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Abstract 
Over the last decades, software development effort estimation has integrated new approaches dealing with 
uncertainty. However, effort estimates are still plagued with errors limiting their reliability. Thus, estimates error 
management at an organization level provides a promising alternative to the classical approaches dealing with 
single projects as a portfolio can afford more flexibility and opportunities in terms of risk management. The most 
widely used approaches in risk management were mainly based on the Gaussian approximation that shows its 
limits facing “ruin” risk associated to unusual events. The aim of this paper is to propose a Multi-Projects Error 
Modeling framework to characterize error at a portfolio level using bootstrapping, mixture of Gaussians and power 
law to emphasize the tail behavior respectively. 
Keywords: project management, project portfolio, risk management, software error estimation 
1. Introduction 
1.1 Introduce the Problem 
Software development effort estimation (SDEE) is a highly critical activity in software project management. Since 
estimating the effort required to develop a software project has a direct impact in costs control through the whole 
project lifecycle, the effort estimates can directly impact the project profitability leading to the project success or 
failure (Wen et al., 2012).  
SDEE has gained increasing attention and considerable researches and studies investigated numerous techniques 
in order to provide accurate estimates. In the systematic literature review (SLR) of software effort estimation 
studies performed between 2000 and 2004 conducted by (Jørgensen et al., 2007) 11 estimating techniques in 304 
selected studies have been identified. In spite of all these efforts, the industry is still plagued with unreliable 
estimates. 
As effort estimation techniques did not success giving reliable estimates in all situations (Kitchenham et al. 1997), 
estimations always go hand in hand with risks (Patil 2007). Thus, estimates error assessment is a challenging and 
complex task as error sources are various and inherent to the effort estimation process.  
Kitchenham et al. (1997) have identified four different sources of error: (1) attributes measurement error that 
concerns the input variables; (2) model error that corresponds to the inherent limitation of a theoretical approach; 
(3) assumption error related to any inappropriate assumption made concerning the context and especially the 
model’s input parameters; and (4) scope error caused by the application of the model to a project outside the 
estimating domain. 
Furthermore, Kitchenham et al. (1997) suggest that managing error in SDEE should be investigated at an 
organizational level and not for a single project. In fact, a portfolio offers more possibilities in terms of risks 
management in comparison with a single project. In one hand, if a project had to ensure against all risks, the 
necessary staff and budget to protect aignst the worst case would be prohibitive. In the other hand, relying blindly 
on the lower value of estimated effort will lead organization to fatal consequences (Stamelos and Angelis 2001).  
This paper aims to explore Kitchemahm et al. (1997) assumption concerning error management at an 
organizational level for model error type. It consists of a primary step proposing a quantitative approach to model 
error at the portfolio level. This step is necessary in order to manage risks, since modeling a portfolio error provides 
the basis for risk analysis enabling designing the adapted risk buffers, as in finance and insurance.  
Our proposed Multi-Projects Error Modeling Framework (MPEM) relies on bootstrapping technique to increase 
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the number of estimates and tail events concept to better manage risk. In fact, to the best of author’s knowledge, 
the concept of tail events has not been investigated in combination with bootstrapping to deal with error in SDEE. 
Tail events correspond to unusual events with a very low probability of occurrence that can have a high impact on 
the portfolio profitability. In fact, tail events are associated with tail risks since they are so extreme and unexpected 
that they can cut deeply into the portfolio strategy (Taleb 2010). 
This idea took a high importance in 2008 after global markets nosedived and traumatized investors (Bhansali, 
2008). Thus, the challenge was to figure out how to protect investments from extreme events causing massive 
losses. This interest was revving up again as revolutions in the Middle East and Japan's earthquake have 
destabilized markets and increased volatility (Bhansali, 2008). Nevertheless, bootstrapping has already been used 
in SDEE error management to increase the number of samples and estimates (El Koutbi et al., 2016). Especially: 
- Laqrichia et al. (2015) proposed a method based on bootstrapping to deal with uncertainty using neuronal 
networks based effort estimation. 
- Angelis and Stamelos (2000) improved the accuracy of Analogy-based effort estimation technique by means of 
bootstrapping.  
- Stamelos and Angelis (2001) investigated the concept of error over projects portfolio in order to manage errors 
over several projects by providing associated confidence intervals to point estimates over an interval.  
In this work, we use bootstrapping to explore the effort estimation technique behavior over different samples in 
order to provide a wide range of possible estimates. Based on the bootstrapped estimates, we propose an error 
handling framework consisting of two main steps: 
1) a combination of two Gaussians is used to fit the body of error distribution, and 2) the power law distributions 
were used to approximate the right and left tails.  
This framework generates an error distribution which is more representative to model error and integrates the tail 
events. The main contributions of this study are to:  
(1) propose a framework to deal with error at an organization level whatever the estimation technique used,  
(2) integrate tail risk associated to tail events, and 
(3) evaluate the proposed framework using Analogy-based effort estimation technique over five datasets.  
To this end, we investigate the following research questions: 
(RQ1): Is there any evidence that model error management is more suitable at a portfolio level than at a single 
project level? 
(RQ2): Does the MPEM suits to the portfolio error over different datasets? 
(RQ3): Does the MPEM outperform the classical Gaussian approximation? 
This paper is organized as follow. Section 2 provides an overview of related works about error in SDEE while 
Section 3 gives insights into the Gaussian model, tail risk, mixture distribution and bootstrapping. Section 4 
presents the MPEM framework dealing with model error at an organization level. Section 5 focuses on evaluation 
criteria and presents the experimental design of this study. Section 6 reports and discusses the results obtained. 
Section 7 underlines the threats of validity. Section 8 summarizes conclusions and future work. 
2. Related Work 
In a systematic mapping study of dealing with error in SDEE, El Koutbi and al. (2016) analyzed 19 selected studies 
published between 1990 and 2015. The objective was to emphasize error approaches and classify them from six 
different viewpoints: research approaches, contribution types, accuracy criteria, datasets, error approaches and 
effort estimation techniques used. The main findings were the following: 
- There was a balance between studies proposing a managerial approach to error in SDEE and those developing a 
technique, framework or model to deal with error.  
- Over the studies proposing a technique, framework or model to deal with error in SDEE, 58% were for specific 
effort estimation techniques while 42% were adapted whatever the SDEE technique used. Both categories were 
new solutions proposal rather than improvements to existing approaches. 
- Most of the studies selected (89%) did not indicate which error types were investigated and none of the proposed 
techniques dealt with the four types of error sources. 
- No error technique was dominant. Still, the most used techniques were based on bootstrapping (11%) and fuzzy 
logic (16%).  
- 47% of selected studies used MRE (magnitude relative error) based accuracy criteria such as MMRE (mean of 
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MRE), MdMRE (median MRE) and Pred (Prediction Level), while only 21% of studies used confidence intervals. 
- Only one study (5% of selected studies) investigated error over more than one project and over a portfolio 
(Stamelos and Angelis 2001).  
Table 1 presents the findings of six selected studies as well as information including the effort estimation technique 
used, accuracy metrics and the error approach in each study especially for Stamelos’s approach of portfolio error 
management based on bootstrapping (Stamelos and Angelis 2001). 
 
Table 1. Literature overview of dealing with error in SDEE 

Author (s) Proposed SDEE Error approach Accuracy metrics 

Effort 

estimation 

technique  

Findings/Methodology 

Moataz Ahmed, 

Zeeshan Muzaffar 

A type-2 fuzzy logic based framework 

handling both imprecision and 

uncertainty in SDEE (Moataz et al. 

2009) 

RMSRE, Pred (25, 10) ML estimation 

techniques 

Use usually type-1 fuzzy logic to deal with imprecision. That shows promising results but has some limitations 

since it cannot help managing uncertainty. The article investigates type-2 fuzzy logic and proposes a type-2 fuzzy 

logic based framework to handle both imprecision and uncertainty. Evaluation experiments have shown interesting 

results since the type-2 fuzzy framework outperforms the classical type-1 fuzzy approach.  

Ioannis Stamelos, 

Lefteris Angelis 

Managing uncertainty over a portfolio 

of projects (Stamelos and Angelis 2001) 

Confidence intervals Analogy-based Propose to manage SDEE error at a portfolio level. In fact, software development organizations are usually involved 

in more than one project simultaneously. Most of the approaches in SDEE concern single software projects. To 

achieve the objective of project portfolio effort estimation error management, bootstrapping technique was used to 

generate all the possible costs of a project portfolio.  

Ali Idri, Taghi M. 

Khoshgooftar, 

Alain Abran 

Integrating uncertainty and imprecision 

in Case-Based Reasoning method for 

Software Cost Estimation (Idri et al., 

2002) 

Probability distribution Analogy-based Propose to integrate imprecision and uncertainty in the Analogy-based technique, since projects are described by vague 

and imprecise attributes. As a result, instead of generating one single value, it becomes possible to generate a set of 

possible values for the project effort. If needed, this set can be used to generate an end-point estimate.  

Divya Kashyap, A. 

K. Misra  

Using Genetic Algorithm and fuzzy 

numbers to deal with projects uncertainty 

in SDEE (Kashyap and Misra, 2013) 

MRE, MMRE Analogy-based 

estimation 

Deal with uncertainty associated with attributes measurement and data availability using fuzzy numbers in order to 

improve the performance of SDEE. Furthermore, Genetic Algorithms help to derive the optimal effort adjustment. 

The empirical evaluation shows that the obtained effort estimations were near to the actual efforts. 

S.Laqrichia, F. 

