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Abstract 
The physics of Space Elevators connecting the Earth with outer space has recently attracted increased attention, 
in part due to the discovery of ultra-strong materials such as carbon nanotubes and diamond nano-thread structures. 
In this article we review a new venue in space elevator physics: Rotating Space Elevators (RSE) [Golubović, L. & 
Knudsen, S. (2009). Classical and statistical mechanics of celestial scale spinning strings: Rotating space 
elevators. Europhysics Letters 86(3), 34001.]. The RSE is a double rotating system of strings reaching outer 
space. Objects sliding along the RSE string (sliding climbers) do not require internal engines or propulsion to be 
transported far away from the Earth's surface. The RSE thus solves a major problem in the space elevator 
technology which is how to supply the energy to the climbers moving along the string. RSE strings exhibit 
interesting nonlinear dynamics and statistical physics phenomena. Satellites and spacecraft carried by sliding 
climbers can be released (launched) along RSEs. RSE strings can host space stations and research posts. Sliding 
climbers can be then used to transport useful loads and humans from the Earth to these outer space locations. 
Keywords: Space Elevator, Inertial Forces, Classical Mechanics, Statistical Physics, Space Travel, Nonlinear 
Dynamics, Instabilities and Transitions, Chaos 
1. Introduction 
The physics of Space Elevators connecting the Earth with outer space has attracted increased attention in this 
millennium (Edwards & Westling, 2003). This interest emerged in part due to the discovery of ultra-strong 
materials such as carbon nanotubes (Yu et al., 2000a, Yu et al., 2000b) and diamond nano-thread structures 
(Fitzgibbons et al., 2014). Space elevators are celestial scale examples of physical systems with reduced 
dimensionality such as the strings, polymers, and membranes (Kardar, 2007; Nelson, 2002; Nelson, Piran & 
Weinberg, 1988). The classical and statistical mechanics of space elevators represents a bold extension of 
previous studies of satellite dynamics such as those of Beletskii (1965) and Hughes (2012).  
Recently, a new concept has emerged in this applied physics area: Rotating Space Elevator (RSE) (Golubovic & 
Knudsen, 2009; Knudsen & Golubovic, 2014; Knudsen & Golubovic, 2015). In this review article we discuss this 
new venue in space elevator physics. The RSE is a double rotating floppy string reaching extraterrestrial locations. 
Interestingly, objects sliding along the RSE string (climbers) do not require internal engines or propulsion to be 
transported far away from the Earth's surface. The RSE thus solves a major problem in space elevator physics 
which is how to supply energy to the climbers moving along space elevator strings.  
2. Historic Background: The Conceptual Development of the Traditional Space Elevator 
Dreams of traveling to the heavens have entranced men since the early times of civilization. The story of the 
“Tower of Babel” in Genesis 11 of the Bible connects the notion of human cooperation for space travel to 
“heaven” to the multiplying of human languages, which frustrates the effort. In modern history, the fable “Jack 
and the Beanstalk,” from 1807 (and a burlesque version named The Story of Jack Spriggins and the Enchanted 
Bean from 1734) presents a young boy whose mother plants foolishly obtained seeds which then grow into a great 
tower that can even hold a giant! Neither of these stories addresses the physics questions of how the towers can 
remain upright under compressive and buckling (bending) forces. 
It was therefore up to the famous Russian scientist Konstantin Tsiolkovsky in 1895 to integrate the vision of the 
space elevator with the realities of physics (Edwards & Westling, 2003). Tsiolkovsky was considered to be a 
rocket scientist and the father of spaceflight and he had spent considerable time thinking about the limitations 
and alternatives of rocket flight. He was inspired by the Eiffel Tower in Paris to conceptualize a tower that 
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reached from ground zero all the way into deep space, above the geosynchronous satellite orbit. This "celestial 
castle" would orbit the Earth in a geosynchronous fashion meaning that it would be directly overhead one spot 
on Earth's surface at all times. An object released at the tower's top would also have the orbital velocity 
necessary to remain in geosynchronous orbit. Thus, the Tsiolkovsky’s tower can be used to deploy satellites into 
orbits around the Earth.  
The centrifugal force due to Earth rotation acting on celestial towers has an interesting effect: A tall enough 
tower is under tension rather than compression, and therefore is not subject to the sorts of buckling that limits the 
height of skyscrapers. In the case of skyscrapers, the centrifugal force is negligible, but for the celestial size 
objects envisioned by Tsiolkovsky and his followers, both scientists and science fiction writers such as Arthur C. 
Clarke (1978, 1982), the gravitational force and centrifugal force play equally significant roles. Because the 
internal force is a tension rather than compression, the space elevator can be a floppy non-rigid object (“string”). 
It wasn't until 1960 that someone suggested a feasible method for building the space elevator. Another Russian 
scientist, Yuri N. Artsutanov, conceived a scheme for building a space tower (Artsutanov, 1960, July 31; Lvov, 1967). 
Artsutanov proposed using a geosynchronous satellite as the starting point from which to construct the tower. By 
using a counterweight, a cable would be lowered from the satellite down to the Earth surface while the counterweight 
was extended from the satellite away from Earth, keeping the center of gravity of the cable motionless relative to the 
rotating Earth. This construction scheme is still the standard (Edwards & Westling, 2003). 
Jerome Pearson (1975) brought the idea of the space elevator to the scientific community in the U.S. In his 
careful and detailed design of a workable space elevator while at the U.S. Air Force Flight Dynamics Laboratory 
he outlined, mathematically and physically, the implications of a space elevator string designed to have the 
constraint of constant stress (tension/cross sectional area) throughout, while maintaining an external force 
balance. Artsutanov independently proposed the same idea (Artsutanov, 1960, July 31; Lvov, 1967). The two 
balancing external forces in the earth frame are the centrifugal and gravitational forces. The Pearson-Artsutanov 
constant stress elevator provides a simple way to handle the high tensions present in space elevators: The 
elevator can be designed for any given value of the constant stress. This value is can be chosen to be smaller than 
the critical breaking stress of the material used. Hence, from the materials science point of view, real space 
elevators can be made. This spurred a lot of recent interest in building space elevators out of novel materials 
such as carbon nanotubes (Yu et al., 2000a, Yu et al., 2000b, Edwards & Westling, 2003).  
It is very easy to understand the advantages of the space elevator concept over conventional rocket propulsion. 
With chemical propulsion, a rocket carries its own fuel that it needs to overcome gravitational forces, leading to 
intrinsic energy inefficiency. Because of earth’s deep gravitational well, the load-to-fuel ratios are typically very 
small (e.g., ~10-2

