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Abstract 
The overall aim of this study was to explore the comparative effects between obstacle’s distance and obstacle’s 
orientation parameters that cause partially shading effects and influence the potential solar power generation of a 
photovoltaic (PV) system. An automatic collaboration of a BIM authoring software and a cloud-based building 
performance analysis tool were used to simulate the annual cumulative insolation obtained from rooftop PV surfaces 
of eight different orientations and forty-three different distances between the BIPV and building obstacle. Two public 
healthcare buildings, an OPD and a ward building that widely established throughout Thailand were our case study. 
This study also explores that orientation and distance of a surrounding obstacle are both important parameters that 
influencing the annual cumulative insolation of PV surfaces but in the different contexts. The findings of this study 
also support decision making for BIPV designers and planners to acknowledge which the BIPV and the obstacle 
placement is highly effective, and which one is encountering a problem and its solution. 
Keywords: surrounding obstacle, partial shading effect, building integrated photovoltaic, automated simulation, 
obstacle’s orientation, obstacle’s distance 

1. Introduction 
1.1 Introduction of the Problem: Building Integrated Photovoltaic (BIPV) 

The sun is the widest and huge amount of expansive energy source. The potential for solar energy to make a significant 
contribution to global electricity demand has been widely recognized and solar photovoltaic (PV) is considered as a 
major contributor to solar energy supply (Ekici, 2014; Yang, 2015). Photovoltaic systems are one of the most 
beneficial plants in this clean electricity production which is easy to install in and apply to a building and an urban 
environment. Building integrated photovoltaics (BIPVs) are solar PV materials that replace conventional building 
materials in parts of the building envelopes, such as the rooftop or walls, that serve as building envelope material and 
power generator simultaneously. Additionally, the BIPV technology also reduces the total building cost and mounting 
cost as BIPV panels serve as building components (Shukla, et al., 2016; Hong, Lee, Koo, Jeong, & Kim, 2017; 
Tripathy, Yadav, Sadhu, & Panda, 2017). Apart from attaining optimum technique and aesthetic solutions. Other key 
factors to achieve wide-scale implementation of BIPV involve minimizing the production costs, reducing the 
environmental impact and especially increasing the final efficiency of the system (Mulcué-Nieto & Mora-López, 2015). 
The efficiency of any BIPV systems can be estimated by solar insolation, i.e., a measure of solar radiation energy 
received on a specific PV surface area at a given time. Solar insolation is affected by factors such as atmosphere, angle 
of the sun and distance. The thinner the atmosphere in which the sun is passing through, the higher degree the 
insolation. The insolation of an area determines how much energy a square meter of solar panel can provide on any 
given day. When the insolation rate of an area is low, more area of panel is required to maximize energy output 
(Sinovoltaics, 2014). A BIPV system directly converts sunlight into electricity so it is sensitively affected with the 
change in the intensity of solar radiation. These fluctuations cause troubles between demand and supply and reduce the 
power quality (Ekici, 2014). Main challenging issues about BIPV applications including partial shading, incorrect 
specifications of the BIPV systems, non-optimal tilt and azimuthal deviations are commonly encountered: therefore, 
the importance of these technical performance issues is indisputable, particularly in designing processes (Lam, Close, 
& E.W.C., 2006; Celik, Karatepe, Silvestre, Gokman, & Chouder, 2015; Yang, 2015; Zomer & Rüther, 2017).  

1.2 An Introduction to the Partial Shading Effects 

PV system performance is significantly affected by the environmental and surrounding factors which involve; 
surrounding-reflected radiation and shading effects of the environmental obstacles (Yoo, 2011; Celik, Karatepe, 
Silvestre, Gokman, & Chouder, 2015). The available total solar irradiance on PV modules is composed of three 
components: beam (direct), diffuse from sky, and surrounding-reflected components. Beam radiation is the component 
directly comes from the sun without being scattered through the atmosphere but diffuse radiation is highly scattered by 
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different types of particles of clouds, dust or haze in the atmosphere. Beam radiation calculation is purely geometric 
and directly dependent upon the solar geometry—azimuth and altitude, straightforwardly. On the other hand, 
surrounding-reflected radiation is a complicated factor which is structurally formulated by both beam and diffuse 
radiation reflected from the surrounding such as nearby buildings and ground, and reach the PV module again. The 
surrounding-reflected radiation also depends on many factors such as surrounding reflectance, absorptance, emittance, 
and transmittance which influences the incidence solar irradiation on the PV modules (Yoo, 2011; Gökmen, 2016).  