Marmiera, 

D.Gourca, J. 

Nevouxb 

Integrating uncertainty in software effort 

estimation using Bootstrap based Neural 

Networks Laqrichia et al. (2015)

  

MMRE, Hit rate, Median Width, 

Median ARPI 

Neural 

Networks 

Use bootstrap resampling technique to improve the accuracy of a neural network based effort estimation technique. In 

fact, taking into account uncertainty enables generating a probability distribution of effort estimates with a prediction 

interval associated to a confidence level. The proposed empirical evaluation method has shown that the proposed 

method outperformed traditional linear regression effort estimation. 

Yeong-Seok Seo, 

Kyung-A Yoon, 

Doo-Hwan Bae 

Using estimation error-based data 

partitioning to improve the accuracy of 

SDEE Multiple Least Square Regression 

Models (Seo et al. 2009)  

MMRE, MdMRE, 

PredMRE(0.25), PredMRE(0.5), 

MMER, MdMER, 

PredMER(0.25), PredMER(0.5)

Least Square 

Regression 

Least Square Regression (LSR) is one of the well-known and widely used methods for SDEE estimation. Still, this 

technique is largely affected by data distribution. Thus, this study considered the distribution of historical software 

projects data as an important element impacting the effort estimation accuracy of a LSR model. It uses a data 

partitioning method using the MRE and MER accuracy measures to improve effort estimation accuracy of LSR.  

 
3. Background 
This section provides an overview of the main concepts and approaches explored in this paper. 
3.1 Gaussian Model 
Gaussian distribution is a widely used continuous mathematical function characterized by a symmetric bell curve 
shape and used in many application fields (Feller, 1971 and Kenney et al., 1951). Thanks to the known central 
limit theorem, it takes an important place in statistics and probability (Spiegel, 1992 and Kraitchik, 1942). Indeed, 
under specific conditions, it corresponds to the behavior of series of similar and independent random experiments 
when the number of experiments is very important. This property makes it possible to approach other laws with 
normal distributions.In statistics, the Gaussian distribution describes normal distributions. In signal processing, it 
defines Gaussian filters to enhance signal quality. In image processing, two-dimensional Gaussians are used for 
Gaussian blurs. In mathematics, it helps solving heat and diffusion equations and to define the Weierstrass 
transform. In SDEE, it can model the effort estimation distribution as proposed by Kitchenham et al. (1997). 
The probability density of the Gaussian distribution is defined for 𝑥 ∈ ℝ as follows (Papoulis, 1984): 

𝑓(𝑥|𝜎, 𝜇) = ( )
                                    (1) 

where μ is mean or expectation of the distribution, σ it standard deviation and 𝜎 is its variance.  
The Gaussian distribution can also be expressed with standard normal distribution: 
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𝑓(𝑥|𝜎, 𝜇) = 𝜙( )                               (2) 

where 𝜙 designates the standard normal distribution 𝜙(𝑥) = √  

Historically, the Gaussian distribution appeared as the limit law in the central limit theorem using its cumulative 
distribution function. It is then useful to define its cumulative function. 
The cumulative distribution function of the standard normal distribution is usually denoted Φ and defined as: Φ(x) = √ 𝑒 𝑑𝑡                                  (3) 

 
Figure 1, Gaussian distribution probability and cumulative function curves for 𝜇 = 0 𝑎𝑛𝑑 𝜎 = 1 

 
3.2 Tail Risk 
Risk tail is a concept used in risk management, especially in financial markets. Since 2008, it took an important 
place in financial risk analysis especially after Wall Street global markets falls and panicked investors. The main 
issue was then to figure out how to protect investments from extreme events that cause massive losses (Vineer, 
2008). The black swan metaphor was used by Taleb, to describe an event that comes as a surprise, has a major 
effect, and is often inappropriately rationalized after the event occurrence (Taleb 2010). In fact, the common 
technique used in finance to estimate the distribution of changes in price is a Gaussian approximation. This 
approach underestimates the values moving more than three times of standard deviations in comparison to the 
current price. Tail risk is then the risk of an asset or portfolio of assets moving more than times of standard 
deviations from its current price (Taleb, 2015).  
In reality, tails may be “fatter” than expected in traditional portfolio strategies relying on Gaussian bell curves to 
make market assumptions. Markets did not tend to behave “normally” since over the past three decades significant 
market collapses have occurred, resulting in “fatter” tails that a normal curve would predict. These unexpected 
collapses quickly spread panic across markets, creating a downward spiral of declines affecting a large spectrum 
of investments. Since they are so widespread and their magnitude so difficult to predict, tail events can have a 
devastating impact on portfolio returns corresponding to what is call “ruin” in insurance literature (Trevir, 2015). 
Figure 2 shows that the most probable returns, in a Gaussian bell curve, are concentrated in an interval near to the 
center, which is the average/mean expected return. The tails on the far left and far right represent the least likely 
and most extreme outcomes (i.e. lowest returns on the left and highest returns on the right). For long-term investors, 
the ideal portfolio strategy will seek to minimize left tail risk without curtailing right tail growth potential. 
In general, a tail risk is associated to an event with a small probability of happening. The term comes from looking 
at bell curve distributions. The tails of the bell curve extend out to plus or minus infinity with ever-decreasing 
probabilities. 
The associated probability of occurrence is small, if not tiny, in comparison with the “body” of the distribution. 
Still, the associated consequences of these events are extreme. Thus, it represents an important concern for risk 
management.  
In the rest of this paper, we use the following definitions (Taleb, 2015): 

• Tail event is an event with small probability that takes place away from the center of the distribution.  
• Tail risk is associated to events that take place away from the center of the distribution. Tail risk is 

crucial for risk management even if the body distribution takes generally more attention. 
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According to Robertson et al. (1969), the distribution of a random variable X is said to have a fat tail if: 𝑃(𝑋 > 𝑥)~𝑥  𝑎𝑠 𝑥 → ∞, 𝛼 > 0                      (7) 
If 𝑋 has a probability density function 𝑓 (𝑥) 𝑓 (𝑥)~𝑥 ( ) 𝑎𝑠 𝑥 → ∞, 𝛼 > 0                       (8) 
where ~ refers to the asymptotic equivalence and α is a positive index ∈ ℝ ∗. 

 
Figure 2. Distribution of gain and losses in finance 

 
Analysis of data and the reporting of the results of those analyses are fundamental aspects of the conduct of 
research. Accurate, unbiased, complete, and insightful reporting of the analytic treatment of data (be it quantitative 
or qualitative) must be a component of all research reports. Researchers in the field of psychology use numerous 
approaches to the analysis of data, and no one approach is uniformly preferred as long as the method is appropriate 
to the research questions being asked and the nature of the data collected. The methods used must support their 
analytic burdens, including robustness to violations of the assumptions that underlie them, and they must provide 
clear, unequivocal insights into the data. 
3.3 Power Law Distributions 
Power law relations gained increasing attention over the last years and become an active topic of research in many 
fields including physics, computer science, linguistics, geophysics, neuroscience, sociology, and economics 
(Morrison and Schmittlein, 1980). In Mechanics, a power law relation can underline mechanisms that might 
emphasize an aspect of the explored phenomenon which indicate a deep connection with another. In instance, in 
physics, the ubiquity of power-law relations is partly due to dimensional constraints, while in complex systems, it 
is considered as the signature of hierarchy or some stochastic processes.  
In addition to that, much of the recent interest in power laws comes from the study of probability distributions. 
Indeed, the distributions of a wide variety of quantities seem to follow a power-law form, at least in their tail that 
corresponds to rare events. The behavior of these tail events corresponds particularly to stock market crashes and 
large natural disasters (Coles, 2001). A few notable examples of power laws are the Pareto's law of income 
distribution, scaling laws in biological systems and structural fractals self-similarity (Guerriero, 2012).  
A power law corresponds to a relation between two quantities that follows the form: 𝑓(𝑥) = 𝑎𝑥                          (16) 
where 𝑎 ∈ ℝ and 𝛼 ∈ ℝ ∗. 
The power-law functional form can be considered as a special case of polynomial functions. Furthermore, for the 
general class of symmetric distributions with power law tails, the junction between the “body” and the “tail” of 
the distribution defines the domain of validity of the tail function. Formally, the tail starts at the crossover between 
“body” and “tail” that corresponds to (Taleb, 2015): 

∓ ( )( )√                              (17) 

where 𝛼 is the stochastic volatility and 𝜎 the standard deviation. It worth notice that 𝛼 is infinite in the Gaussian 
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case. 
3.4 Mixture Distributions 
Mixture distributions and mixture models are subjects of considerable interest in statistics. Mixture distributions 
represent a useful way of describing heterogeneity in the distribution of a variable, while mixture models provide 
a foundation for incorporating both deterministic and random predictor variables in regression models (Bruce, 
1995). 
Mixture densities are generally complicated densities expressible in terms of simpler densities (the mixture 
components). They are used because they provide a good model for certain data sets especially when different 
subsets of the data exhibit different characteristics and can be modeled separately. In addition, the individual 
mixture components can be more mathematically tractable, because they can be more easily studied than the 
overall mixture density. 
Practically, mixture densities can be used to model a statistical population with subpopulations. The weights are 
the proportions of each subpopulation in the overall population and the mixture components are the densities on 
the subpopulations. It can also be used to model experimental error or contamination. Furthermore, in meta-
analysis of separate studies, it enables studying heterogeneity causes distribution of results to be a mixture 
distribution (Frühwirth-Schnatter, 2006).  
The main idea behind mixture distributions is that the probability distribution of a random variable is derived from 
a collection of other random variables. In practice, the sample data observed is modeled as a random variable X 
that has some probability or weight wi of being drawn from distribution Di, for 𝑖 ∈ [1, 𝑛], where n is the number 
of components in the considered mixture distribution and ∑ 𝑤 = 1 . The key assumption is the statistical 
independence between the process of randomly selecting the component distribution Di and these distributions 
themselves.  
Formally, we define finite and countable mixtures as follows: 
For a finite set of probability density functions p , … , p   and weights 𝑤 , … , 𝑤   with 𝑤 ≥ 0  and ∑ 𝑤 = 1, the mixture distribution can be represented by writing either the density f, or the distribution function 
F, as a sum: 𝐹(𝑥) = ∑ 𝑤 𝑃 (𝑥)                               (18) 

