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Abstract 

Recently, a number of new techniques to analyze complex, non-linear and non-stationary economic and financial 
data have been introduced. One of the techniques that may substitute conventional approaches based on a Fourier 
transform (FT) is wavelet transform (WT). On the other hand, despite the fact that wavelets have a huge 
potential enabling accurate representation of relationships between economic variables in the time-scale space, 
their use in economics is still rather limited with apparent reasons. In this paper, we will examine the use of the 
wavelets for the analysis of complex economic events and introduce the so-called truncated wavelets and an 
additional metric that may be valuable for processing of real economic and financial data. The presented 
approach may also contribute to the enhancement of our understanding of economic phenomena. The results are 
illustrated on a real example. 
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1. Introduction 

Economists have usually been attempted to explain and forecast variations of financial and economic data using 
macroeconomic fundamentals. Most of these techniques are based on the quantitative spectral approach using a 
“stationary signals” assumption applied to real situations. These approaches usually employ a Fourier transform 
that translates a time-dependent signal f(t) into its representation in the frequency domain F(ω): 

F(ω) =
∞ exp	 ωt) dt           (1) 

One can see that F(ω) is a linear operator and represents a superposition of periodic harmonics (sinωt, cosωt) 
such that each harmonic does not change its characteristics (period and frequency) over time. This is a severe 
limitation that does not allow a wide use of a Fourier transform to handle realistic economic and financial 
phenomena.  

Indeed, variations of GDP and stock indices are among myriads of examples when this assumption is no longer 
valid. In fact, conventional spectral methods have proven to be inadequate to describe the evolutionary nature of 
realistic time series data in general. The Fourier transform does not allow the frequency content of signal f(t) to 
change over time and therefore one faces problems reproducing signals that have time-varying features using the 
Fourier transform. In other words, (1) can tell us how much of each frequency exists in the signal but it does not 
tell us when in time these frequency components exist.  

An analogy is given by human speech: each word of which involves a distinct set of frequencies that last 
specifically within an exact period of time only. 

Let us represent a Fourier transform in a more generalized way: 

F(ω, ) =
∞ exp	 ωt) dt,        (2) 

where W is some filter. We wrote (2) as an attempt to introduce an additional time domain  and map function 
f(t) onto a 2-dimentional plane ( , .	Actually, (2) represents a Gabor transform that has recently been used for 
the analysis of non-stationary phenomena. First of all, we will make the following useful observation. All 
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spectral methods including the Gabor and Fourier representations follow Heisenberg’s uncertainty. This 
uncertainty can be written as follows: ∆ ∆ ~1                (3) 

The Heisenberg uncertainty states that one cannot represent a signal accurately both in the time and the 
frequency domains simultaneously. In fact, if we start with a continuous wave (single harmonic) in the time 
domain, its frequency display shows a single spike corresponding to the frequency of the signal. The significance 
of this result is that one needs to have the signal continuously on in the time domain to abolish uncertainty in 
determining its frequency! This means, as an example, that for constructing a perfect Dirac-type spike, we need 
to employ the information over the whole frequency axes.  

The analog of this situation is well-known in physics: to have a well-defined energy, a physical state must last a 
long time. We cannot precisely know the particle's energy and the exact time the particle obtains this particular 
energy. The Heisenberg principle poses a very serious constraint on the spectral analysis, especially when the 
signal is no longer continuous ( a usual situation in economics). Besides a Gabor transform introduce a great deal 
of uncertainty: a width of the window . 

Let us represent filter function W(t) in the Gaussian form: 

W(t, )= √ exp ,         (4) 

where 	is some fixed reference time and  is analogues to variance in the Gaussian statistics of random 
variables and describes the window (confidence interval) in which much of energy is located. Substituting W in 
(2) by its expression (4) yields:  

F(ω, ) = √ 	exp	 exp	 ωt) dt        (5) 

We can use different parameters of the filter function. Let us consider small values of variance. For small values 
of variance, the Gaussian function may be approximated by the Dirac delta-function spike and (5) reduces to: 

F(ω, ) → exp	 ω )           (6) 

One can see that according to the Heisenberg principle, we need a continuous representation of the signal in the 
frequency domain to achieve a high resolution in the time domain. Since, this is not the case in real situation, a 
Gabor transform assumes an empirically chosen window (not small and not large) and reduces to the Fourier 
transforms of a signal in time stripes in which the signal’s mean (expected value) does not change much within 
the chosen window. This corresponds to the situation when we fix .  Gabor transform fails in practice for 
narrow windows due to the lack of continuous data. The problem with the narrow window Gabor transform is 
that it uses constant length windows of small widths. These fixed length windows give the uniform partition of 
the time space and the Gabor transform reduces to the sums of band-limited Fourier transforms. Surprisingly, 
being aware of this limitation, the Gabor transform has extensively been used for the analysis of economic and 
financial data.  

