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Abstract 
In this paper, we qualitatively examine the compatibility between gravity and the absoluteness of time. Initially, 
time is supposed as being absolute. However, this assumption does not imply that instruments and devices, 
finalized to measure time, are not influenced by gravity. On the contrary, we admit that whatever phenomenon, 
including the ones that occur when we measure time, shows clear traces of the influence of gravity. Nonetheless, 
the alleged time dilation, that seems to occur when we approach a gravitational source, could actually be illusory. 
In this paper, in fact, we contemplate the possibility that the above-mentioned phenomenon could be exclusively 
related to the contraction of the orbits induced by the mass that produces the gravitational field. We start from 
postulating a Universe, belonging to the oscillatory class, characterized by at least a further spatial dimension. At 
the beginning, the Universe in its entirety is assimilated to a four-dimensional ball, and matter is considered as 
being evenly spread. Once hypothesized that all the available mass may be concentrated in a single point, taking 
advantage of an opportune parameterization, pretending that the orbits don't undergo any modification whatsoever 
and admitting, as a consequence, that time starts slowing down when we move towards the singularity, we can 
easily obtain, far from the source, a Schwarzschild solution for the vacuum field, without using General Relativity. 
Keywords: Gravitation; Gravitational Singularity, General Relativity, Vacuum Field, Weak Field Approximation, 
Schwarzschild Metric, Absoluteness of Time 
1. Introduction 
We hypothesize a closed Universe belonging to the oscillatory class (Harrison, 1967). More precisely, we postulate 
a Universe that evolves following a simple harmonic motion whose pulsation is equal to the ratio between the 
speed of light and the mean radius (of curvature). The existence of at least a further spatial dimension is 
contemplated. Although the space we are allowed to perceive is curved, since it is identifiable with a hyper-sphere 
whose radius depends on our state of motion, the Universe in its entirety, herein assimilated to a four-dimensional 
ball, is to be considered as being flat (Cataldo, 2017). All the points are replaced by straight line segments: in other 
terms, what we perceive as being a point is actually a straight-line segment crossing the centre of the above-
mentioned four-dimensional ball (Cataldo, 2016a). 
If R represents the radius, the Universe we have hypothesized can be banally described, with obvious meaning of 
the notation, by means of the following inequality:  ݔଵଶ + ଶଶݔ + ଷଶݔ + ସଶݔ ≤ ܴଶ (1) 

However, the Universe we are allowed to perceive, when we are at rest, can be assimilated to the hyper-surface 
defined by the underlying identity: ݔଵଶ + ଶଶݔ + ଷଶݔ + ସଶݔ = ܴଶ (2) 

In a closed Universe, isotropic and homogeneous, matter is usually imagined as being evenly spread on the surface 
of a four-dimensional ball. In our case, we actually postulate that matter fills the 4-ball in its entirety, although the 
Universe we are allowed to perceive can be assimilated to a hypersphere. Let’s denote with C the centre of the 4-
ball, with O and P two points on the surface, the first of which taken as origin, and with O’ the centre of the so-
called measured circumference, to which P belongs. The angular distance between O and P, as perceived by an 
ideal observer placed in C, is denoted by χ.  
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The circumference, whose center coincides with O’, is simultaneously boundary of the disk, whose radius is equal 
to the forecast one, and of the spherical cap, whose amplitude is equal to 2χ. Similarly, the spherical surface, whose 
center coincides with O’, is simultaneously boundary of the ball, whose radius is equal to the forecast one, and of 
the hyper-spherical cap (a three-dimensional surface), whose amplitude is equal to 2χ, characterized by a volume, 
denoted by V, provided by the following identity: ܸ = න ሺܴߨ4 sin ߯ሻଶܴ݀߯

଴ = ଷሺܴߨ2 − sin cosሻ ≅ 43  ଷܴଷ (3)ߨ

The “flat coordinate” (the forecast radius), denoted by X, is provided by the following relation: ܺ = ܴ sin ߯ (4) 