 for the Apollo/Saturn V missions to the Moon), so that essentially all fuel energy is used to 
accelerate the fuel itself. On the other side, within the space elevator concept, a spaceship climbs along the 
elevator via an internal electrical engine which uses externally supplied electric energy. Since there is no fuel 
carried by the climber, the supplied energy is 100% used to lift the climber. So, the space elevator concept is 
immensely more energy efficient than the rocket propulsion. 
The problem however remains on how to externally supply the energy to the climber. Naively, one may think of 
running an electrical transmission line along the space elevator, until realizing just how long this structure is 
compared to transmission lines on earth, so that power losses will be close to 100%. To remedy this, Edwards 
proposes that laser power be beamed up the elevator from the ground to the climber (Edwards & Westling (2003)). 
The beam energy would be absorbed by climbers and converted into electrical energy driving their engines. For 
any of these schemes climbing is typically slow and it may take several months for the climber to travel along the 
space elevator from the Earth to the geosynchronous level. During such a long climb, the useful load (including 
possibly humans) would be exposed for a very long time to dangerous cosmic radiation, which is especially strong 
in this range of altitudes above the Earth. Even without this problem with cosmic rays, typically long travel time 
itself is certainly not a satisfactory feature of space elevators, especially if a rapid deployment of objects into outer 
space is desired. 
3. Rotating Space Elevator (RSE): Solution of the Climbers Energy Supply Problem 
In this review article we discuss a novel class of nonlinear dynamical systems, Rotating Space Elevators (RSE). 
The RSE concept has been introduced for the first time by Golubovic and Knudsen (2009) and elaborated in 
detail in their subsequent studies (Knudsen & Golubovic, 2014; Knudsen & Golubovic, 2015). 
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Figure 1. In (a) upper panel, the elliptical RSE with minor semi-axis b= 0.5 Earth radii and major semi-axis a = 

3.2107 Earth radii (so its top is about 0.8 Earth radii above the geo-stationary level). In (a) lower panel, a 
different view on the RSE. The coordinate system ),,( 321 RRR  rotates together with the Earth around the   