 𝑓(𝑥) = ∑ 𝑤 𝑝 (𝑥)                                 (19) 
In the case of two distributions, we denote f the density associated with the distribution D1 and g the density 
associated with the distribution D2. Since the mixing percentages sum must be equal to 1, we denote w the 
weight associated to f and 1-w the weight associated to g. The overall probability density function p is then 
given by: 

p(x) = w f(x) + (1 – w)g(x)                            (20) 
In the case where both f(x) and g(x) are Gaussian distributions, it is interesting to explore some of the possible 
results given in (Frühwirth-Schnatter, 2006; Robertson et al., 1969 and Behboodian, 1970). 
Figure 3 shows four specific examples. Figure 3.a shows the standard normal distribution (i.e., 𝜇 = 0 and 𝜎 =1), which corresponds to taking both f(x) and g(x) as standard normal densities, for any choice of w. It represents 
a reference case in interpreting the other distributions.  
Figure 3.b corresponds to the “contaminated normal outlier distribution”, widely used in the robust statistics 
literature. Since the measurement errors are traditionally modeled as zero-mean Gaussian random variables with 
a standard deviation 𝜎, the contaminated normal outlier distribution is mostly conform to this model; however a 
fraction (10% to 20%) of these measurement errors have larger variability. The traditional contaminated normal 
model defines w as the contamination percentage and assumes a standard deviation of 3𝜎 for these measurements.  
In Figure 3.b, w is equal to 0.15 (i.e., 15% contamination). Visually, Figure 3.b has a similar shape of Figure 3.a. 
Still, A Quantile-Quantile plot can easily show that the two distributions are not identical.  
Figure 3.c shows a two-components Gaussian mixture distribution where both components are equally represented 
(i.e., w = 0.5). The first component f(x) is the standard normal distribution and the second component g(x) is a 
Gaussian distribution with 𝜇 = 3  and standard deviation 𝜎 = 3 . The first component contributes the sharper 
main peak centered at zero, while the second component contributes the broad “shoulder” seen in the right half of 
the curve.  
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Figure 3.d corresponds to a mixture distribution with w = 0.40 where the first component is a Gaussian distribution 
with 𝜇 = −2 and 𝜎 = 1, and the second component is a Gaussian distribution with 𝜇 = +2 and 𝜎 = 1. The 
result is a bimodal distribution. 

 

Figure 3. Mixture of Gaussian distributions 
 
3.5 Bootstrapping 
Efron proposed the bootstrapping in 1979 when intensive computing calculations became affordable (Efron, 1979). 
This statistical technique refers to an inference approach that relies on random sampling with replacement. The 
concept of bootstrapping relies particularly on the idea that inference about a population from sample data can be 
modeled by resampling the sample data and performing inference about resampled data, knowing that the inference 
quality over the resampled data is measurable. Practically, it allows assigning measures of accuracy to sample 
estimates, especially in terms of confidence intervals (Efron et al., 1993). 
Two different modes of bootstrapping exist: parametric and non-parametric. The non-parametric bootstrap is based 
on the empirical distribution of the historical data set without any assumption on the population distribution. The 
parametric approach is based entirely on the assumption that the dataset comes from a theoretical distribution that 
has to be approximated by a parametric model. In practice, this can be a very complicated task as the statistical 
goodness-of-fit test for multivariate distributions are rare and hardly implemented. Additionally, some variables 
need to be transformed first causing some difficulties in the implementation and the usability of the method. 
Bootstrapping is widely used in statistical analysis in different fields of interest especially in finance, insurance, 
natural disasters prediction, biology (Efron et al., 1993). In SDEE, it is used in two different ways: (1) to improve 
the performance of effort estimation techniques (Angelis and Stamelos, 2000) or (2) to manage error at a portfolio 
level (Stamelos and Angelis 2001). In fact, since effort estimation techniques produced in general a single estimate, 
the bootstrap method helps calculating a confidence interval for a point estimate (Tukey, 1958).  
In practice, when dealing with a random sample of size n, this sample can provide single point estimation. In order 
to provide other estimates, we need several samples of the same size. Then, bootstrapping enables generating 
samples by replacements. That corresponds to the procedure where a random number generator selects integers  
i1, i2, … in between 1 and n with the probability 1/n. These integers determine which members of the original 
sample were selected to be in the new random sample. As a consequence of this approach, in every new sample, 
there are data points which appear more than once. 
4. A New Framework MPEM to Portfolio Model Error Management 
Model error corresponds to the inherent error of the effort estimation technique. A SDEE model error is mainly 
due to: 1) a model is an abstraction of reality and it may therefore produce inaccurate estimates when it is evaluated 
in different contexts; and 2) a model cannot in general consider all the relevant cost drivers since it only used the 
available and known ones. Thus, this paper proposes a novel approach MPEM to better manage model error at a 
portfolio level. To do that, we use a mixture of Gaussian distributions in combination with the power law. 
Widely used in probability and statistics, Gaussian distribution has already been used in SDEE. In fact, El Koutbi 
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and al. explored an entropy-based framework (El Koutbi and Idri, 2017) and showed that a Gaussian distribution 
is plausible to deal with effort estimation error of a single software project. According to Kitcheham et al (1997), 
the use of distributions to assess waiting times seems to be plausible, since estimating a project effort concerns the 
required time for software development tasks. Gaussian function is then a useful model thanks to its characteristics 
(symmetry, differentiability, and continuity) presented in Section 2.1.  
Nevertheless, Gaussian distribution presents some limitations to deal with risk at a portfolio level. As shown in 
Figure 4, it is conventionally calibrated to deliver exactly a 99% confidence interval that corresponds to 6σ interval 
width; this mechanic doesn’t take into account the tail risk as defined in Section 2.2. 
In order to overcome the 6σ “tunnel effect” of Gaussian distribution, the MPEM framework takes into account the 
tails events.  
In the rest of this section, let us consider a historical dataset of n projects. As shown in Figure 5, each project Pi is 
described by a set of k attributes Xjs, xij are their values, and Eacti is its actual effort. MPEM consists of three steps: 
4.1 Step 1: Boostrapping  
This step aims to increase the number of effort estimates in order to strength the statistical inference and build a 
model that can be represented by continuous functions. We generate for each project 𝑃 , using bootstrapping, 𝐵 
estimates based on 𝐵 different samples. 𝐵 should be as large as possible to generate a highly significant number 
of samples.  

 

Figure 4. Gaussian distribution limitations 
 
We denote 𝐸𝑒𝑠𝑡  the effort estimate of project 𝑃  generated using the bootstrapped sample 𝑆 , where 𝑙 ∈ ⟦1, 𝐵⟧. 
The deviation Dil associated to the estimate 𝐸𝑒𝑠𝑡  is defined as:  𝐷 = 𝐸𝑒𝑠𝑡 − 𝐸𝑎𝑐𝑡                                   (21) 

 
 X 1 X2 … Xk 

Estimated 
effort 

Actual 
effort 

Project 1 x11 x12 … x1k Eest1 Eact1 
Project 2 x21 x22 … x2k Eest2 Eact2 
… … … … … … … 
Project n xn1 xn2 … xnk Eestn Eactn 

Figure 5. Effort estimation initial data 
 
Figure 6 presents a formulation that corresponds to a transformation of the SDEE initial data of Figure 5.  
 

 Sample 1 Sample 2 … Sample B 
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Project 1 D11 D12 … D1B 
Project 2 D21 D22 … D2B 
… … … … … 
Project n Dn1 Dn2 … DnB 
Figure 6. Effort estimation formulation using bootstrapping  

 
Based on the B samples, we generate the deviation distribution vector, denoted 𝐷, where 𝐷 ∈ ℝ . This vector 
contains all the computed deviations 𝐷 = 𝐷 , … , 𝐷 . 
4.2 Step 2: Body distribution modeling 
The objective of this step is to approximate the generated bootstrapped deviations by the means of a mixture of 
two Gaussians following the scheme of a “contaminated normal outlier distribution” shown in Figure 3.b. This 
step enables to fit the “body” of the deviation distribution. 
Based on vector D, a first approximation of Equation (22) is used. 

ℎ (𝑥) =  𝑘 ( ) + 𝑘 ( )                                (22) 

where 𝑘 ∈ ℝ  𝑓𝑜𝑟 𝑖 ∈ ⟦1,2⟧ are proportionate scaling factors, 𝜇 and 𝜇 are the Gaussian means and 𝜎 and 𝜎  
Gaussian deviations. 
 

