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Abstract 

Nowadays, enormous increase of production and service sectors leads to increase in demand for energy 
consumption. Therefore, energy and oil consumption in a variety of countries are considerably effected by 
energy and oil prices. International oil prices are crucial for both oil exporting countries and capital market 
investors as a means of volatility spillovers. This paper aims to analyze whether volatility spillovers exist 
between world oil market and several sector indices operating in Borsa Istanbul (BIST) 100 including energy, 
non-metal mineral products, and transportation using bivariate GARCH (1, 1) model. Estimation results suggest 
that except for non-metal mineral products sector, there are interactions between oil returns and the underlying 
sectors in terms of both shocks and conditional variance. 
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1. Introduction 

Oil price shocks have been induced for economic recessions, financial crisis in different industries, 
unemployment, depression of investment through uncertainty, high inflation, low equity and bond values, trade 
deficits and famine. Hamilton (1983) argued that except for one, all of U.S. recessions since World War II have 
been taken precedence of a dramatic increase in oil crude petroleum price, typically with a lag of almost 
three-fourths of a year (Lizardo & Mollick, 2010). Furthermore, in the globalized era, along with the rapid 
increase in the information and the communication technologies, economic interaction among developed and 
emerging countries has been inevitable. Therefore, moving markets including oil has come into prominence as a 
crisis and risk transmission channel in the international arena. No doubt, this subject is more important for oil 
exporting countries. To this end, the crucial role of volatility spillovers revisit for investors operating in the 
capital markets. A recent study (Basher & Sadorsky, 2006) noticed the association between oil demand of 
developed and emerging countries and growth on industrial production which explicitly identifies this vital 
impact on modern economies. According to BP Statistical Review of World Energy (2012) data, Turkey 
consumes average 0.8% of the world oil annually between 2001 and 2011. During the same period; the annual 
oil consumption of Japan, China, India, the U.S. and the Russian Federation refers to 6%, 8.6%, 3.3%, 23.5%, 
and 3.2%, respectively. Statistically, the U.S. consumes nearly one-quarter of oil in the world and it is more 
affected by the volatility spillovers of oil prices.  

Over the past decade, there is a rapidly growing literature which addresses the linkages among oil prices, stock 
market indices and volatility spillovers using a variety of econometric estimation methods. A number of studies 
focused on the comparison between the Asian, namely, Japan, Hong Kong, Saudi Arabia, China, or ASEAN-5 
countries and the U.S. and the U.K. stock markets and generally found evidence of volatility spillover linkages 
especially in the post-crisis periods (Kim, 2005; In, 2007; Alsubaie & Najand, 2009; Moon & Yu, 2010; Arifin & 
Syahruddin, 2011; Gebka, 2012; Haixia & Shiping, 2013; Zheng & Zuo, 2013). There is also overwhelming 
evidence corroborating the significance of volatility spillovers of European stock markets in the light of oil 
prices (Giannellis, Kanas, & Papadopoulos, 2010; Arouri, Jouini, & Nguyen, 2011, 2012; Antonakakis, 2012; 
Tamakoshi & Hamori, 2013; Reboredo, 2014). More comprehensive studies carried out extensive volatility 
spillover comparisons among different countries (Serra, 2011; Korkmaz, Çevik, & Atukuren, 2012; Krause & 
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Tse, 2013; Nazlioglu, Erdem, & Soytas, 2013; Salisu & Mobolaji, 2013; Valadkhani, Harvie, & Karunanayake, 
2013). Some recent studies examined the behavior of the U.S. stock markets and sector indices depending on oil 
prices and found evidence of significant transmission of volatility and shocks between oil prices and relevant 
sectors (Hammoudeh, Li, & Jeon, 2003; Malik & Ewing, 2009; Du, Yu, & Hayes, 2011; Diebold & Yilmaz, 2012; 
Ji & Fan, 2012; Trujillo-Barrera, Mallory, & Garcia, 2012; Liu, Ji, & Fan, 2013). Most recent studies 
successfully established the comparison of econometric methodology in terms of their accuracy during the 
measurement of volatility spillovers, asymmetric effects across and within the oil and the other selected markets 
(Chang, McAleer, & Tansuchat, 2010; Sadorsky, 2012; Wang & Wu, 2012; Ewing & Malik, 2013). As a result, 
GARCH models take their respectable place through their usefulness and estimation accuracy. 