Another problem with the Gabor transform is that when even a wide range of frequencies is available, the fixed 
time window ( 	 	 	tends to contain a large number of high frequencies and a few low frequencies which 
results in an overpopulation of high frequency components and a lower content of low frequency components. 
Hence, as the signal is examined under a fixed time-frequency window with constant intervals in the time and 
frequency domains, the Gabor transform does not allow an adequate resolution for all frequencies. This is one of 
the major drawbacks of the Gabor transform that will be resolved using a wavelet transform. 

What we wish is to have a reliable mathematical tool that will decompose complex financial and economic data 
into different scales at each fixed time. To achive this, we will not fix  as in the Gabor transform but allow it 
to vary. Having this decomposition we will no longer depend on the Hiesenberg principle inherently embedded 
in all spectral methods. In this case, we will simultaneously see not only long-term variations, but also 
short-scale wiggles at each given time. This will be achieved via the implementation of the so-called wavelet 
transform (WT). 

The wavelet transform uses local base functions that can be stretched and translated with a flexible resolution in 
both frequency and time domains. In the case of wavelet transform WT, the time resolution is adjusted to the 
frequency with the window width narrowing when focusing on high frequencies.  
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2. Wavelet Transform 

Wavelet analysis is a transform when both time and frequency domains are taken into account simultaneously. A 
continuous wavelet transform maps an original time series, which is a function of just one variable into a 
function of two variables: time and scale, providing a great volume of information.  

The pioneering work of Ramsey and Lampart (1998a and 1998b) and Ramsey (2002) was followed by 
Aguiar-Conraria, L. and Soares, M. J. (2011a) and Aguiar-Conraria, L. and Soares, M. J (2011b, Rua, A., and 
Nunes, L. C. (2012), Rua, A., and Silva Lopes, A. (2012), Crowley and Mayes (2008) among others. For 
comprehensive review papers, the authors send the reader to Adisson, P. (2002), Crowley, P. (2007), Percival, D. 
and Walden, A. (2000). De Melo (2011) showed the use of wavelet transform and other modern mathematical 
methods applied to risk analysis. 

The continuous wavelet transform can be presented as: 

WT[f(a, )]= , , ∗∞
               (7) 

where asterisk * stands for complex conjugate. , ,  are basis functions. Usually, these basis functions are 
derived from the so-called mother wavelet (t) and are defined as: , , = √  ,          (8) 

where  determines the time position and a is the scale parameter. Let us introduce the following basis 
functions of a Gaussian wavelet: 

(t- , , )= √ exp R , ,            (9) 

where R( , ) is the resolution function. If R , exp	 i         (10) 

is the monochromatic wave, then this wavelet reduces to the well-known Morlet wavelet basis functions that 
describe monochromatic oscillations within the Gaussian envelope. In the Morlet wavelet the ratio of frequency 
over scale that supplies the image with maximum resolution is fixed. In this wavelet, variance  has the 
meaning of scale parameter “a” in (8) and  is the reference point at the time axes. Unlike the Gabor transform, 	may vary, one can see that low scales (small values of 	capture rapidly changing details, that is, high 
frequencies, whereas higher scales (large values of  capture slowly changing features, that is, low frequencies.  

Now we can formulate an important feature of the wavelet transform. First of all, we can associate WT with the 
Fourier transform. Secondly, we see that instead of dealing with the time/frequency plane, we decomposed the 
signal into the time/scale plane that is free of the Heisenberg restriction. Instead we tune frequency within each 
scale gaining the optimal resolution within each scale. These remarkable properties of the wavelet transform, we 
will use to consider a realistic example. 

Example 1. Analysis of the GDP data  

 

Figure 1. Plot of a Russian GDP data with time 

 

Applying (7) with (9) to the curve depicted on Figure 1, we obtain: 
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Figure 2. Wavelet transform of the curve presented in Figure 1. 