 
Figure 7. MPEM error distribution 

4.3 Step 3: Tails Distribution Modeling  
Step 3 focuses on tails and approximate them using power law functions. Based on Equation (17), we use the 
following formulation for tails modeling: ℎ (𝑥) = 𝟙[ , ]. 𝑘 𝑎𝑏𝑠(𝑥) + 𝟙[ , ]. 𝑘 𝑥                      (23) 
where 𝛼 , 𝛼 ∈ ℝ  , 𝑘 , 𝑘 ∈ ℝ  and 𝑎 , 𝑎 ∈ ℝ 
Figure 7 shows the final shape of the MPEM distribution. The body corresponds to the mixture of two Gaussians. 
At the shoulders a1 and a2, the distribution corresponds to the superposition of the Gaussians dropping down and 
the power law functions. It is worth precise that the tails functions could be different resulting in a non-symmetric 
curve. 
Formally, the proposed density h associated to vector D is the following: 
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ℎ(𝑥) = ℎ (𝑥) + ℎ (𝑥) =  𝑘 ( ) + 𝑘 ( ) + 𝟙[ , ]. 𝑘 𝑎𝑏𝑠(𝑥) + 𝟙[ , ]. 𝑘 𝑥    (24) 

where 𝑘 ∈ ℝ  𝑓𝑜𝑟 𝑖 ∈ ⟦1,4⟧, 𝜇 and 𝜇  are the Gaussian means, 𝜎 and 𝜎  Gaussian deviations, a1 and a2 are 
the shoulders as defined in Equation 17 ( with 𝜎 = max (𝜎 , 𝜎 ) and 𝛼 = 𝛼  for 𝑎  and 𝛼 = 𝛼  for a2) and 𝛼  𝑎𝑛𝑑 𝛼 ∈ ℝ . 
5. Experimental Design 
This section presents the experimental design used in this study. First, it highlights the performance measures used. 
Second, it gives an overview of the experimental process. Last, descriptions of the datasets and the Analogy-based 
effort estimation techniques used in this experiment were presented. 
5.1 Performance measures 
In order to measure the performances of the MPEM framework and answer the three RQs of Section 1, we evaluate 
the MPEM associated Goodness Of Fit (GOF).The GOF of a model describes how well a model fits into a set of 
observations. In particular, it quantifies and summarizes the discrepancy between observed and expected values 
(Maydeu-Olivares et al., 2010). GOF measures have been used for statistical hypothesis testing and variance 
analysis in different fields (MacCallum et al., 1992; MacCallum et al. 1993). 
This empirical study uses GOF: (1) to quantify the overall and piecewise quality of fit of the MPEM distribution, 
and (2) to compare the MPEM performances to those of the classical Gaussian distribution. As proposed by 
Maydeu-Olivares et al. (2010), we define 3 types of criteria measuring: (1) the overall quality of fit, (2) the 
piecewise quality of fit and (3) the model quality respectively. 
Let us consider a set of observations on m discrete random variables. The observed responses can be modeled by 
a vector of size m. Assessing the GOF of a model involves assessing the discrepancy between the observed 
proportions and the expected probabilities for the n variables.  
Formally, for 𝑖 ∈ [1, 𝑚], we denote 𝜋  the probability of the ith variable and pi the observed proportion.  
For model probabilities expressed as a function of q model parameters, 𝜋(𝜃) is the vector of model probabilities 
to be estimated from the data. The null hypothesis to be tested can be expressed as: 𝐻 ∶  𝜋 = 𝜋(𝜃) that corresponds to the model holds, against 𝐻 ∶  𝜋 ≠ 𝜋(𝜃) 
5.1.1 Overall Fit Assessement 
To establish whether an observed frequency distribution differs from a theoretical one, two standard metrics were 
used for discrete data: Pearson’s statistic and the likelihood ratio (Maydeu-Olivares et al., 2010). 
The Pearson's statistic uses a measure of goodness of fit which is the sum of differences between the observed and 
the expected outcome frequencies each squared and divided by the expectation, as shown in Equation (25). 𝑋 = ∑ (𝑝 − 𝜋 ) 𝜋⁄                              (25) 
Moreover, the likelihood ratio expresses how many times likely the observed data are under the expected model 
frequencies. The likelihood ratio is formally defined bu Equation (25): 𝐺 = 2 ∑ 𝑝 ln ( )                                 (26) 

The associated p-values for both statistics can be obtained using a chi-square distribution with n- q-1 degrees of 
freedom when maximum likelihood estimation is used (Levenberg, 1944). 
In addition to these measures and in order to find out how the observed values are significantly different from 
those of the proposed model, we perform the well-known Chi-Square 𝜒  goodness of fit test (Bagdonavicius et 
al., 2011) with the 𝐻   hypothesis that the model holds against 𝐻   that the model doesn’t hold. The p value 
returned by the 𝜒  test corresponds to the probability of observing a statistic test as extreme as, or more extreme 
than, the observed value under the null hypothesis.  
5.1.2 Piecewise Fit Assessment 
The standard method for assessing the source of misfit is the residuals use (Maydeu-Olivares et al., 2010). Formally, 
residuals vector corresponds to: 𝑟 = 𝑝 − 𝜋                                        (27) 
In practice, it is easy to extract valuable information from the normal-score of residuals than from residuals (Idri 
et al., 2014). In fact, it is difficult to find trends in inspecting the residuals knowing that the resulting residuals will 
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be either very small or very large. 
The normal-score of residuals is defined as follows: 𝑚𝑠 = ( )                                 (28) 

where SE denotes the standard error. 
5.1.3 Model quality indices 
The Akaike Information Criterion (AIC) corresponds to a measure of the model quality proposed by Akaike (1973). 
Formally, it is defined as follows: 𝐴𝐼𝐶 = −2log (𝐿) + 2𝑞                              (29) 
where L is the maximum of the likelihood function. 
The Bayesian Information Criterion (BIC) constitutes an alternative of the AIC criterion for model selection 
(Maydeu-Olivares et al., 2010). It is based on the likelihood function and it is closely related to the Akaike 
information criterion (AIC): 𝐵𝐼𝐶 = −2𝐿 + 𝑞𝑙𝑛(𝑀)                                (30) 
where M is the number of observations. 
The AIC and BIC are not used in the sense of hypothesis testing, but for comparing and selecting models. For both 
criteria, the best model corresponds to the lowest values of AIC and BIC.  
It is worth notice that both AIC and BIC combine absolute fit with model parsimony. Adding parameters to the 
model decreases both AIC and BIC. Still, the BIC penalizes by adding parameters to the model more strongly than 
the AIC (Maydeu-Olivares et al., 2010). Thus, we will use the AIC measure. 
5.2 Experimental Process 
This study aims at evaluating the performance of the MPEM framework under different contexts and compares it 
to the performance of the Gaussian distribution (RQs1-3). To do that, we use five datasets from different sources 
with a total of 1038 projects. Each dataset is considered as a portfolio since it represents a specific context. Datasets 
are described in Section 5.3. Furthermore, since MPEM can be used whatever the effort estimation technique, this 
study used the Analogy-based effort estimation technique presented in Section 5.4. In fact, (Idri et al., 2014; Wen 
et al. 2012) concluded form their systematic reviews that Analogy-based effort estimation techniques were most 
frequently used and provided in general accurate estimates in SDEE. In addition to that, Analogy-based effort 
estimation technique can model a complex set of relationships between effort and cost drivers and were easy to 
interpret and use (Shepperd and Schofield, 1997).  
The experimental process consists of two phases: The first phase generates the bootstrapped deviation distribution, 
while the second phase uses a mixture of Gaussians for the body and power laws for tails. We describe below these 
two phases: 
5.2.1 Generating the Bootsrapped Deviation Distribution 
To generate a high number of estimates for each project, we used the bootstrapping technique combined with the 
JackKnife cross-validation method (Quenouille, 1956). The Jackknife corresponds to "Leave One Out" Cross-
Validation (LOOCV) approach in which the target project is excluded from the dataset and estimated by the 
remaining projects as the historical dataset. The main advantage of LOOCV in comparison with other cross-
validation methods is that it generates lower bias and produces a higher variance estimate (Kocaguneli et al., 2013). 
Additionally, LOOCV generates the same results in a particular dataset if the evaluation is replicated, which is not 
the case for other cross-validation methods (Shepperd and Schofield, 1997). In this empirical study, we used for 
each project 1000 different bootstrapped samples (i.e B=1000), as proposed by Stamelos and Angelis (2001) . 
For each dataset, the different experimental steps were the following: 

• Step 1.1: Use the JackKnife cross-validation method and select iteratively each project as a new project.  
• Step 1.2: Generate B samples using the remaining projects. 
• Step 1.3: Estimate the new project effort using an Analogy-based estimation on each sample 
• Step 1.4: Compute the associated deviation using the actual and estimated effort values using Equation 

(21). 
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Thus, for each dataset, we end up with a deviation distribution of (1000×dataset-size) values.  
5.2.2 Applying and Evaluating the Performance of the MPEM Framework 
This phase corresponds to the bootstrapped deviation fit. To evaluate quantitatively the parameters of Equation 
(24), we use the Levenberg-Marquardt (LM) fitting algorithm (Marquardt, 1963). Also known as the damped least-
squares method, the LM algorithm is used to solve non-linear least squares problems and especially in least squares 
curve fitting (Levenberg, 1944).  
For each dataset, we proceed as follows: 

• Step 2.1: Fitting the body of the bootstrapped deviation distribution using a mixture of Gaussians 
(Equation (22). 

• Step 2.2: Evaluating the shoulder points separating the body distribution tails by means of Equation (17).  
• Step 2.3: Fitting the tails of the bootstrapped deviation distribution with power law functions using 

Equation (23). 
• Step 2.4: Evaluating the GOF of MPEM by means of metrics presented in Section 5.1. 
• Step 2.5: Comparing the GOF metrics of MPEM to the Gaussian model. 