The impact of the oil prices on the Turkish stock exchange index and several sub-indices (Eryiğit, 2009; Soytas 
& Oran, 2011; Toraman, Başarır, & Bayramoğlu, 2011) is also prominent in the existing literature. The main 
objective of the present paper is to explore the volatility spillovers between world oil prices and BIST 100, 
energy, transportation and non-metal mineral products sectors using GARCH (1, 1) model. The rest of the paper 
is organized as follows. Section 2 gives information about the data set and the method being used. Section 3 
introduces the estimation results and discusses them in terms of implications for policy making. 

2. Data Set and Methodology 

2.1 Data Set 

This paper utilized the data set including the daily close of the session values of BIST National Market-100 
index, electricity, transportation, non-metal mineral products sub-sector indices and world oil prices between 
January 2, 2002 and December 31, 2012. As all the time series have a unit root, daily returns formula with 
respect to the existing literature can be written as 

   1loglog  ttt PPR                                     (1) 

where Pt denotes the price index. Table 1 presents the descriptive statistics of the underlying data. As shown in 
Table 2, all sectors have positive average return. Moreover, since there is an ARCH effect in the time series, the 
application of the GARCH model is approved. 

 

Table 1. Descriptive statistics 

 Oil Price BIST 100 Electricity Non-metal mineral products Transportation 

Mean 0.08386 0.08193 0.03408 0.0685 0.0897 

Standard Deviation 2.1963 2.4129 2.5836 2.0256 2.6529 

Skewness 0.21979 -0.0886 -0.1504 -0.3759 -0.0682 

Kurtosis 8.2440 7.4626 8.031657 9.4615 6.3022 

Shapiro-Wilk statistic 0.9600 0.9521 0.9382 0.9291 0.958 

 (0.000) (0.000) (0.000) (0.000) (0.000) 

ARCH effect 39.350 133.0630 165.4350 137.738 92.0570 

 (0.000) (0.000) (0.000) (0.000) (0.000) 

Number of observations 2,853 2,853 2,853 2,853 2,853 

p values are presented in parentheses 

 

Figure 1 illustrates the prior information about the daily returns and volatility spillovers, where clustering 
phenomenon was observed in parallel with the existing literature. In addition, high kurtosis values of variables in 
Table 1 also ensure the presence of clustering phenomenon for the underlying time series. Therefore, it can be 
suggested that time series have a conditional variance. 
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Figure 1. Daily oil returns and BIST 100, electricity, transportation, and non-metal mineral products indices 

 

2.2 Bivariate GARCH (1, 1) Model 

Bollerslev, Engle and Wooldridge (1988) extended the bivariate ARCH/GARCH models and conditional 
variance is defined as 

     

 ttt
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i
itit
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where vech(.) refers to the column stacking operator of the lower portion of a symmetric matrix and also, 

N: Number of observations 

A: (1/2)N(N+1) dimensional vector of constants; 

Bi: i=1,2,...,p and (1/2)N(N+1)*(1/2)N(N+1) dimensional constants matrix; 

Cj: j=1,2,…q and (1/2)N(N+1)*(1/2)N(N+1) dimensional constants matrix. 

Furthermore, a simple two-equation GARCH (1, 1) vec model without exogenous influences can be illustrated as 
follows (Engle & Kroner, 1995): 

2

11, 11, 1 1, 11 11 12 13 11 12 13

12, 2 21 22 23 12, 1 21 22 23 1, 1 2, 1

2
3 31 32 33 31 32 3322, 22, 1 2, 1

t t t

t t t t t

t t t

h ha b b b c c c

h h a b b b h c c c

a b b b c c ch h
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               (3) 

For a time period t, the log-likelihood function can be expressed  

         11 1
ln ln 2 ln

2 2 2t tt t t

N
H Hl                                  (4) 

where  denotes the vector of all combined parameters defined in the model. Here,  
2