Practically, one of the most significant and complicated effect in dealing with BIPV performance estimation is the 
partial shading effect on PV modules due to the surrounding obstacles, it plays important role in the efficiency of PV 
systems by their convoluted, non-uniform and dynamic conditions, especially when the PV system locates in a dense 
urban environment. Partially shaded PV modules receive less solar radiation than the unshaded PV modules and partial 
shading effects may cause irreversible damage to the module due to the hot spot effect. The surrounding obstacles 
including trees, utility poles, surrounding buildings and so on, furthermore, only the building itself on which the 
system is integrated is responsible for approximately 5-10 % decrease of the overall BIPV performance (Celik, 
Karatepe, Gokman, & Silvestre, 2013; Masa-bote & Caamaño-Martín, 2014; Frontini, Bouziri, Corbellini, & Medici, 
2016; Zomer & Rüther, 2017).  

To acknowledge the impacts of the shadow that project on the surfaces of a PV system, examination of three main 
conceptual parameters are required including (A) solar properties, (B) surroundings, and (C) related-BIPV which are 
described as follow (Yoo, 2011; Celik, Karatepe, Gokman, & Silvestre, 2013; Masa-bote & Caamaño-Martín, 2014): 

(A) The parameter of solar property includes (A-1) the sun altitude, (A-2) azimuth angle, and (A-3) solar irradiation. 
The radiant energy from the sun is measured and reported as the solar irradiance, it is a crucial parameter using for 
calculating the solar insolation of PV modules (Zeil, 2017).  

(B) The parameter of surroundings consists of two subcategories; (B-1) the parameter of surrounding-reflected 
radiation and (B-2) surrounding obstacle. The parameter of surrounding-reflected radiation includes (B-1-1) 
reflectance, (B-1-2) absorptance, (B-1-3) emittance and (B-1-4) transmittance as previously described, while (B-2) the 
parameter of a surrounding obstacle comprises of (B-2-1) obstacle’s location, (B-2-2) obstacle’s shape, and (B-2-3) 
obstacle’s orientation, (Figure 1). The surrounding obstacles block and eliminate the beam element of the solar 
radiation from fully hitting on a PV surface. The projected shadow from the three-dimensional coordinates of the 
obstacle on PV surfaces determined by the solar azimuth and solar altitude angles that dynamically change all the time 
during day. The dynamical variation makes the parameters of a surrounding obstacle one of the subtlest factors; 
however, clarification of such parameter assists in a more accurate estimation of partial shading effects. 

(C) The parameter of related-BIPV consists of two subcategories: (C-1) the parameter of a PV surface geometry 
includes (C-1-1) PV surface orientation, (C-1-2) PV surface tilt angle, (C-1-3) PV surface shape, and (C-1-4) PV 
surface location, these four parameters are illustrated, in relation with the parameter of a surrounding obstacle, in 
Figure 1. (C-2) the parameter of a PV module properties comprises of (C-2-1) PV materials, (C-2-2) BIPV product 
type, and (C-2-3) BIPV system type. PV materials which are semiconductors create voltage and current from 
movement of electron between anode and cathode poles to generate electricity. There are two broad categories of PV 
cells technologies—Crystalline Silicon and Thin Film. Crystalline Silicon cells gain the majority of market share at 
almost 90 percent of the world’s PV materials and they provide efficiency of 12-16% (Chaianong & Pharino, 2015; 
Shukla, Sudhakar, & Baredar, 2016). BIPV products are classified into five main categories including: (1) BIPV’s foil 
products, (2) BIPV’s tile products, (3) BIPV’s module products, (4) BIPV’s solar cell glazing products and (5) building 
attached photovoltaic (BAPV) products. In the current BIPV market application, about 80% of BIPV installations are 
rooftop mounted, while the remaining 20% are façade mounted. Rooftop solar PV systems generally and practically 
meet requirements of most cases where ground space is limited and unused large roof space is available.  