5.3 Data Description 
To evaluate the performance of the MPEM, we select use five different datasets. The characteristics of datasets 
have a significant impact since they influence the performance of effort estimation techniques. As the selected 
datasets are diverse in terms of their sizes and their attributes, we believe that this will strengthen the findings of 
this study. These datasets includes 1038 historical projects from two repositories: 
(1) The PRedictOr Models In Software Engineering (PROMISE) is publicly available online data repository 
(Menzies et al., 2012). We selected six datasets from this repository : COCOMO81 (Boehm, 1984), China dataset 
(Menzies et al., 2012), Deharnais 1989), and Maxwell (2002). Tables A.1–A.6 of Appendix A list the corresponding 
cost drivers of the six PROMISE datasets. 
(2) The International Software Benchmarking Standards Group data repository (ISBSG) is data repository of 
projects contributed by organizations across the world and maintained and measured, using a recognized functional 
size measurement method, by the non-profit ISBSG organization (Lokan et al., 2001). The 8th release of the ISBSG 
repository, used in this study, contains more than 2000 software projects that are described by more than 50 
numerical and categorical attributes. To exploit these data, we conduct a pre-processing to select projects and 
attributes in order to retain only data with high quality (Amazal et al., 2014; Amazal et al., 2014 September; Idri 
et al., 2012; Idri et al., 2015).  
This performed pre-processing consists of two steps: selecting projects and selecting attributes. 

(i) Selecting projects 
To select the historical projects with high quality data, we used the following four criteria as described in 
(Amazal et al., 2014; Amazal et al., 2014 September; Idri et al., 2012; Idri et al., 2015) :  
(1) The projects selected for this study, are those with a Data Quality Rating A or B. In fact, the Data Quality 
Rating field contains an ISBSG rating code (A, B, C, or D) provided by the ISBSG quality reviewers. This 
code represents the soundness and integrity of the data of each project: “A = The data submitted was assessed 
as being sound with nothing being identified that might affect its integrity. B = The submission appears 
fundamentally sound but there are some factors which could affect the integrity of the submitted data. C = 
Due to significant data not being provided, it was not possible to assess the integrity of the submitted data. D 
= Due to one factor or a combination of factors, little credibility should be given to the submitted data.”  
(2) The projects with resource levels 1 or 2 are selected since the development effort in SDEE literature 
includes only the effort expended on the activities of the development team and its support. Indeed, the 
resource levels field indicates the type of data collected about the people whose time is included in the work 
effort data reported. Four levels of resources were identified: “1 = development team effort (e.g. project team, 
project management, project administration). 2 = development team support (e.g. database administration, 
data administration, quality assurance, data security, standards support, audit & control, technical support). 3 
= computer operations involvement (e.g. software support, hardware support, information center support, 
computer operators, network administration). 4 = end users or clients (e.g. user liaisons, user training time, 
application users and/or clients.”. 
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(3) The projects selected are those that used the IFPUG as a counting approach. The Counting Approach field 
concerns the technique used to count the function points, such as IFPUG, NESMA, or COSMIC-FFP. This 
choice was motivated by the fact that some of the effort drivers in Table A.7 of Appendix A, such as Input 
Count, Output Count, and File Count, are only relevant for the IFPUG technique. 
(4) The projects with new development type. The Development Type field indicates whether the included 
project is a new development, an enhancement, or a redevelopment. Since we are dealing with software 
development effort, the projects included here are those representing new development. 

Table 2 summarizes the quality criteria for project selection. 148 projects satisfying all the criteria were selected. 
 
Table 2. Data Quality criteria for project selection 

Criteria Selected values Discarded Values 
Data Quality Rating A or B C and D 
Resource Levels 1 or 2 3 and 4 
Counting Approach IFPUG NESMA, COSMIC-FFP, etc. 
Development Type New DevelopmentEnhancement and Redevelopment 

 
(ii) Selecting attributes 
Several studies have investigated attributes selection in SDEE exploring different techniques such as fuzzy logic 
(Azzeh et al., 2008), genetic algorithms (Li et al., 2009; Milios et al., 2011), and statistical methods (Wen et al., 
2009). To identify the ISBSG attributes to be used as effort drivers from more than 50 numerical and linguistic 
attributes, we consider the attributes for which the estimators believe that they are relevant for effort estimation, 
and they are the most appropriate in their environment. Ten numerical attributes were selected from the ISBSG 
dataset, as they are usually considered in the literature as relevant effort drivers (Idri et al., 2012; Wen et al., 2009). 
The ten selected attributes of the ISBSG dataset are given in Table A.7 of Appendix A. 
Table 3 provides the main statistics of the seven selected datasets, including the number of attributes, the number 
of historical projects, the unit of effort, and the minimum, maximum, mean, median, skewness and kurtosis of 
efforts.  
For the China, Desharnais and ISBSG datasets, the effort is measured by man-hours while it is measured by man-
months for the other datasets. The statistics of Table 3 suggests that the effort values of all datasets are not normally 
distributed, since their skewness coefficients are different from zero and none of their kurtosis coefficient is equal 
to three.  
Additionally, the COCOMO’81 version used in this study is composed of 252 projects knowing that the original 
COCOMO’81 contains only 63 projects. In fact, each cost driver is measured using a rating scale of six linguistic 
values (very low, low, nominal, high, very high and extra-high). 
For each couple of project and linguistic value, four numerical values have been randomly generated according to 
the classical interval used to represent the linguistic value (63*4=252, see (Idri et al., 2006) for details on how we 
have obtained 252 from 63 projects). 
 
Table 3. Descriptive statistics of the five datasets 

Dataset Size Unit #AttributesEffort 
          Min      Max    MeanMedian Skewness Kurtosis
COCOMO81 252 Man/months 13 6 11400 683.44 98 4.39 20.5 
China 499 Man/hours 18 26 54620 3921.04 1829 3.92 19.3 
Desharnais 77 Man/hours 12 546 23940 4833.90 3542 2.03 5.3 
ISBSG 148 Man/hours 10 24 60270 6242.60 2461 3.05 11.3 
Maxwell 62 Man/hours 23 583 63694 8223.20 5189 3.22 15.5 

 
5.4 Analogy-Based Effort Estimation Technique 
This study uses an Analogy-based effort estimation technique. In fact, the Analogy-based approach seems to be an 
interesting alternative to other traditional software effort estimation techniques (Idri et al., 2002). The classical 
Analogy process as proposed by Shepperd and al. (1997) consists of three steps: (1) Identification of cases; (2) 
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Retrieval of similar projects; and (3) Case adaptation, detailed below.  
5.4.1 Identification of cases 
A software project is described by a set of attributes that are believed to be pertinent for effort estimation. These 
attributes constitute the main inputs to the effort estimation method. In addition, they serve as a basis for finding 
the historical projects that are similar to the target one.  
The identification of cases step aims to select the optimal subset of features describing a software project. It 
represents a critical task with a direct impact on the similarity evaluation. In this context, different techniques have 
been explored such as statistical methods, fuzzy logic and genetic algorithms (Amazal et al.,2014 September; 
Shepperd and Schofield, 1997). In this study, we use the attributes detailed in Appendix A. 
5.4.2 Retrieval of Similar Cases 
To identify the similar projects and select the closest ones, the retrieval of similar cases step assessed the level of 
similarity between the target project and the historical ones. The similarity between projects can be calculated 
using different similarity measures, proposed in literature (Wu et al., 2013). 
In this study, we used the well-known widely used Euclidean distance given by Equation (31). 𝑑 𝑃 , 𝑃 = ∑ (𝑃 , − 𝑃 , )                            (31) 

where: 𝑑  is the number of attributes that describe the projects, 𝑃 ,   and 𝑃 ,  are values of the lth attribute of 
projects 𝑃 and 𝑃 . 
5.4.3 Case Adaptation  
To generate the target project effort estimation, it’s necessary to aggregate the actual efforts of the similar historical 
projects using an adaptation technique. Several adaption techniques have been investigated especially average 
(Azzeh et al., 2011), median (Angelis et al ., 2000) and inverse ranked weighted mean (Michelle et al., 2000). In 
this paper, we used Average adaptation strategy with two different analogues. 
6. Empirical Results and Discussion 
This section presents and discusses the empirical results when evaluating the MPEM framework according to the 
experimental design detailed in section 5. We first deal with the bootstrapped deviation distributions over the five 
datasets. Next, we set the parameters of the MPEM framework and the Gaussian models, and compare their GOF 
performances. All the evaluations used a software prototype under Matlab 7.0.  
6.1 Bootstrapped Model Deviation 
This section focuses on the bootstrapped distributions of model deviation generated by using the JackKnife 
evaluation method over the five datasets. It aims to analyze and emphasize the bootstrapped model deviation for 
both levels: single project and portfolio of projects. 
6.1.1 Bootstrapping relialibilty evaluation 
In order to evaluate the bootstrapping to deal the model behavior, we define for a project Pi the reliability Ri as 
follows: 𝑅 = ∆                                   (32) 

where for each project Pi, 𝐸𝑎𝑐𝑡  is the actual effort, 𝐸𝑒𝑠𝑡  is its estimated effort using the Jackknife technique, ∆𝐸  is the bootstrapping width and n the dataset size. 
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Figure 8. Reliability over the five datasets 
 