1 1
( 1) ( 1)

2 2
N N N N p q

      
 

parameters are estimated for only variances and covariances. If the covariances (hjk,t) are only defined by their own 

past values  , ,j t k t  , then the number of parameters to be estimated will dramatically decrease. To this end, the 

diagonality is imposed on the matrices (Bollerslev, Engle, & Wooldridge, 1988). The relevant 

variance-covariance equations  th  are defined as the following (Engle & Kroner, 1995):  
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               (5) 

or 
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                                  (6) 

In general, the number of parameters to be estimated of an N-variable vec model for each Bi and Cj matrices are 
((1/2)N(N+1))2, and (1/2)N(N+1) for diagonality. So, the total number of parameters to be estimated for a bivariate 
vec model as shown in Equation (5) and (6) will be twenty-two and nine for diagonality. 

3. Results and Discussion 

This paper investigates the volatility spillovers between oil market and four sectors using bivariate GARCH (1, 1) 
model. The relationship between oil returns and the four sectors in terms of average returns can be defined as 

tttttt RRRR ,21,22220,2,11,11110,1 ;                    (7) & (8) 

where R1,t and R2,t denote oil returns and the returns of other sectors, respectively. Additionally, in Equation (7) 
and (8), t-1 and u indicate the delay and the residual, respectively. The bivariate covariance matrix can be 
defined as the following: 
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In this context, a vech operator enables to transform this matrix into a single column matrix, and the final 
vectorial form can be described 
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where 2,1,,
2
,  itiiti  . 

Finally, the variance-covariance structure in the underlying bivariate GARCH (1, 1) model can be written as the 
following: 

2
1,111

2
1,1111

2
,1   ttt                                (11) 

2
1,222

2
1,2222

2
t,2   tt                              (12) 

1,12121,21,11212,12   tttt                          (13) 

Under the assumption that ut has a conditional normal distribution, it can be estimated by the maximum 
likelihood method. Then, the log-likelihood will be 

        1

2

1
log

2

1
2log

2 t ttt

k
L                        (14) 

where  is assumed to combine all estimated parameters, ttt Y u . 

Table 2 represents the interaction results between oil returns and the other four sectors. The convenient average 
and variance diagonal GARCH (1, 1) equations with respect to the corresponding parameters in Table 2, can be 
written as the following: 

Average Equations (Oil-BIST 100): 

, , 1 ,
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                          (15) 

Variance Equations (Oil-BIST 100): 

2
, , 1 , 1
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Average Equations (Oil-Electricity): 
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Variance Equations (Oil-Electricity): 
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                (18) 
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Average Equations (Oil-Non-Metal Mineral Products): 

, , 1 ,
3.1992 0.0719
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                 (19) 

Variance Equations (Oil-Non-Metal Mineral Products): 
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      (20) 

Average Equations (Oil-Transportation): 
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             (21) 

Variance Equations (Oil-Transportation): 

2
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, , 1 , 1 , 1
3.0374 22.08 5.55
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0.0676 0.7623 0.0520
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       (22) 

For all four models being fitted, present returns of every sector were significantly affected by their own past 
returns. Furthermore, the relevant conditional variances were also affected by both their own past shocks and 
past conditional variances. In this manner, it can be suggested that volatility spillover of oil prices would play an 
important role on determining the future oil prices. Particularly, this situation depends on the degree of possible 
future shocks and volatility. Therefore, future behavior of volatility of variance will inevitably shaped by the oil 
production or demand. This is also valid for BIST100 and the other three sub-sectors, where their conditional 
variances are effected by both their own shocks and conditional variances. This interaction means that present 
returns may be affected by past shocks and variance volatility. 