 

 
Figure 3. Wavelet decomposition with varying frequencies at a fixed scale (a) 8, b) 6, 	4, 	 2 

 

For the calculations of the wavelet transform we used the following resolution function:  R , √2 	 exp	 /2 exp	 i 	            (11) 

а)  

b)  

c)  

d)  
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We found that this representation of the R-function tunes the scale value to the range of frequencies choosing 
them to obtain maximum resolution possible. This we clearly see at Figure 3.  

3. Wavelet Energy Density  

Let us now define the wavelet energy density- a measure that calculates energy over fixed values of time and 
scale. To this end, we will represent the wavelet energy density as:  	 , | |                  (12) 
(14) manifests that for bursts, much of energy is concentrated at large scales and rapidly vanishes at smaller 
scales. This we see at Figure 2. WT maps the GDP curve in a blip that is well-seen at the larger scales of the 2-D 
plane. It may be further tuned up by adjusting frequency within the Gaussian envelope (Figure 3a), or can be 
smoothed for further processing (Figure 3c,d).  

It is known that GDP is the best measure of the overall condition of the economy because it includes the output 
of all sectors. Along with, other indicators have been used. We can try to correlate the blip of Figure 2 with other 
indicators and to analyze what the blip on GDP corresponds to.  

Inflation is another indicator defined as the rate of increase in the general price level of goods and services. The 
consumer price index (CPI) is used as a measure of inflation. The CPI measures changes in the prices paid for 
goods and services by urban consumers for the specified month. The CPI is essentially a measure of individuals' 
cost of living changes and provides a gauge of the inflation rate related to purchasing those goods and services. 
Two other frequently watched inflation measures are the producer price index, which measures prices producers 
pay for inputs, and the GDP deflator, the series used to adjust GDP for changes in the overall price level over 
time. Analysts watch trends in these series, as well as interest rate spreads, the yield curve, and measures and 
surveys of inflation expectations to measure both the level of inflation and inflation expectations in the economy. 
We will consider inflation data for the time span (2003-2013) presented by the following Table. 

 

Table 1. Monthly inflation data in Russia. 

2013 0,97 0,56 0,34 0,51 0,66 0,42 0,82 0,14 0,21 0,57 0,56 0,58 5,91 
2012 0,50 0,37 0,58 0,31 0,52 0,89 1,23 0,10 0,55 0,46 0,34 0,54 6,58 
2011 2,37 0,78 0,62 0,43 0,48 0,23 -0,01 -0,24 -0,04 0,48 0,42 0,44 6,10 
2010 1,64 0,86 0,63 0,29 0,50 0,39 0,36 0,55 0,84 0,50 0,81 1,08 8,78 
2009 2,37 1,65 1,31 0,69 0,57 0,60 0,63 0,00 -0,03 0,00 0,29 0,41 8,80 
2008 2,31 1,20 1,20 1,42 1,35 0,97 0,51 0,36 0,80 0,91 0,83 0,69 13,28
2007 1,68 1,11 0,59 0,57 0,63 0,95 0,87 0,09 0,79 1,64 1,23 1,13 11,87
2006 2,43 1,66 0,82 0,35 0,48 0,28 0,67 0,19 0,09 0,28 0,63 0,79 9,00 
2005 2,62 1,23 1,34 1,12 0,80 0,64 0,46 -0,14 0,25 0,55 0,74 0,82 10,91
2004 1,75 0,99 0,75 0,99 0,74 0,78 0,92 0,42 0,43 1,14 1,11 1,14 11,74
2003 2,40 1,63 1,05 1,02 0,80 0,80 0,71 -0,41 0,34 1,00 0,96 1,10 11,99

The inflation curve is given by the following chart. 

 
2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013 

Figure 4. Inflation curve with years 
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In fact, the indicators range from labor market conditions to industrial production, from monetary policy 
indicators and interest rates to fiscal policy, from regional and domestic to international indicators, from oil 
prices to stock market indices. Reflecting the complexity of the economy, government agencies review these 
charts and tables, as well as the results of econometric models, when they evaluate the economic health of the 
nation. What is surprising though, that powerful mathematical tools that are efficiently used in other fields of 
science and technology have not found yet the right path in economy. For the sake of simplicity (other indicators 
we will leave for further analysis), we will consider the inflation data and compare them with the GDP 
variations. 