If we denote with l the measured distance (the proper radius), we can write: 

݈݀ = ܴ݀߯ = ݀ܺට1 − ቀ௑ோቁଶ (5) 

Once introduced the dimensionless coordinate provided by the underlying identity 

ݎ̅ = ܴܺ = sin ߯ (6) 

we can write, with obvious meaning of symbols and signs, the well-known Friedmann – Robertson – Walker 
metric, with the scale (dimensional) factor equal to R: 

ଶݏ݀ = ܿଶ݀ݐଶ − ܴଶ ቈ ଶ1ݎ̅݀ − ଶݎ̅ + ଶߠଶሺ݀ݎ̅ + sinଶ ߠ ݀߮ଶሻ቉ (7) 

The situation is qualitative depicted in Figure 1. 

 
Figure 1. Forecast Radius and Measured Distance 

Figure 1 shows the difference between the forecast radius and the measured distance. The straight-line segment 
bordered by O’ and P represents the forecast radius (that can be expressed as the ratio between the perimeter of 
the measured circumference and 2π). The arc bordered by O and P represents the proper radius (the measured 
distance between the above-mentioned points). 
2. How Matter warps Space: a simple qualitative model 
In deducing the so-called Friedmann – Lemaître equations (Friedmann 1922), having hypothesized an isotropic 
and homogeneous Universe that oscillates simple-harmonically, we have elsewhere carried out the following 
noteworthy position (Cataldo, 2017): 
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ܿଶ = ௠ܴ௠ܯܩ2  (8) 

G represents the gravitational constant, c the speed of light, Rm the mean value of the radius (of curvature) of the 
Universe, and Mm the correspondent mass. It is fundamental to highlight how the values of Rm and Mm must be 
conventionally considered as being the real ones, since the metric variation of cosmological distances is not thought 
to be a real phenomenon (in other terms, the amount of space between whatever couple of points remains constant 
with the passing of time). From the previous equation, denoting with Rs the so-called Schwarzschild radius, and 
replacing, for convenience, Mm with M, we can immediately write: 

ܴ௠ = ଶܿܯܩ2 = ܴ௦ሺܯሻ (9) 

From now onwards, we will exclusively speak in terms of alleged real values (of distances): as a consequence, R 
will always be replaced by Rs. 
Let’s consider now a generic point Q, belonging to the surface of the 4-ball, and let’s denote with χmax the angular 
distance between this point and the origin. We have now to suppose that the mass contained in the hyper-spherical 
sector, whose amplitude is equal to 2χmax, may be evenly spread along the segment bordered by C and O (perceived 
as being a material point), so producing an increment of its linear density. It follows that the segment undergoes a 
radial contraction: given that its mass increases, the new amount of energy is no longer compatible with the 
previous radial extension. To even only qualitatively explain this, we cannot exploit the alternative writing of the 
conservation of energy elsewhere discussed (Cataldo, 2016b). In fact, since its linear density increases, the segment 
does not undergo a radial reduction (in other terms, it does not shorten within space). This time, both the segment 
and the corresponding space undergo a radial contraction (the segment shortens together with space), whose size 
is unknown, and the surrounding spatial lattice, whose integrity must be in any case preserved, results in being 
deformed, but we don’t know how this happens.  
If we suppose that the segment (that represents the singularity) lies along the fourth axis, from (1), by setting equal 
to zero, one at a time, x1, x2 and x3, we immediately obtain the following three-dimensional scenarios: ݔସ,ଵଶ + ଶଶݔ + ଷଶݔ ≤ ܴ௦ଶ (10)

ଵଶݔ + ସ,ଶଶݔ + ଷଶݔ ≤ ܴ௦ଶ (11)

ଵଶݔ + ଶଶݔ + ସ,ଷଶݔ ≤ ܴ௦ଶ (12)