 

Table 2. Bivariate GARCH (1, 1) model estimation results between oil returns and BIST100, electricity, 
transportation, and non-metal mineral products sectors 

Variable 
Oil-BIST 100 Index Oil-Electricity 

Oil-Non-metal mineral 
products 

Oil-Transportation 

Coefficient t-value Coefficient t-value Coefficient t-value Coefficient t-value 

φ10 
0.1246*** 

(0.0358) 
3.4795 

0.1187***

(0.0356) 
3.3354 

0.1147***

(0.0359) 
3.1992 

0.1182*** 

(0.0359) 
3.2950 

φ11 
-0.0014 

(0.0197) 
-0.0717 

-0.0108

(0.0196) 
-0.5507 

-0.0015 

(0.0203) 
-0.0719 

-0.0049 

(0.0198) 
-0.2484 

φ20 
0.1686*** 

(0.0356) 
4.7367 

0.0707**

(0.0357) 
1.9788 

0.1421***

(0.0300) 
4.7319 

0.1105*** 

(0.0445) 
2.4860 

φ22 0.0897*** 4.5926 0.0922*** 4.6719 0.1175*** 6.1021 0.0952*** 5.0762 
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Variable 
Oil-BIST 100 Index Oil-Electricity 

Oil-Non-metal mineral 
products 

Oil-Transportation 

Coefficient t-value Coefficient t-value Coefficient t-value Coefficient t-value 

(0.0195) (0.0197) (0.0193) (0.0188) 

ω1 
0.0418*** 

(0.0107) 
3.8964 

0.0369***

(0.0096) 
3.8302 

0.0378***

(0.0105) 
3.6146 

0.0384*** 

(0.0102) 
3.7681 

α11 
0.0393*** 

(0.0050) 
7.9370 

0.0364***

(0.0044) 
8.3228 

0.0392***

(0.0050) 
7.8671 

0.0388*** 

(0.0048) 
8.1398 

β11 
0.9509*** 

(0.0062) 
152.7164 

0.9548***

(0.0055) 
174.8402 

0.9521***

(0.0062) 
154.4999 

0.9521*** 

(0.0059) 
161.4134 

ω2 
0.1767*** 

(0.0274) 
6.4587 

0.4605***

(0.0413) 
11.1584 

0.2010***

(0.0181) 
11.1269 

0.2612*** 

(0.0345) 
7.5832 

α22 
0.1256*** 

(0.0091) 
13.7477 

0.1890***

(0.0127) 
14.8945 

0.1692***

(0.0096) 
17.5755 

0.0902*** 

(0.0065) 
13.9751 

β22 
0.8476*** 

(0.0101) 
83.8286 

0.7520***

(0.0144) 
52.1423 

0.7910***

(0.0084) 
94.0553 

0.8743*** 

(0.0075) 
116.0636 

ω12 
0.7289*** 

(0.1608) 
4.5339 

0.0670***

(0.0184) 
3.6320 

-0.0332 

(0.0481) 
-0.6896 

0.0676*** 

(0.0222) 
3.0374 

α12 
0.0524*** 

(0.0153) 
3.4216 

0.0622***

(0.0106) 
5.8494 

0.0164 

(0.0178) 
0.9228 

0.0520*** 

(0.0093) 
5.5568 

β12 
-0.4048* 

(0.2414) 
-1.6769 

0.8197***

(0.0289) 
28.3136 

0.4460 

(0.5701) 
0.7822 

0.7623*** 

(0.0345) 
22.0841 

LogL -12262.99317867 -12443.71267470 -11775.61684958 -12671.13843135 

Standard deviations are shown in parentheses 

*p < 0.10, **p < 0.05, ***p < 0.01. 

 

Another important evidence is the significant joint conditional shocks and volatility between oil returns and 
electricity and transportation sectors, although no significant interaction was determined between oil returns and 
returns of non-metal mineral products. However, there was an interaction between oil returns and BIST100, but 
relatively weak interaction was observed in terms of volatility. It can be noticed that all sectors including oil 
returns were positively affected by their shocks and their conditional variances, which demonstrates the 
non-negativity of variances and a positive change will reflect the present the conditional variance in the same 
way. Although negative interaction was also observed, conditional variance shocks of mutual interactions and the 
corresponding changes on conditional covariances generally positively reflected the present covariance of 
returns. The analysis results may provide information for current investors to minimize their portfolio risks with 
respect to these interactions between oil returns and the underlying sectors. 
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