Similarly, in Thailand, many BIPV end-users have gained greater interest in the solar rooftop technology especially 
rooftop BIPV’s module products due to their high efficiency performance, competitive pricing among suppliers, easily 
applicable and suitable for pitched roofs. The rooftop BIPV solar PV module products may be somewhat similar to 
conventional solar PV modules. The difference, however, is that the BIPV solar modules are made with weather skin 
solutions (Jelle, Breivik, & Røkenes, 2012; Chaianong & Pharino, 2015; Shukla, Sudhakar, & Baredar, 2016). A BIPV 
system—(C-2-3) is considered as building integrated energy storage system which is comprised of a charge controller, 
a power storage system, power conversion equipment including an inverter, and it may include backup power suppliers 
such as diesel generators (Strong, 2011; Biyik, et al., 2017). 

As previously mentioned, the projection of shadow on the PV modules has been determined by using the 
three-dimensional coordinates that derived from the parameters of the surrounding obstacle which are determined by 
solar azimuth and solar altitude angle that constantly change through time. The projection of shadow on PV modules 
directly determines the shaded PV surfaces, shown in Figure 2, that have been dynamically and continuously changed 
by the movement of the sun.  

Figure 3 illustrates an example of dynamic change of shadow at 2.30 p.m. and 3.30 p.m. on winter solstice for 
buildings located in Bangkok, Thailand (13N 10030’E), east facing (AZ = 90). Figure 3(a) and 3(b) show a BIPV 
(on the right), in which the shade comes from a nearby building (a surrounding obstacle). Point A and point B are 
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BIPV and the orientation between building obstacle and BIPV affect the potential to generate power of a BIPV. This 
study furtherly hypothesized that is orientation has more impact on the annual cumulative insolation on PV surfaces 
than distance. Thus, the conceptual framework of the study can be established and illustrated in Figure 5. 

2. Methodology 
2.1 Related Techniques in building performance simulation of BIPV 

2.1.1 BIPV and Building Performance Simulation (BPS) 

Though BIPV technology has great potential for reducing carbon emissions from building energy consumption. 
However, there are currently some obstacles in the general adoption of this technology. One of the obstacles is 
evidence-based design that needed on the effectiveness of the maximum-efficient design of BIPV buildings as well as 
the benefits of BIPV to convince owners to opt for BIPV buildings (Kuo, Hsieh, Guo, & Chan, 2016). In order to 
quantify the benefit of BIPV design, it is required to estimate the potentials of the BIPV electricity production first by 
quantitative assessment of irradiance on the required surfaces to install PV modules by using Building Performance 
Simulation (BPS) tools. The main purpose of Building Performance Simulation (BPS) is to quantitatively justify design 
decisions as a result of predicting real physical conditions in a building by using a computational model, and to support 
building design processes by providing a high integrity representation of the dynamic, connected and non-linear physical 
processes that govern the disparate performance aspects that dictate overall acceptability of building and their related 
energy supply systems, particularly, the BPS involves a scientific basis in its simulation algorithms and the level of 
building information detail required as input data (Bazjanac, et al., 2011; Hitchcock & Wong, 2011; Clarke & Hensen, 
2015; Shen & Lu, 2016). PV simulation tools are useful to perform detailed analysis of system performance and assess 
the viability of a PV system in terms of energy production (Eltawil & Zhao, 2010). For the purpose of optimal PV 
system design, many models and studies have been proposed in literature (Ning, et al., 2017) ranging from the solar 
radiation model (Liu & Jordan, 1960; Goswami, Kreith, & Kreider, 2000), PV panel conversion model for unshaded 
PV (Clark, Klein, & Beckman, 1984; Goss, Cole, Betts, & Gottschalg, 2014; Ramli, Twaha, Ishaque, & Al-Turki, 
2017), the power mismatch models for the partially shaded PV systems (Alonso-Garcia, Ruiz, & Hermann, 2006; 
Karatepe, Boztepe, & Çolak, 2007; Dolara, Lazaroiu, Leva, & Manzolini, 2013; Bai, et al., 2015) and to evaluating 
and optimizing the efficiency of PV systems working in partial shading conditions (Woyte, Nijs, & Belmans, 2003; 
Celik, Karatepe, Gokman, & Silvestre, 2013; Celik, Karatepe, Silvestre, Gokman, & Chouder, 2015; Ning, et al., 2017). 
However, these research results have not been commonly used in practical design practices yet, and have mainly been 
limited in a few academic research studies. One of the major barriers, it is argued, lies in the complexities in accessing 
or reconstructing a large number of related information, especially building’s information as it varies in locations, 
shapes and obstacles (Asl, Zarrinmehr, Bergin, & Yan, 2015; Ning, et al., 2017). The current practice involves 
collecting the mentioned information from a variety of sources and manually transforming this information into the 
specific input required by performance simulation (Gupta, Cemesova, Hopfe, Rezgui, & Sweet, 2014). While based on 
professional expertise, this manual process tends to be uniquely performed by each practitioner according to methods, 
arbitrary judgements, rules-of-thumb developed over time by that individual. The results is a non-standardized process 
that produces energy models that can widely vary from one modeler to the next, even given the same initial building 
design information and these BPS models have been achieved with much duplication of efforts, time-consuming, and 
significant deficiencies remain. This is applicable not only to various BPS tools but also to various renewable energy 
simulation tools including solar PV simulation models as well (Bazjanac, et al., 2011; Hitchcock & Wong, 2011; Clarke 
& Hensen, 2015; Ning, et al., 2017). 