Very evidently, if we take into consideration one among the scenarios we have just obtained, the procedure 
previously discussed (the creation of the singularity) is equivalent to concentrating along the segment, bordered 
by C and O, the mass of the spherical sector, whose amplitude is equal to 2χmax. As previously highlighted, the 
new radial extension of the segment (that represents the singularity) is unknown, as well as the shape of the 
deformed spatial lattice. In other terms, we are forced to carry out some hypotheses. Let’s denote with r the radial 
coordinate of a generic point of the warped surface. Now, let’s suppose that, notwithstanding the deformation of 
the spatial lattice induced by the mass, if the angular distance between whatever couple of points does not vary, 
the corresponding measured distance remains constant. In order to obtain the above, we must impose the following:  

ܴ௦ = ඨ൬݀߯݀ݎ൰ଶ + ଶ (13)ݎ

2 ߯݀ݎ݀ ݀ଶ߯݀ݎଶ + ݎ2 ߯݀ݎ݀ = ᇱᇱݎᇱݎ2 + ᇱݎݎ2 = 0 (14)

The foregoing equation is characterized by the underlying general solution: ݎ = ଵܭ cos ߯ + ଶܭ sin ߯ (15)

If we consider the range [0, χmax], with χmax such that r(χmax) = Rs and r’(χmax) = 0, we obtain:  



apr.ccsenet.org Applied Physics Research Vol. 9, No. 2; 2017 

45 

ሺ߯ሻݎ = ܴ௦ cosሺ߯௠௔௫ − ߯ሻ (16)

The previous outcome is depicted in Figure 2.  

 
Figure 2. Gravitational Singularity and Warped Space 

 
Figure 2 qualitatively shows how space results in being deformed due to a gravitational singularity (perceived as 
being placed in O’). At the beginning, when mass is evenly spread, the origin coincides with O. If we concentrate 
in O (actually along the segment bordered by C and O) the mass contained in the spherical sector (actually a hyper-
spherical sector) whose amplitude is equal to 2χmax, space undergoes a contraction. The new origin is placed in O’, 
and the surrounding space is symmetrically warped. The initial radial coordinate of a generic point P (actually its 
initial radial extension), is represented by the segment bordered by C and P. The angular distance is denoted by χ. 
The final coordinate (actually the final radial extension), represented by the segment bordered by C and P’, is 
shorter than the initial one, and its value is provided by (16). The proper radius does not undergo any modification 
whatsoever: the arc bordered by O and P, in fact, is evidently equal to the one bordered by O’ and P’.  
If we denote with x the reduced “flat coordinate” (the reduced forecast radius), we have:   ݔ = ݎ sin ߯ = ܴ௦ sin ߯ cosሺ߯௠௔௫ − ߯ሻ (17)

Moreover, with obvious meaning of the notation, we can immediately write:  ݎ௠௜௡ = ሺ0ሻݎ = ܴ௦ cos ߯௠௔௫ (18)

ሺ߯ሻݎ∆ = ܴ௦ − ሺ߯ሻݎ = ܴ௦ሾ1 − cosሺ߯௠௔௫ − ߯ሻሿ (19)

௠௔௫ݎ∆ = ሺ0ሻݎ∆ = ܴ௦ሺ1 − cos ߯௠௔௫ሻ (20)

If we denote with M the mass of the ball (actually the 4-ball with which we identify our Universe), and with Mχ 
the one contained in the spherical sector (actually a hyper-spherical sector) whose amplitude is equal to 2χ, we 
can write, taking into account (20), the following: ܯܯ = ௠௔௫ܴ௦ݎ∆ = ܴ௦,ܴ௦  (21)

ܴ௦, = ௠௔௫ݎ∆ = ܴ௦ሺ1 − cos ߯௠௔௫ሻ (22)

In other terms, we can state that, if we concentrate in O (actually along the material segment whose edge coincides 
with O) the mass contained in the spherical sector (actually a hyper-spherical sector) whose amplitude is equal to 
2χ, the radial coordinate of O will undergo a reduction (actually the material segment will undergo a contraction) 
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whose size is equal to the Schwarzschild radius of Mχ. The hypothesized scenario is qualitatively portrayed in the 
following figure, where the singularity (as we can perceive it) coincides with the point O’. 
The outcomes just obtained are qualitatively depicted in Figure 3.  
 