The bootstrapping width ∆𝐸  corresponds to: 𝑚𝑎𝑥 ∈[ , ] 𝐸𝑒𝑠𝑡 − 𝑚𝑖𝑛 ∈[ , ] 𝐸𝑒𝑠𝑡 , where Estij is the estimated 
effort of project 𝑃  using the sample j.  
The reliability quantifies the number of times deviation differs from the bootstrapping width. 
As shown in Figure 8, we notice that:  
(1) Reliability is concentrated (more than 80% of occurrences) around 0 over the interval [-1,+1] for the five 
datasets. 
(2) The reliability shape differs from a dataset to another. COCOMO’81, ISBSG and Desharnais present a bell 
curve whith highly concentrated values distribution around 0 and gradually decreasing concentration of values 
moving from 0; while China and Maxwell have a more decreasing behavior. 
(3) Over the five datasets, the reliability of values dispersion vary within [-0.8, 1] for COCOMO’81, [-2.5, 2.5] 
for Desharnais, [-5, 6] for ISBSG, [-1,2.5] for China, and [-1.5,7.5] for Maxwell. 
These results suggest the importance of bootstrapping in representing the model behavior since over the five 
datasets, most of reliability values (80% to 100%) are within the interval [-1,1]. This means that the absolute 
deviation is lower than the bootstrapping width (|𝐸𝑎𝑐𝑡 − 𝐸𝑒𝑠𝑡 | ≤ ∆𝐸 .). 
6.1.2 Single project deviation over a portfolio 
To evaluate the behavior of the Analogy-based effort estimation technique for a single project, this section analyzes 
the frequency of occurrences of deviation over each dataset for the different projects of the same portfolio. 
In Figure 9, the x-axis and y-axis represent deviation in man/month and the number of occurrences respectively. 
Each color corresponds to a project. The maximal number of occurrences corresponds to a frequency of 1. 
We observe from Figure 9 that: 
(1) A high concentration of deviation over the interval 𝐼 = [−500,500] in an almost balanced way around zero 
over all datasets.  
(2) All projects have a maximal deviation frequency of occurrences over the interval 𝐼. 
(3) Out of 𝐼 interval, frequency of occurrences deviation decreases as we move away from zero. 
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(4) Out of 𝐼 interval, the occurrence of deviation values depends on the project. In fact, since we move out of 𝐼, 
some colors are represented and others not.  
(5) A project deviation distribution varies depending on the dataset. Especially, we can notice one peak of 
frequency for COCOMO’81, while there are 2 peaks for Desharnais, China, ISBSG and Maxwell. 
These findings suggest that each project differently behaves in terms of deviation distribution. Moreover, 
investigating each project bootstrapped distribution separately confirms these primary findings. In fact, the 
bootstrapping provides different distribution shapes depending on the projects and the dataset. Figure 10 gives an 
example of the bootstrapped distribution shapes over COCOMO’81 dataset.  
Over the 252 projects, 128 (51%) of the bootstrapped distributions correspond to Figure 10.b that represents a bell 
curve behavior, 96 (38%) correspond to Figure 10.a that shows a decreasing behavior, and 17(7%) correspond to 
Figure 10.c with an increasing behavior. 

(a) (b) (c) 
Figure 10. Examples of bootstrapped projects distributions for COCOMO’81 dataset 

 
This may lead to conclude that even if bootstrapping succeeds well in approximating the effort estimation 
technique behavior and proposes 80% to 100% reliable bootstrapped width; the associated distribution did not 
provide a stable shape at a single project level. This leads to explore error at an organizational level, as suggested 
by Kitchenham et al. (1997). 
6.1.3 Deviation distribution at a portfolio level 
To investigate model error at a portfolio level, we use for each dataset the associated vector D described in Section 
4.1. For a dataset of size n, the D vector has a size of n×1000, since we use for each project B=1000 bootstrapped 
samples.  
As shown in Figure 12 which presents the vector 𝐷 distribution boxplot over the five datasets, and based on the 
statistics reported in Table 4, we observe that: 
(1)The interquartile range of deviations is concentrated and balanced around zero over the five datasets. In 
particular the median deviation values were 0 for COCOMO’81, 247 for Desharnais, -134 for China, -58.80 for 
ISBSG and 396.80 for Maxwell. In addition, the skewness values were between -3.22 and 0.74 over the five 
considered datasets. 
(2)The outliers spread over a large interval especially for COCOMO’81, ISBSG and China. In particular for 
COCOMO’81, the outliers vary over an interval 35 to 55 times larger in comparison to the interquartile range. 
(3) The deviation distribution properties vary from one dataset to another as shown in the different histograms.  
This suggests that the MPEM distribution seems to be pertinent on representing the deviation variation over a 
portfolio. In addition to that, the histograms of Figure B.1 of Appendix B show a similar pattern over the five 
datasets in terms of distribution construction that corresponds to a body distribution around 0 with a bell shape and 
tails since we move away from zero. The body and tails are different form a dataset to another. These primary 
findings strengthen the MPEM distribution. 
6.2 MPEM and Gaussian Parameters Evaluation 
Based on the LM fitting algorithm (Marquardt, 1963), this section evaluates the MPEM framework and Gaussian 
model parameters over the five datasets. 
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Table 4. Deviation statistics over the five datasets 

 Min Max Mean Median Skewness Kurtosis 
COCOMO’81 -11302 8945 -91.51 0 -3.22 33.35 
Desharnais -20238 11508 -133.38 247.80 0.74 5.47 
China -53420 46634 -749.55 -134 -1.39 30.97 
ISBSG -55892 29193 -1322.10 -58.80 -1.51 9.42 
Maxwell -55630 48642 -1356.40 -396.80 -2.09 13.56 

 

 
     COCOMO’81 

 

Desharnais ISBSG 

 

China 

 

Maxwell 

Figure 9. Deviation per project over the five datasets 
 

Table 5. Parameter values of the MPEM over the five datasets 
 Body distribution Left tail Right tail 

A1 B1 C1 A2 B2 C2 a1 k1 a2 k2 
COCOMO 0.56 -19.41 140.6 0.04842 -75.88 540.3 1.932 -0.9148 19.98 -1.205 
ISBSG 0.164 179.2 915.1 0.05831 -373 4473 6348 -1.482 0.9827 -0.6398
China 0.3492 -47.6 703.4 0.09164 -444.2 2903 5071 -1.525 2533 -1.526 
Desharnais 0.0204 -890.4 1076 0.04901 817.4 2180 1167 -1.419 4.095 -0.7761
Maxwel 0.09511 576.3 5731 -0.01519 6285 2760 6064 -1.479 150 -1.138 

 
6.2.1 MPEM Parameters Evaluation 
Based on Equation (24), to make easier the computational assessment taking into account the negative error values 
and in order to reduce the number of variables, we suggest the use of the following definitions of the distribution 
body, denoted 𝐵, the left tail 𝑇 and the right tail 𝑇  given by Equations 33-35 respectively: 

𝐵(𝑥) = 𝐴 𝑒 ( ) + 𝐴 𝑒 ( )                               (33) 
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𝑇 (𝑥) = 𝑎 |𝑥|                               (34) 
 𝑇 (𝑥) = 𝑎 𝑥                                  (35) 

Table 5 summarizes the obtained parameters. In addition, Table B.1 of Appendix B details the 95% confidence 
intervals associated to each parameter.  
The overall distribution corresponds to a mixture of two Gaussians for the body and power law distributions for 
tails as follows: ℎ(𝑥) = 𝐵(𝑥) + 𝑇 (𝑥). 𝟙] , ] + 𝑇 (𝑥). 𝟙[ , [                     (36) 
where 𝛼 and 𝛼 are defined in Equation (24). 
In practice, Equation (17) did not provide accurate results. In fact, it produces a high discontinuity in the 
distribution shapes. To overcome this limitation, we vary the shoulders values from min (𝐵 , 𝐵 )  to min (𝐵 , 𝐵 ) −   ( , )√  for the left tail and from max(𝐵 , 𝐵 ) to max (𝐵 , 𝐵 ) +   ( , )√  for the right tail. 

This corresponds to a 3𝜎 interval for classical Gaussians. For each dataset, we choose the first value enabling an 
almost continuous distribution. Figure 12 gives a visual illustration of the MPEM fitting curves over the five 
datasets. We can observe that: 
(1) Over the five datasets, all the frequencies of occurrence are approximated with a value different from 0. 
(2) The fitting quality varies from a dataset to another. For example, over China and COCOMO’81, the fitting was 
better than ISBSG, Maxwell or Desharnais. 
(3) More the deviation presents a regular behavior without oscillations; more the MPEM is efficient. 
This may lead to conclude that the MPEM framework seems to be representative of deviation distributions over 
the five datasets. The shoulders used in this study are indicated in Table 6.  
6.2.2 Gaussian model parameters evaluation 
To evaluate the Gaussian model parameters, we used the LM fitting algorithm (Lokan et al., 2001) used for the 
MPMF fitting. Equation (37) gives the formula used, that corresponds to the probability density of the Gaussian 
distribution of Equation (1). 

ℎ(𝑥) = 𝐴 ∗ 𝑒 ( )                                  (37) 

 
Table 6. Shoulders values over the five datasets 

 Shoulders 𝜶𝟏 𝜶𝟐 
COCOMO’81 -1080 1080
Desharnais -2400 4000
ISBSG -6400 6800
China -5850 4200
Maxwell -6400 6800

 
Table 7 presents the obtained parameters and the associated 95% confidence intervals. Furthermore, Figure 15 
gives a visual representation of the Gaussian fitting over the five considered datasets. 
 
