Path Integral Quantization of Regular Lagrangian


  •  Ola Jarabah    

Abstract

Path integral formulation based on the canonical method is discussed. The Hamilton Jacobi function for regular Lagrangian is obtained using separation of variables method. This function is used to quantize regular systems using path integral method. The path integral is obtained as integration over the canonical phase space coordinates. One illustrative example is considered to demonstrate the application of our formalism.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • Issn(Print): 1916-9639
  • Issn(Onlne): 1916-9647
  • Started: 2009
  • Frequency: bimonthly

Journal Metrics

Google-based Impact Factor (2017): 3.90
h-index (November 2017): 17
i10-index (November 2017): 33
h5-index (November 2017): 12
h5-median (November 2017): 19

Learn more

Contact