 
Figure 3. Gravitational Singularity and Warped Space (particular) 

 
Figure 3 shows once again how the singularity, perceived as being placed in O’, does not influence the measured 
distance (the proper radius). The arc bordered by O and P, as previously underlined, is evidently equal to the one 
bordered by O’ and P’. On the contrary, the “flat coordinate” (the forecast radius) undergoes a reduction. The 
segment bordered by B and P represents the forecast radius (X) when matter is evenly spread; the segment bordered 
by B’ and P represents the reduced forecast radius (x).  
3. Vacuum Field solution (non-rotating and non-charged “black hole”) 
Now, let’s suppose that the whole available mass may be concentrated in O. In the light of the qualitative model 
we have just built, taking into account (16) and (17), setting χmax = π/2, we can write: ݎ = ܴ௦ sin ߯ (23)

ݔ = ݎ sin ߯ = ܴ௦ sinଶ ߯ (24)

The scenario is qualitatively portrayed in Figure 4. 
 

 
Figure 4. Non-Rotating and Non-Charged “Black Hole” 

 
Figure 4 qualitatively depicts the case in which all the mass is concentrated in one single point. The origin, initially 
placed in O, coincides with the center of the ball (actually a 4-ball) with which we identify the Universe.  
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As previously observed, once fixed the angular distance, the proper radius (the measured one) will remain the 
same, but the flat coordinate (and, consequently, the corresponding circumference) will undergo a reduction. 
Consequently, a test particle will take less time than forecast to draw a complete orbit around the singularity.  
Now, let’s suppose that we are not disposed to accept such a situation. More precisely, let’s imagine that, instead 
of admitting that the orbit drawn by the test particle has undergone a contraction, we prefer to hypothesize that, 
due to the gravitational source, time has started slowing down. As a consequence, we may write:  ݀ݐ = sin ߯ ଴ (25)ݐ݀

Clearly, we have denoted with t0 the absolute time, and with tχ the “local” time. By virtue of this interpretation, 
taking into account the fact that, coherently with the model, a light impulse takes the same time, with or without 
gravitational singularity, to cover whatever distance (once fixed χ), we are forced to modify the value of the proper 
radius. The reason is very simple. On the one hand, the speed of light cannot be influenced by the singularity; on 
the other hand, we forcefully postulate that, due to the gravitational source, time starts slowing down (in other 
terms, we refuse to admit that the orbit undergoes a contraction). As a consequence, in order to keep the speed of 
light constant, we have to imagine that the proper radius undergoes a dilation. To summarize the results up to now 
obtained, we can state that, apparently, if we concentrate matter in a point, time and space (the proper radius) 
undergo a dilation. Similarly, we can state that, apparently, if we remove mass from a gravitational source, time 
and space (the proper radius) undergo a contraction. The length of whatever orbit remains (apparently) constant. 
Now, let’s carry out a reparameterization of (23). We may write:  ݎ∗ = ܴ∗ sin  (26)

Obviously, we will avoid considering the banal case in which the derivative of R* is null. We have: ݀ݎ∗݀ = ܴ݀∗݀ sin  + ܴ∗ cos  (27)

ଶ∗ݎ + ൬݀ݎ∗݀ ൰ଶ = ܴ∗ଶ + ൬ܴ݀∗݀ ൰ଶ sinଶ  + 2ܴ∗ ܴ݀∗݀ sin cos (28)

ଶ∗ݎ + ൬݀ݎ∗݀ ൰ଶ = ܴ∗ଶ + ൬ܴ݀∗݀ ൰ଶ ቎sinଶ  + ቌ2ܴ∗ tan ௗோ∗ௗ ቍ cosଶ ቏ (29)

Since the proper radius must actually remain the same, in spite of the fact that all the mass is concentrated in a 
single point, we have to impose the following: 