 
Table 7. Parameters values of the Gaussian model over the five dataset 
 A1 B1 C1 
COCOMO  Adopted value 0.58 -29.37 163.5 

95% confidence interval [0.57, 0.59] [-32.86, -25.88] [159.6, 167.3] 
ISBSG Adopted value 0.18 126.4 1716 
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95% confidence interval [0.17, 0.20] [24.95, 227.8] [1573, 1860] 
China Adopted value 0.42 -23.02 945.5 

95% confidence interval [0.40, 0.44] [-66.97, 20.93] [895.8, 995.3] 
Desharnais Adopted value 0.051 231.7 2888 

95% confidence interval [0.047, 0.054] [58.62, 404.8] [2643, 3133] 
Maxwel Adopted value 0.094 155.4 5470 

95% confidence interval [0.089, 0.099] [-73, 383.9] [5147, 5793] 
 
We can easily notice that: 
(1) Over the five datasets, the frequencies of occurrence that correspond to the body distribution are approximated, 
while the tails are not. 
(2) The fitting quality varies from a dataset to another. In particular, the Gaussian represents better the concentrated 
distributions such as COCOMO’81. 
(3) The Gaussian did not present irregular behavior especially tail oscillations such as those of the Maxwell dataset. 
These observations lead to conclude that the Gaussian distribution captures the deviation body distribution. 
However, it did not take into account the tails since the Gaussian curve drops exponentially. 
6.3 Comparing the MPMF and the Classical Gaussian Model 
This section compares the MPEM and the Gaussian model performances using the GOF metrics detailed in Section 
5.1 over five datasets. 
6.3.1 Overall Fit 
To analyze the overall fit of the MPEM framework, we first perform for both models the Chi-Square 𝜒  goodness 
of fit test based on the hypothesis H0 and H1 as detailed in Section 5.1. Moreover, we compute the Pearson's statistic 𝑋² defined by Equations (25). 
 

 

COCOMO’81 Desharnais ISBSG 

 

China 

 

Maxwell 

Figure 11. Deviations boxplot over the five datasets 
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COCOMO’81 Desharnais ISBSG 

 

China 
 

Maxwell 

Figure 12. MPEM fitting curve of deviation over the five dataset 
 
Since the Gaussian distribution presents null values over the tails, the likelihood ratio 𝐺² cannot be defined. 
Thus, we only computed the likelihood ratio 𝐺² defined by Equations (26) for the MPEM framework.  
From Table 8, we can notice that: 
(1) For both models, 𝑋²values vary form a dataset to another.  
(2) MPEM has 𝑋² values very small in comparison to those of the Gaussian model: 2.7056e-004 vs. 422 e-004 
for COOCMO’81, 8.1798e-004vs. 2177 e-004 for China, 6.1315e-004 vs. 372 e-004 for Desharnais, 48e-004 vs. 
1829 e-004 for ISBSG and 50e-004 vs. 335 e-004 for Maxwell. These values show the precision and the quality 
of the proposed fit. 
(3) MPEM 𝐺²  values vary from -1.38e-02 for ISBSG to 8.40e-03 for China. The negative 𝐺²  over ISBSG 
suggests that the MPEMF overestimates the deviation distribution, which is confirmed by the 𝑋²value. 
(4) Over the five datasets, the χ test fails to reject the null hypothesis of the MPEM and the Gaussian model at 
the 0.05 significance level. The associated p values are higher for the MPEM : [0.94,0.99] vs. [0.64,0.85] for the 
Gaussian model and support the validity of the null hypothesis. 
 
Table 8. MPEM and Gausian model goodness of fit metrics and χ test 

 MPEM Gaussian model 

X2 G2 𝝌𝟐test X2 𝝌𝟐test 
H p-value h p-value 

COCOMO’81 2.7056e-004 5.10e-02 0 0.99 422 e-004 0 0.84 
China 8.1798e-004 8.40e-03 0 0.98 2177 e-004 0 0.64 
Desharnais 6.1315e-004 1.81e-01 0 0.98 372 e-004 0 0.85 
ISBSG 48e-004 -1.38e-02 0 0.94 1829 e-004 0 0.67 
Maxwell 50e-004 2.03e-01 0 0.94 335 e-004 0 0.85 
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The obtained results emphasize the pertinence of MPEM since the χ  test supports that the MPEM holds the 
observed frequencies. In addition, the low values of X² and G² underline the high quality of the overall fit. 
To compare the MPEM and the Gaussian models overall GOF, we compare both models Pearson's statistic X² since 
the likelihood ratio is not defined for the Gaussian model. Furthermore, we define the following comparison ratio: 𝜌 = ²²                                       (38) 

where 𝑋²   and 𝑋²    are the Gaussian and the MPEM Pearson's statistic as defined by 
Equation (25) respectively.  
The comparison ratio 𝜌 measures how much the MPEM outperforms the Gaussian model in terms of overall fit. 
 
Table 9. Comparison ratio over the five datasets 

 Comparison ration ρ
COCOMO 155.97 
China 266.14 
Desharnais 60.67 
ISBSG 38.10 
Maxwell 6.70 

 
From Figure 17 and Table 9, we can notice that the Gaussian model presents 6 to 267 times higher 𝑋² than the 
MPEM. This leads to consider that the MPEM outperforms the Gaussian model in terms of overall fit. 

   
Figure 13. MPEM and Gaussian model X² metric histogram over the five datasets 

6.3.2 Residuals 
To analyze the piecewise GOF, we focus on the residuals as defined by Equation (27). They enable emphasizing 
the misfit between the observed frequencies and the Gaussian model. Figure 14 provides both models residuals 
boxplots. Moreover, Figure B.3 and B.4 of Appendix B provide both models residuals distributions. 
From Figure 14 and the statistics of Table 10, we observe that: 
(1) The MPEM presents negative median values over the five datasets while the Gaussian model has positive ones. 
(2) Over four datasets (COMOMO’81, Desharnais, Maxwell, and ISBSG) MPEM has an absolute median value 
2% to 84% lower than the Gaussian model. Still both models absolute median values were comparable. 
(3) Over the five datasets, the interquartile range of the Gaussian model was larger than the MPEM one. 
(4) Over the five datasets, the MPEM residuals median value was almost in the middle of the interquartile range 
while the Gaussian was more in the lower quartile. 
(5) Over all datasets except Maxwell, the MPEM presents confined outliers while the Gaussian shows spreading 
values 17% to 519% wider than the MPEM. 
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These results lead to conclude that MPEM has a slight tendency to overestimating while the Gaussian model has 
a tendency to underestimating. Still, in the majority of cases (80% of datasets) MPEM outperforms the Gaussian 
one in terms of residuals with narrower and better balanced distributions. 
 
Table 10. MPEM and Gaussian residuals statistics 

 MPEM Gaussian model 

Min Max Mean Median Kurtosis Skewness Min Max Mean Median Kurtosis Skewness

COCOMO’81 

-

0.0062 0.0051

-8.02e-

05 

-4.03e-

04 12.9731 0.4916 

-

0.0019 0.0284 0.0017

4.56e-

04 29.4329 4.9055 

China 

-

0.0055 0.007 

-2.50e-

04 

-3.27e-

04 13.5622 0.7128 

-

0.0101 0.0673 0.0029

2.60e-

04 29.6096 4.7976 

Desharnais -0.015 0.0229

-1.57e-

04 

-9.54e-

04 9.3624 1.116 

-

0.0177 0.0267 0.0017

9.74e-

04 11.136 0.6646 

ISBSG 

-

0.0114 0.0102

-5.46e-

04 

-7.36e-

04 10.0984 0.4598 

-

0.0392 0.0366 0.0034

1.2e-03 

13.7351 -0.1663 

Maxwell -0.014 0.0247

-4.22e-

04 

-8.55e-

04 12.1038 1.7225 

-

0.0109 0.0238 0.0013

8.87e-

05 11.0881 1.9665 

 

COCOMO’81 Desharnais ISBSG 

 

China 

 

Maxwell 

Figure 14. Boxplots of residuals over the five dataset 
 

6.3.3 Model quality index 
The AIC criterion of Equation (29) aims to allow model selection. In fact, the AIC combines the quality of fit to 
the model parsimony. Table 11 presents the AIC values of MPEM and Gaussian Model. 
 