2R -axis pointing through the north pole N. Indicated are the internal (nearly around the 
1R -axis) and 

geo-synchronous (together with the Earth) rotations of the RSE. The RSE is tied to the Earth at its bottom point. 
In (b), we show the USRSE (attached to a LSE) with TRSE = 4.22 min (discussed in sect. 4). In these figures we 

also include the equipotentials of the effective potential in eq. (7). Sliding climbers oscillate between two turning 
points (indicated by straight arrows) that are on the same equipotential. Adapted from Golubovic and Knudsen 

(2009) 
 
The RSEs are multiply rotating systems of strings. Remarkably, useful loads and humans sliding along the RSE 
strings do not require internal engines or propulsion to be rapidly transported (sled) into space far away from the 
Earth's surface; see section 4 discussions. Thus, the RSE concept solves the major problem of energy supply to 
climbers that troubles the ordinary LSE concept.  
The RSE is a double rotating floppy string typically having the shape of a loop as in Figure 1. Due to its special 
kind of motion (see below), the RSE becomes pre-tensioned due to gravitational and inertial forces. Due to the 
tension, the floppy RSE maintains its loopy shape.  
The special RSE motion, ensuring the persistence of its shape, is a nearly a geometrical superposition of: (a) 
geosynchronous (one day period) rotation around the Earth, i.e. the R2-axis in Figure 1, and (b) yet another 
rotational motion of the string which is typically much faster (with period ~ tens of minutes) and goes on around a 
line perpendicular to the Earth at its equator (the R1 axis in Figure 1). 
This second, internal rotation plays a very special role: It provides the dynamical stability of the RSE shape and, 
importantly, it also provides a mechanism for the climbing of objects free to slide along the RSE string. 
RSE can be used to elevate climbers from the surface of the Earth to remote outer space locations in a simple 
way; see Sec. 4. Remarkably, the climbers in Figure 1 do not need any internal engine to execute their motion. 
Rather, they spontaneously slide along the RSE string from the Earth to outer space locations. This unusual 
climber sliding motion is facilitated by the inertial force (centrifugal force) acting on climbers due to the RSE’s 
internal rotation. In section 6 we describe possible use of RSE to launch satellites and interplanetary spaceships.  
The RSE can be made in various shapes.  The simple double rotating geometrical motion can be made to represent 
an approximate yet exceedingly accurate solution to the exact equations of the RSE string dynamics. This RSE 
feature is accomplished by a special (‘magical’) choice of mass distribution of the RSE cable; see Sec. 4. This RSE 
feature is corroborated by numerical simulations showing that (under the conditions discussed in Sec. 5) the RSE 
double rotation motion as well as nearly constant RSE shape can both persist indefinitely in time (Golubovic & 
Knudsen, 2009; Knudsen & Golubovic, 2014; Knudsen & Golubovic, 2015).   
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The elliptical RSE in Figure 1(a) exhibits very high tensile stresses at its points near mid-height. Therefore, other 
shapes were described whose mass distribution yields a Uniform Stress RSE (USRSE) (Golubovic & Knudsen, 
2009, Knudsen & Golubovic, 2014). The USRSE, displayed in Figure 1(b), can be made by using technologically 
available materials such as carbon nanotubes; see section 4.  
4. The physics of RSE 
In this section we review the basic physics of RSE (Golubovic & Knudsen, 2009). For simplicity, let us consider 
inextensible limit in which the RSE floppy string obeys the Newtonian equation of motion 
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with )ˆ(ˆ)( VttVV


⋅−=⊥  for any vectorV
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Space elevators such as RSE are most naturally discussed by using non-inertial reference frames. In a non-inertial  
frame rotating with the angular velocity Ω


, inertial forces have to be included into extf


 and extF


in Eqs. (1) and  

(1’), yielding  
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(Landau & Lifshitz, 1976). In the geosynchronous frame (used in the simulations and the figures displayed here) 
rotating with the period = earthΩ/2π = one day, Eq. (3) is employed with  

 earthearth e Ω=Ω=Ω 2ˆ


,  

with unit vector 2ê  along the Earth polar axis and the equator in the ),( 31 RR  plane; see Figs. 1(a) and (b). In  
the simulations, at 0=t  the RSE is initially in the ),( 21 RR  plane. To initiate the double rotation motion, the  
RSE is given initial spin around the 1R -axis, with the angular velocity

RSEΩ . The RSE bottom point is tied to the  
Earth to provide access for the sliding climbers starting there their trip into outer space. Other than this, the RSE 
moves purely under the influence of inertia and gravity. 
A remarkable effect of the RSE double rotation motion is that it facilitates a physical mechanism which 
efficiently moves sliding engine free climbers from the surface of the Earth to remote extraterrestrial locations. 
As evidenced by the simulations in Figure 2, a sliding climber starting at rest close to the Earth spontaneously 
oscillates between its initial position and a turning point in outer space. The nearly periodic character of the 
climber’s motion is explained later on in this section. 
 