݈݀௥∗ = ඨݎ∗ଶ + ൬݀ݎ∗݀ ൰ଶ ݀ = ඨܴ∗ଶ + ൬ܴ݀∗݀ ൰ଶ ݀ = ݈݀ோ∗ (30)

Consequently, from (29), to satisfy the previous condition, we must impose the following: 

2 tan ݀ = ܴ݀∗ܴ∗  (31)

Finally, if we impose that R*(0) = Rs, we obtain:  

ܴ∗ = ܴ௦cosଶ  (32)

ܴ݀∗ = 2ܴ௦ sin cosଷ ݀ (33)

sin  = ඨ1 − ܴ௦ܴ∗ (34)
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Taking into account (4), the “flat coordinate” can be now written as follows:  ܺ∗ = ܴ∗ sin  = ܴ௦ sin cosଶ  = (35) ∗ݎ

The measure of the forecast (great) circumference is provided by the following banal identity: ܥ௑∗ = (36) ∗ݎߨ2

Taking into account (24), the reduced “flat coordinate” can now be written as follows: ݔ∗ = ∗ݎ sin  = ܴ௦ tanଶ  = ܴ∗ − ܴ௦ (37)

Far from the gravitational source (this is an absolutely fundamental condition), we have: ݔ∗ ≫ ܴ௦ → ∗ݔ ≅ ܴ∗ (38)

As a consequence, for the reduced (great) circumference we can write: ܥ௫∗ = ∗ሺܴߨ2 − ܴ௦ሻ ≅ (39) ∗ܴߨ2

When all the mass is concentrated in a single point (singularity), considering time as being absolute and accepting 
the fact that the radius of the orbit is provided by (39), we may write: ݀ݏ௫∗ ଶ = ܿଶ݀ݐଶ − ݈݀௥∗ ଶ − ܴ∗ଶሺ݀ߠଶ + sinଶ ଶሻ (40)߮݀ߠ

For the initial scenario (no singularity, mass evenly spread), considering time as being absolute and accepting the 
fact that the radius of the orbit undergoes a dilation, we may write the following distance: 

∗௑ݏ݀ ଶ = ܿଶ݀ݐଶ − ݈݀ோ∗ ଶ − ܴ∗ଶsinଶ  ሺ݀ߠଶ + sinଶ ଶሻ (41)߮݀ߠ

Obviously, since the proper radius remains constant, we have: 

݈݀ோ∗ = ݈݀௥∗ = 2ܴ௦cosଷ ඨ1 + 14 tanଶ ݀ (42)

Now, starting from (40), let’s return to the initial scenario. In the light of the forceful interpretation we have 
previously discussed, let’s suppose that the length of the orbit remains constant, and that time undergoes a 
contraction as the proper radius does. Bearing in mind that the speed of light is constant, from (40) we obtain:  

∗௑ݏ݀ ଶ = ܿଶ ଶsinଶݐ݀  − sinଶ ݈݀ோ∗ ଶ − ܴ∗ଶሺ݀ߠଶ + sinଶ ଶሻ (43)߮݀ߠ

We can carry out the underlying positions: ݀ݐsin  = (44) ∗ݐ݀

sin݈݀ோ∗ = ݈݀∗ (45)

It is very easy to verify that 

lim
→గ/ଶ ݈݀ோ∗ܴ݀∗ = lim

→గ/ଶ ݈݀௥∗ܴ݀∗ = lim
→గ/ଶ ݈݀∗ܴ݀∗ = 1 (46)

Taking into account the previous equation, we can write: ݔ∗ ≫ ܴ௦ → ݈݀∗ ≅ ݈݀ோ∗ = ݈݀௥∗ ≅ ܴ݀∗ (47)
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Finally, far from the origin (that previously was the source), we can write the following approximated “flat” metric: ݀ݏ௑∗ ଶ = ܿଶ݀ݐ∗ଶ − ܴ݀∗ଶ − ܴ∗ଶሺ݀ߠଶ + sinଶ ଶሻ (48)߮݀ߠ