2.1.2 Automated BPS and Building Information Modeling (BIM) 

An intelligent approach to better deal with these deficiencies in BPS, from the time-consuming, cumbersome and 
error-prone of manual data generation and use of improvised defined data that may invalidate the results, is the 
automation of BPS input data acquisition and transformation, it has been a goal of the buildings industry for decades 
(Bazjanac, et al., 2011; Hitchcock & Wong, 2011; Clarke & Hensen, 2015) Reusing of existing data by interoperable 
processes would significantly reduce the time and overhead associated with the creation of simulation models (Hand, 
Crawley, Donn, & Lawrie, 2005; Bazjanac, et al., 2011; O'Donnell, et al., 2011). An interoperable, intelligent and 
object-oriented simulation model would enable bi-directional data exchange with a Building Information Modelling 
(BIM) authoring applications, reusing of geometric and other data from different models significantly reduces the 
overhead associated with the definition of input data and has the potential to eliminate error-prone manual processes 
(O'Donnell, et al., 2011; Ning, et al., 2017). 

Nowadays, it is generally accepted by the Architecture, Engineering, Construction, and Operations (AECO) industries 
that Building Information Modeling (BIM) is the most promising technology for enhancing the performance and 
quality of construction (Kuo, Hsieh, Guo, & Chan, 2016; Somboonwit, Boontore, & Rugwongwan, 2017). A BIM is a 
tool / methodology / paradigm / process of virtual design and construction involving the generation and management 
of digital representations of physical and functional characteristics of a facility which creates and uses the coordinated, 
consistent, computable information of the 3D models of the project components interconnect with the holistic 
information that conceived as a source of shared knowledge to support decision-making, through the life cycle of the 
building. When completed, these computer-generated-semantic-3D models contain precise geometry and data needed 
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to support the construction, fabrication, and procurement activities through which the building is realized (Krygiel & 
Nies, 2008; Kymmell, 2008; Eastman, Teicholz, Sacks, & Liston, 2011; Matthew, Jason, Melissa, Seokho, & Fiona, 
2013; Ladenhauf, et al., 2015; Agugiaro, 2016; Kuo, Hsieh, Guo, & Chan, 2016; Somboonwit, Boontore, & 
Rugwongwan, 2017). There is a very useful feature of BIM is that building geometry can be extracted from a BIM 
model to support the assessment of alternative sustainable design principles. 

BIPV design processes involve elements of expertise deriving from multiple disciplines such as architects, civil, 
mechanical and electrical engineers (Negendahl, 2015). With numerous unified tools that act both as a design tool and 
BPS tool exist, building designers still seem to prefer to crate and explore design options in dedicated design tool such 
as AutoCAD, ArchiCAD, Revit, SketchUp, etc., as they support the concept of a sketch and the freedoms associated 
with design tools. The integration of a design tool and a BPS tools is fundamentally changing building design into a 
faster, performance-aware and more flexible process, which eases the production of multiple design alternatives that 
provide model foundations for BIPV design optimization (Negendahl, 2015; Ning, et al., 2017). Furthermore, many 
buildings have already been modelled with BIM authoring tools, in which the features of most building components, 
e.g. shape, size, materials, locations as well as building’s environment, has been accurately described (Ning, et al., 
2017).  