We will now introduce a variable that will be useful for the analysis of relationships between different indicators. 
Suppose we have two time-dependent functions (in our case: GDP and inflation variations with years). We 
perform the Wavelet transform to both functions and will compute WT (GDP) and WT (INF) respectively. Both 
functions depend on time and scale. We determine the cross-correlation function as: Φ , , 	 , , ∗       (13) 

Here, we should make an important remark. Many published papers on economics and econometrics come up 
with confusing and often erroneous results by the following reason. When a time series is non-stationary (GDP 
or price curves, say), the limitations of methods that calculate autocorrelation and cross-correlation that assume 
stationarity are evident. In fact, suppose a time series GDP(t) has a large upward trend as we see on the plot of 
the GDP EU data. Then a large value of GDP(t ) is more likely to be followed by a large value of GDP(t+ ). 
This implies large GDP autocorrelations, not because large autocorrelations actually exist, but because the 
autocorrelation function is being used for a non-stationary time series violating the stationarity yielding 
erroneous results.  

The same situation one can observe while computing cross-correlation of the signals. To this end, one can come 
to the following result: a market index time series will strongly cross-correlate with any other time series that has 
a large upward trend, though there is no true cross-correlation at all. This is a very serious observation and 
should be taken care of accordingly.   

We will now introduce another function that correctly represents the coherence metric of time series. We see that 
coherence measures (autocorrelation and cross-correlation) cannot be applied to non-stationary signals. The main 
reason for this is their trends that may contribute to false quantities of coherencies. On the other hand, we know 
that the trends are represented by large scales. We will then remove large scales from the wavelet transform and 
will consider the truncated values of the WT.  Φ , , 	 , , ∗ ,     (14) 

where Z is a truncation operator 				1			 																0	 	 		0																				            (15) 

In this case, 		is a fixed scale that represents the trend of a time series. Now  represents a 
stationary signal as well as  and we can apply the covariance analysis to analyze the coherency of 
these signals. What we see from (14) is that the wavelet transform acts as an ideal detrending operator that 
converts non-stationary signals into stationary ones.  

We will introduce the so-called cross-correlation measure that has a meaning of cross-energy spectrum 
distributed over the time-lags 

 Φ , ,               (16) 

With the truncation operator in the wavelet transform plane can form the autocorrelation function that is a 
wavelet power spectrum: 	 	 | , | 		 ,            (17) 

where T defines the upper limit on the time axes. We can also from now the cross power spectrum CPS that 
appears to be valuable for the concurrent analysis of two signals f and g. 	 	 , , ∗				 ,          (18) 
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Let us consider again two functions: the first one is the GDP plot (Figure 1) and the inflation curve for the same 
period of time (Figure 4). We will calculate the cross power spectrum of two signals. 

This yields 

a) 2003-2008      b) 2008-2011 
Figure 5. Cross-correlation measure of the wavelet transform defined by (16) 

 

One can see a very good correlation of signals. In the first period (figure a), variations of GDP and inflation 
match at zero lags, maximizing the cross-power spectrum, while drop in GDP and inflation are seen with the 
time lag with much smaller values of the cross-power spectrum. 

4. Conclusion  

As it was mentioned in the paper, the use of wavelet transform in economics and finance is much smaller 
compared to other fields of science and technology. One of the reasons for this is a common practice to use 
conventional methods based on a Fourier or Gabor transform, though it is evident that they cannot be applied to 
real data due to their highly non-stationary characteristics. Another reason is that, the such commonly used in 
economics estimators as covariance analysis of the available indicators such as GDP, money supply, consumer 
price index, producer price index, etc. fails again as the cross-correlation analysis fails again applied to wavelet 
transform.  

In this paper, we considered a generalized wavelet that in a particular case of unit amplitudes reduces to the 
Morlet wavelet. The introduced wavelet appears to be handy for the wavelet processing as it enables even very 
small details.  

Secondly, we have introduce the truncated wavelet transform ZWT that allows to remove large scales and thus 
trends. The truncated wavelet transform may be very practical and may evoke interest within the economists as 
they transform non-stationary signals and thus a common cross-correlation analysis used by economists will 
make sense. 

We introduced a convenient cross-correlation measure that is illustrated on realistic signals. This analysis shows 
some remarkable properties of the truncated wavelets making them powerful tools to be used in economics for 
the cross-analysis of highly non-stationary, realistic problems.  
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