algorithm is based on game theory and especially on the 

GO game and using the Minimax algorithm. The objective is to simultaneously optimize the two most important 

parameters of the system, the global hardware cost and the overall execution time. The proposed algorithm was 

also enhanced to solve the HS P problem with the goal of optimizing one parameter under a given constraint on 

the other parameter. Experiment results showed that the system’s performances (execution time and hardware 

cost) calculated while applying the proposed approach are more optimal compared to the Genetic Algorithm and 

to the Simulated Annealing algorithm. Experiment results showed also that the proposed algorithm is very fast 

compared to GA and S A algorithms. In the work, we will add the alpha-beta pruning to the Minimax algorithm 

which will augment the speedup of the algorithm, we will also extend the proposed algorithm to deal with an HS 

P problem with the goal of minimizing several parameters of the system. 
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