Now, if we concentrate all the mass in the origin, “pretending” that the length of the orbit will remain the same, 
and that time and proper radius will undergo a dilation, we may write the following “Schwarzschild-like” metric:  ݀ݏ௫∗ ଶ = ܿଶ ൬1 − ܴ௦ܴ∗൰ ଶ∗ݐ݀ − ܴ݀∗ଶ1 − ோೞோ∗ − ܴ∗ଶሺ݀ߠଶ + sinଶ ଶሻ߮݀ߠ = ଶ (49)∗ݏ݀

Referring to the metric tensor, we have: 

݃଴଴ = 1 − ܴ௦ܴ∗ = sinଶ  (50)

݃଴଴݃ଵଵ = −1 (51)

The previous identity is evidently satisfied for each of the distances we have written up until now, since it simply 
expresses the fact that the speed of light must remain constant.  
Obviously, for the proper radius, denoted by Rp(R*), we can now write the following: 

ܴ௣ሺܴ∗ሻ = න ඥ−݃ଵଵܴ݀∗ோ∗
ோೞ = න ܴ݀∗ට1 − ோೞோ∗

ܴ݀∗ோ∗
ோೞ = ඥܴ∗ሺܴ∗ − ܴ௦ሻ + ܴ௦݈݊ ቆ√ܴ∗ + ඥܴ∗ − ܴ௦ܴ௦ ቇ (52)

Making explicit the Schwarzschild radius, we can write (49) as follows: ݀ݏ∗ଶ = ܿଶ ൬1 − ଶܴ∗൰ܿܯܩ2 ଶ∗ݐ݀ − ܴ݀∗ଶ1 − ଶீெ௖మோ∗ − ܴ∗ଶሺ݀ߠଶ + sinଶ ଶሻ (53)߮݀ߠ

It is fundamental to underline how the real Schwarzschild solution (Schwarzschild, 1919) does not acquire the 
form of (53). If we want to maintain Schwarzschild’s original notation, in fact, we have the following: ݀ݏଶ = ܿଶ ቀ1 − ቁߙܴ ଶ∗ݐ݀ − ܴ݀ଶ1 − ఈோ − ܴଶሺ݀ߠଶ + sinଶ ଶሻ (54)߮݀ߠ

It is worth highlighting how, although α represents a constant that depends on the mass of the singularity, 
Schwarzschild himself did not specify its value. For coordinate R, moreover, his position is the following: ܴ = ሺݎଷ + ଷሻଵ/ଷ (55)ߙ

Obviously, r represents the “flat coordinate”. If we denote with x, y and z the rectangular coordinates, we have:  ݎ = ඥݔଶ + ଶݕ + ଶ (56)ݖ

It is worth underlining how (55) does not represents the only possible position. This assertion can be easily verified, 
for example, by analyzing the solutions proposed by Droste (Droste, 1917), Hilbert (Antoci, 2004), and Brillouin 
(Brillouin, 1923).  
From (54), by setting α equal to zero, we immediately obtain the following “flat” metric:  ݀ݏଶ = ܿଶ݀ݐଶ − ଶݎ݀ − ଶߠଶሺ݀ݎ + sinଶ ଶሻ (57)߮݀ߠ

4. “Weak Field” approximation 
We have elsewhere discussed (Cataldo, 2017) how, due to the mass – energy equivalence (Einstein, 1916), a test 
particle, whose radial coordinate is equal to r, is forced to move with a speed, denoted by v, whose value, taking 
into account (23), is provided by the following equation: 
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ݒ = ܿඨ1 − ൬ ௦൰ଶݎܴ = ܿ cos  (58)

Since the motion is related, in our case, to the deformation of the spatial lattice, speed may be imagined as being 
characterized by two components, denoted by vI and vII. We have:  ݒ = ඥݒூଶ + ூூଶ (59)ݒ

ூݒ = 12 ܿ sinሺ2ሻ (60)

ூூݒ = ܿ cosଶ  (61)

The two components of speed are qualitatively depicted in Figure 5.  
 