Regarding reviews of BIM-based simulation and optimization for BIPV, there are several types of study related to this 
research scope including researches focus on BIPV simulation (Long, Wang, Zhou, & Zhang, 2014; Chen & Ger, 2014; 
Dixit & Yan, 2015), BIPV optimization (Welle, Haymaker, & Rogers, 2011; Ning, et al., 2017) and BIPV integrated 
parametric design (Kensek, 2014; Kim, Asl, & Yan, 2015, Hofer, Groenewolt, Jayathissa, Nagy, & Schlueter, 2016; 
Nagy, et al., 2016; Somboonwit, Boontore, & Rugwongwan, 2017). Unfortunately, only a small fraction of BPS tools 
can be used in automated processes required to perform BIPV performance simulation and optimization, and it is unable 
to be successfully achieved because commercially available tools offer simulation of particular performances to some 
extent, and yet there is still no 3D CAD/BIM commercial tool that targets all types of BIPV (not only roof mounted), nor 
complex BIPV or provides seamless model exchange and full geometrical representation for integration in architectural 
design (Attia, De Herde, Gratia, & Hensen, 2013; Negendahl, 2015; Jakica, 2017; Somboonwit, Boontore, & 
Rugwongwan, 2017). 

2.1.3 Simulation of Partial Shading Effects 

It is important to include an accurate methodology for evaluating the fluctuation of potential PV power generation 
caused by partial shadow effects. Therefore the quantitative assessment of the incident irradiance on their surface is the 
most important issue, which affects the performance of the PV systems directly (Yoon, Song, & Lee, 2011; Celik, 
Karatepe, Gokman, & Silvestre, 2013; Yang, 2015). There are several studies that provide theoretical models to 
simulate the behavior of PV modules and generators in conditions of non-uniform radiation and also studies that 
provide models to estimate the effective irradiation, thus, after incorporating shading effects and these models are able 
to be used to estimate the electricity losses and mismatch losses in which the PV system incurs due to the effect of 
inhomogeneous irradiation (Norton, et al., 2011; Alam, Coors, Zlatanova, & Oosterom, 2012; Celik, Karatepe, 
Gokman, & Silvestre, 2013; Masa-bote & Caamaño-Martín, 2014; Celik, Karatepe, Silvestre, Gokman, & Chouder, 
2015; Hong, Lee, Koo, Jeong, & Kim, 2017; Zomer & Rüther, 2017). However, there are a very few studies of the 
optimization of facility planning and buildings placement that strengthen solar energy utilization of a building in an 
interconnected composition with surrounding buildings to reduce the impacts of shading conditions due to dynamic 
changing of solar geometry. Kanters and Wall (2014) explored the effect of four factors on the solar potential of 
building blocks typically used in urban planning, i.e. form, density, orientation and roof type. The results showed that 
density (the closer the distance between buildings is, the higher the urban density becomes) was the most influential 
factor, while the effect of orientation was not that clear (Kanters & Wall, 2014). Bhattacharjee, Noble, Kensek and 
Schiler (2016) studied solar envelope for sites with existing buildings using a computational design tool for generating 
solar envelopes that allowed additional volume to be added to existing building geometry without further casting 
shadows on neighboring sites. While the usable floor area has been increased but the shape of the buildings has been 
transformed into something that irregular and eccentric, furthermore, if the physical boundaries of the site and the 
surroundings the determine the solar envelope of the buildings have been changed, it possibly that the added volume 
might not be positively contented complying with the change of solar envelope. Thus, it possibly implies that focusing 
on the shape of surrounding obstacles to enhance solar energy utilization might be an endless task (Bhattacharjee, 
Noble, Kensek, & Schiler, 2016). In high-density urban areas or campuses, the solar access of a building has been 
affected directly, especially the clustered facility developments that put pressures on land usage and create large 
buildings occupying maximum plot ratio that create solar obstructions on rooftop PV systems that installed on 
lower-rise buildings, as shown in Figure 6.  

Without proper siting and buildings placement, a structure cannot be designed for maximum power generation from a 
solar PV system. Referring to a previously mentioned argument, there are just a few studies of the investigation of the 
parameter of surrounding obstacles but there is no previous study that explores the most critical parameters of 
surrounding obstacle determining the projection of shadow on PV surfaces that influence over the potential to power 
generation of a PV system through automated processes of BPS and BIM. The findings of the study are important for 
decision supporting in BIPV design and facility planning and providing guidelines of automated BPS processes that 
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Appendix A  
The Simulated Annual Cumulative Insolation Results of All 8 Orientations 

Distance 
(m) 

0 ° CW 
(kWh) 