Table 11. MPEM and Gaussian AIC over the five datasets 

Dataset AIC MPEM AICGaussian 
COCOMO 21.19 7.18 



cis.ccsenet.org Computer and Information Science Vol. 11, No. 4; 2018 

67 
 

China 21.73 7.75 
Desharnais 25.88 11.94 
ISBSG 23.21 9.42 
Maxwell 24.72 10.73 

 
From Table 11, we can notice that: 
(1) For both MPEM and Gaussian model, the AIC index varies over the five datasets.  
(2) Over the five datasets, the AIC index of MPEM is higher than that one of Gaussian model. 
(3) For MPEM, the AIC values were between 21 and 26 while it was between 7 and 12 for the Gaussian model. 
This may suggest that, MPEM generates an additional “complexity” since it requires a higher number of 
parameters. In practice, this additional complexity is limited since it corresponds to the classical models (Gaussians 
and power laws) that do not need important computational resources to set their parameters. The additional number 
of parameters enables a better fitting quality taking into account tail events. Then, the MPEM remains reasonable 
in terms of the required number of variables for the obtained results. 
7. Threats to Validity 
This section underlines the main threats of validity of this study. Especially internal, external, content and construct 
validity are addressed.  
Internal validity: To overcome the historical dataset selection bias for the effort estimation technique, we used the 
Jackknife (LOOCV) validation method combined with bootstrapping. This choice was justified by the 
performances of LOOCV in comparison with cross validation as it generates lower bias and higher variance 
estimate (Kocaguneli et al., 2013). In addition to that, LOOCV offers the advantage of generating the same results 
in a particular dataset if the evaluation is replicated, which is not the case for cross validation. 
Furthermore, the estimation of the best shoulders values for the MPEM can be formally studied since the 
theoretical Equation (17) did not provide accurate results for our experimentation. 
External validity: This study uses five datasets which contain 1038 projects. These datasets are from different 
countries and organizations, sources and features. This makes them appropriate for evaluating the MPEM 
framework.  
Content validity: The MPEM investigated model error management over a portfolio of projects. To evaluate the 
pertinence of our approach, we use the bootstrapping technique over different datasets (Efron, 1979). That enables 
generating an important number of estimates that are believed to be representative of the effort estimation 
technique behavior (Moataz et al., 2009). Furthermore, the shoulders values used in this study may need further 
investigation in order to propose a formal approach based on optimization theory. 
Construct validity: To evaluate the performances of MPEM, we use different GoF metrics. In particular: the 
Pearson's statistic and the Likelihood ratio assess the overall goodness of fit (Maydeu-Olivares et al., 2010). The 
Akaike Information Criterion evaluates the model quality (Akaike, 1973). Finally, the residuals analysis 
emphasizes the piecewise fit focusing on the source of misfit. 
8. Conclusion and future work 
This paper aimed to deal with model error at an organization level whatever the effort estimation method used. To 
achieve this objective, a distribution of error over a portfolio of projects was proposed based especially on 
bootstrapping and tail risk concepts. Since error distribution shows more stability at a portfolio level in comparison 
to single projects, we model the portfolio error body distribution using a mixture of two Gaussians and the tails 
using power law. To evaluate the accuracy of MPEM, we used five different datasets with different sizes for a total 
of 1038 projects, and an Analogy-based effort estimation technique. The Jackknife technique was combined with 
bootstrapping. In addition, we used goodness of fit metrics in order to measure the overall and the piecewise fit 
quality. Furthermore, a comparison between the classical Gaussian model and MPEM was conducted based on 
goodness of fit metrics and the model quality indices. The findings of this study were the following: 
(RQ1): Is there evidence that model error management is more suitable at a portfolio level than a single project 
level? 
In opposition to single project bootstrapped distributions, the portfolio distributions showed an almost regular 
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pattern over the five datasets with: (1) a concentration of high frequency of occurrence values around zero which 
corresponds to the body distribution, and (2) out of this interval, we can notice tail values with a decreasing but 
non null frequencies of occurrence.  
(RQ2): Does the MPEM distribution suits to the portfolio error over different datasets? 
The 𝜒 test shows that both the MPEM and the Gaussian models hold statistically describing the observed error 
distribution. Still, MPEM presents higher p-values. In addition, MPEM outperforms the Gaussian in terms of 
overall goodness of fit since it presents lower Pearson's statistic. In terms of piecewise fit, MPEM generally 
outperformed the Gaussian (80% of cases) since its residuals distributions were better balanced with lower median 
values and presented more confined outliers.  
(RQ3): Does the MPEM distribution outperform the classical Gaussian approximation? 
Over the five datasets, in terms of overall goodness of fit, the MPEM provides 6 to 267 times lower Pearson's 
statistic in comparison with the Gaussian model. In addition, in terms of piecewise goodness of fit, absolute median 
values of residuals of both models were comparable. Still, in 80% of the datasets (4 datasets), MPEM outperformed 
the Gaussian model in terms of residuals with narrower and better balanced distributions. Nevertheless, the AIC 
measure showed that the MPEM generates additional “complexity” since its number of parameters used is higher 
than the Gaussian one. This additional complexity remains reasonable for the improvement of goodness of fit 
obtained.  
Ongoing work investigates the improvement of the proposed MPEM framework by exploring optimization theory 
in order to deal with shoulders values. In addition to that, further evaluations of the MPEM performances will be 
carried out over other datasets with other effort estimation techniques to confirm or refute the findings of this study.  
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Appendix A  
Attributes of the five datasets 
 
Table A.1 China dataset attributes 

Attributes Description 
AFP adjusted function points 
Input function points of input 
Output function points of external output 
Enquiry function points of external enquiry 
File function points of internal logical files or entity references 
Interface points of external interface added 
Added function points of new or added functions 
Changed function points of changed functions 
Deleted function points of deleted functions 
PDR_UFP normalized level 1 productivity delivery rate norm 
NPDR_AFP normalized productivity delivery rate 
NPDU_UFP productivity delivery rate (adjusted function points) 
Resource Team type 
Dev.Type development type 
Duration total elapsed time for the project 

Table A.2 COCOMO81 dataset attributes 
Attributes Description 
SIZE Software Size  
DATA Database Size  
TIME Execution Time Constraint 
STOR Main Storage Constraint  
VIRTMIN, 
VIRT MAJ 

Virtual Machine Volatility  

TURN Computer Turnaround  
ACAP Analyst Capability  
AEXP Applications Experience  
PCAP Programmer Capability  
VEXP Virtual Machine Experience 
LEXP Programming Language Experience 
SCED Required Development 

 
Table A.3 Desharnais dataset attributes 

Attributes Description 
ExpEquip Team experience measured in years 
ExpProjMan Team manager experience measured in years 
Transactions Transactions is a count of basic logical transactions in the system 

(function points) 
Entities  Entities is the number of entities in the systems data model (function 

points) 
Adj_Factor Function point complexity adjustment factor (Total Processing 

Complexity)  
RawFPs Unadjusted function points 
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Table A.4 Maxwell dataset attributes 

Attributes Description 
Time  Execution Time Constraint 
App  Application type 
Har  Hardware platform used 
Dba  Database type used  
Ifc  User interface 
Source  Project source 
Telonuse  Telon use 
Nlan  Number of development languages used
T01  Customer participation 
T02 Development environment adequacy 
T03 Staff availability 
T04 Standards use 
T05 Methods use 
T06 Tools use 
T07 Software’s logical complexity 
T08 Requirements volatility 
T09 Quality requirements 
T10 Efficiency requirements 
T11 Installation requirements 
T12 Staff analysis skills 
T13 Staff application knowledge 
T14 Staff tool skills 
T15 Staff team skills 
Duration Total elapsed time for the project 
Size Application size 

Table A.5 ISBSG dataset attributes 
Attributes Description 
UBBU User Base - Business Units (Number of business units that the 

system services) 
UBL  
 

User Base - Locations (Number of physical locations being 
serviced/supported by the installed system). 

UBCU User Base - Concurrent Users (Number of users using the system 
concurrently). 

VAF Value Adjustment Factor; 
MTS Max Team Size 
IC Input Count 
OC Output Count 
EC Enquiry Count 
FC File Count 
IFC Interface Count 

 
Appendix B 
Empirical results 
 
Table B.1 MPEM parameters confidence interval 

 Body distribution Left tail Right tail 
A1 B1 C1 A2 B2 C2 a1 k1 a2 k2 

COCOMO
’81 

[0.5516, 
0.5684] 

[-22.67,-
16.15] 

[135.6, 
145.6] 

[0.04, 0.05]
[-99.91, -
51.85] 

[487.1, 
593.5] 

[-414.7, 
418.6] 

[-28.24, 
26.41] 

[-4200, 4240]
[-29.09, 
26.68] 

ISBSG 
[0.1546, 
0.1733] 

[143.6, 
214.8] 

[836.3, 
993.9] 

[0.05128, 
0.06534] 

[-606.7, -
139.3] 

[4068, 
4877] 

[-2.982e+5, 
3.109e+5] 

[-6.654, 
3.69] 

[-133.7, 
135.7] 

[-15.02, 
13.74] 
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China 
[0.3405, 
0.3579] 

[-70.44, -
24.76] 

[673.3, 
733.5] 

[0.08389, 
0.0994] 

[-540.2, -
348.2] 

[2747, 
3058] 

[-6.041e+5, 
6.142e+5] 

[-14.76, 
11.71] 

[-5.142e+5, 
5.193e+005] 

[-24.39, 
21.34] 

Desharnais 
[-0.01687, 
0.05767] 

[-1321, -
459.6] 

[-128.5, 
2280] 

[0.03255, 
0.06547] 

[-260.2, 
1895] 

[1421, 
2939] 

[-1.991e+4, 
2.225e+4] 

[-3.588, 
0.7511] 

[-192.1, 
200.3] 

[-6.246, 
4.694] 

Maxwell 
[0.08756, 
0.1027] 

[-478.8, 
1631)] 

[4713, 
6750] 

[-0.04089, 
0.01051] 

[4691, 
7880] 

[-459.2, 
5979] 

[-2.592e+5, 
2.713e+5] 

[-6.188, 
3.23] 

[-1.009e+4, 
1.039e+4] 

[-8.349, 
6.074] 

 

COCOMO’81 Desharnais 

ISBSG China 

 
Maxwell 

Figure B.1. Portfolio deviation over the five considered datasets 
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COCOMO’81 Desharnais 

ISBSG China 

 
Maxwell 

Figure B.2. Gaussian model fitting curve of deviation over the five datasets 
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COCOMO’81 Desharnais ISBSG 

 
China 

 
Maxwell 

Figure B.3. MPEM fitting residuals 

 

 
COCOMO’81 Desharnais ISBSG 

 
China 

 
Maxwell 

Figure B.4. Gaussian model fitting residuals 
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