 
Figure 5. Components of the Speed of a Test Particle 

 
Figure 5 shows how, when a test particle approaches the singularity, the value of vI decreases while, on the contrary, 
the value of vII increases. It is commonly said that, in approaching the singularity, the space-like geodesics become 
time-like, and vice-versa. In our case, the above-mentioned interpretation is not correct, since the radial coordinate 
is nothing but the extension of a material segment, that we perceive as being a material point (the test particle), 
along the further spatial dimension herein postulated. The straight-line segment bordered by C (that evidently 
coincides with O’) and P’ represents the radial extension of the particle, the one bordered by B’ and P’ represents 
the reduced “flat coordinate” (the radius of the reduced circumference).  
The energy needed to produce the motion (Einstein, 1916), making explicit the so-called Lorentz factor (Lorentz, 
1904), can be written as follows: 

ܧ∆ = ݉ܿଶሺߛ − 1ሻ = ݉ܿଶ ێێۏ
ۍ 1ට1 − ቀ௩௖ቁଶ − ۑۑے1

ې
 (62)

Obviously, we can imagine that the energy in question may be provided by a gravitational field (the coordinate of 
the particle depends on the shape of the spatial lattice). By virtue of (8) and (58), far from the source, we obtain: 

ݒ ≪ ܿ → ܧ∆ ≅ 12 ଶݒ݉ = ௦ܴ݉ܯܩ cosଶ  (63)

If we denote with ɸ the potential, we can write, far from the source, the following pseudo-Newtonian relation: ߶ = ோೞୡ୭ୱమܯܩ  = ∗ܯܴܩ  (64)

From the foregoing equation, taking into account (34) and (50), we have: 
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2߶ܿଶ = ∗ଶܴܿܯܩ2 = ܴ௦ܴ∗ = 1 − sinଶ  (65)

߶ = 12 ܿଶሺ1 − ݃଴଴ሻ (66)

The previous equation coincides with the so-called “weak field” expression for the gravitational potential.  
5. Final Remarks and Conclusions 
The coordinate R*, that appears both in the metric and at the denominator of the pseudo-Newtonian relation we 
have obtained for the gravitational potential, does not represent a real distance nor a real radius of curvature. In 
fact, it is clear enough how the expression of R* arises from a banal reparameterization, by means of which we are 
able to write a metric that, far from the origin, may approximatively describe, what is more, not a void space, 
peculiar to Special Relativity, but rather a Universe evenly filled with matter. According to the simple qualitative 
model herein proposed, the so-called Black Holes may not exist. Consequently, there is no reason to keep on 
concretely considering the existence of an alleged "event horizon". On the one hand, in fact, the minimum value 
that can be assumed by the coordinate R* is equal to the Schwarzschild radius. On the other hand, when it happens, 
both the proper radius and the forecast one are equal to zero: in other terms, we are exactly placed in 
correspondence of the singularity. Once accepted the fact that time is not influenced by gravity, to obtain something 
similar to what is commonly considered as being a Black Hole, we should concentrate in a single point all the mass 
contained in the entire Universe. In this case, if a test particle were to reach the singularity, its escape velocity 
would equate that of light: however, once again, time would keep on flowing in the usual manner. In this article, 
we have discussed in terms of warped space: actually, if it were so, we would be forced to admit that the shape of 
the Universe can be modified with respect to something else, taken as a reference. In the light of the previous 
remark, we should rather imagine that the value of space may change. In order to validate such an assertion, it 
would have been necessary to start a discussion that, without any doubt whatsoever, would have gone far beyond 
the aim of this paper, since the topic involves the concept of dimensional thickness, elsewhere expounded (Cataldo, 
2016b), as well as phenomena such as the so-called gravitational redshift. Moreover, the discussion has been 
carried out taking for granted the global symmetry elsewhere postulated (Cataldo, 2016c). 
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