45 ° CW 
(kWh) 

90 ° CW 
(kWh) 

135 ° CW 
(kWh) 

180 ° CW 
(kWh) 

225 ° CW 
(kWh) 

270 ° CW 
(kWh) 

315 ° CW 
(kWh) 

6 893,937 884,637 854,723 857,213 881,863 854,965 850,526 883,266 

7 894,615 886,955 859,743 862,680 886,524 860,655 855,919 885,765 

8 895,249 889,031 864,541 867,832 890,128 866,069 861,096 887,957 

9 895,782 890,834 868,668 872,153 892,730 870,874 865,575 889,799 

10 896,293 892,438 872,458 875,896 894,354 874,920 869,729 891,398 

11 896,726 893,719 875,602 879,221 895,229 878,368 873,197 892,957 

12 897,150 894,986 878,827 882,524 896,073 881,803 876,610 894,065 

13 897,509 895,980 881,362 884,757 896,741 884,212 879,454 895,199 

14 897,860 896,988 883,841 887,178 897,345 886,800 882,097 896,150 

15 898,185 897,817 886,107 889,173 897,781 888,810 884,613 897,087 

16 898,478 898,605 888,254 891,126 898,168 890,866 886,912 897,856 

17 898,742 899,243 889,972 892,624 898,547 892,476 888,751 898,547 

18 898,978 899,828 891,469 893,852 898,802 893,835 890,327 899,128 

19 899,229 900,457 893,036 895,039 899,060 895,145 892,053 899,738 

20 899,437 900,896 894,331 896,202 899,270 896,366 893,476 900,244 

21 899,646 901,327 895,579 897,192 899,482 897,403 894,909 900,699 

22 899,826 901,728 896,604 897,995 899,662 898,258 895,978 901,145 

23 900,002 902,087 897,590 898,719 899,838 899,024 897,033 901,505 

24 900,168 902,497 898,514 899,310 900,004 899,686 897,979 901,858 

25 900,340 902,817 899,455 900,040 900,176 900,427 898,947 902,183 

26 900,486 903,096 900,239 900,554 900,322 900,982 899,825 902,460 

27 900,627 903,360 900,934 901,085 900,463 901,549 900,587 902,745 

28 900,763 903,617 901,640 901,490 900,599 901,949 901,335 903,007 

29 900,880 903,847 902,140 901,864 900,716 902,317 901,873 903,249 

30 900,990 904,042 902,712 902,215 900,826 902,653 902,461 903,476 

31 901,101 904,280 903,227 902,601 900,937 903,028 903,029 903,699 

32 901,214 904,454 903,771 902,928 901,050 903,347 903,602 903,888 

33 901,312 904,635 904,199 903,215 901,148 903,639 904,049 904,051 
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Distance 
(m) 

0 ° CW 
(kWh) 

45 ° CW 
(kWh) 

90 ° CW 
(kWh) 

135 ° CW 
(kWh) 

180 ° CW 
(kWh) 

225 ° CW 
(kWh) 

270 ° CW 
(kWh) 

315 ° CW 
(kWh) 

34 901,397 904,773 904,569 903,440 901,233 903,868 904,450 904,193 

35 901,479 904,917 904,919 903,671 901,315 904,138 904,830 904,327 

36 901,564 905,064 905,260 903,855 901,401 904,356 905,188 904,460 

37 901,630 905,156 905,511 904,013 901,467 904,513 905,453 904,558 

38 901,714 905,313 905,841 904,162 901,550 904,674 905,769 904,679 

39 901,772 905,397 906,050 904,316 901,608 904,806 905,997 904,774 

40 901,847 905,534 906,347 904,490 901,681 904,980 906,291 904,895 

41 901,897 905,607 906,527 904,617 901,733 905,080 906,501 904,982 

42 901,965 905,706 906,796 904,774 901,801 905,237 906,774 905,073 

43 902,020 905,804 907,000 904,885 901,857 905,343 906,976 905,165 

44 902,071 905,873 907,188 905,039 901,908 905,453 907,173 905,238 

45 902,125 905,956 907,372 905,170 901,961 905,568 907,392 905,337 

46 902,176 906,022 907,562 905,287 902,012 905,679 907,603 905,408 

47 902,222 906,090 907,708 905,370 902,058 905,778 907,756 905,408 

48 902,273 906,161 907,856 905,454 902,109 905,860 907,937 905,551 
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