 
Figure 2. From the simulations of Knudsen and Golubovic (2014), the upper panel:  The  )(1 tR  coordinate of 

the climber which slides with no friction along the floppy RSE with the (initial) shape in Figure 1(a) and 
TRSE=10.83 min.  The lower panel:  The )(1 tR  coordinate of the climber on the floppy RSE with initial shape 

in Figure 1(b) with TRSE=4.22 min. See Sec. 4 for the analytic explanation of the nearly periodic character of 
climber motion. Note: With a weak sliding friction, climbers would eventually stop near the RSE point minimizing 
the ))(()( sRsU eff


Φ= . From the equipotentials of the effective potential labeled in Figure 1, one can see that this 

point occurs close to the RSE point maximizing its 2R  coordinate in Figure 1 
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Another remarkable effect is an enduring stability of the RSE sizes and orientation and the persistence the RSE’s 
double rotation motion which is provided by a specially chosen form of the mass line density )(sμ ; see Eq. (8) 
below and Figure 3. This effect is documented by the simulations results displayed in Figure 4 (Golubovic & 
Knudsen, 2009; Knudsen & Golubovic, 2014). 
These two outstanding RSE effects are revealed by considering the system in the (natural for the RSE) double 
rotating frame (DRF) obtained from the geosynchronous (single rotating) frame by adding to it the rotation around 
the 1R -axis in Figs. 1(a) and (b). The net angular velocity of the DRF is thus )()( tt earthRSE Ω+Ω=Ω


. Here,  

1êRSERSE Ω=Ω


 corresponds to the rotation around the 1R -axis while )(tearthΩ


 is the Earth’s angular 
velocity vector which in the DRF rotates with the angular velocity  RSEΩ−  (and thus acquires a 
time-dependence). With this )(tΩ
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Figure 3. The upper panel: the magical mass distribution [i.e., line density obtained by Eq. (8)] of the RSE with 
the shape in Figure 1(a) and min83.10=RSET . The lower panel: the magical mass distribution (line density) of 

the RSE with the shape in Figure 1(b) and min22.4=RSET . Adapted from Golubovic and Knudsen (2009)  
 
The magical mass distributions obtained by applying Eq. (8) to the (initial) RSE shapes in Figure 1, which are used 
in the simulations discussed in this paper, are shown in Figure 3.  The simulations of Knudsen and Golubovic 
(2014), which are free of the approximation Eq. (6) employed in Eq. (8), indeed show (under the conditions 
discussed in Sec. 5 in the following) a remarkable stability of the RSE sizes and orientation provided by the 
magical mass distribution in Eq. (8). We note that )()( sAs ρμ = , with ρ  the density of the RSE material and

)(sA =the string cross-sectional area (that can be made to vary along the RSE by tapered cable design). Thus, by 
Eq.  (8’), the tensile stress obeys the relation, 

   )(
)(
)()( sK

sA
sTsp ρ==   (8”) 

The RSE displayed in Figure 1(b) is a uniform stress RSE (USRSE) for which the tensile stress )(sp  is 
s-independent.   For an USRSE, by Eq. (8’’), the .)( constKsK ==  With this condition, Eq. (8’) yields the 
second order differential equation  

    







−




















+−=

1

2
12

2

1

2
2

1

2
2

11
dR
dRaa

dR
dR

KdR
Rd ,  (8’’’) 

with ieffi Ra ∂Φ−∂= / ; 2,1=i . Differential equation Eq. (8’’’) can be used to obtain a USRSE shape for any 
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K~ is a dimensionless constant.  For the USRSE in Figure 1(b), we set 4/1~ =K , corresponding, by Eq. (8’’), 

to the USRSE tensile stress GPavKp 24.20~ 2
1 == ρ  if the USRSE is made of carbon nano-tubes (CNT) 

with 3/300,1 mkg≈ρ . Thus, pleasingly, the tensile stress p  of this USRSE is smaller than the tensile 

strengths GPap 60max ≈  of single-wall CNT, and GPap 150max ≈  of multi-wall CNT (Yu et al., 2000a, 

Yu et al., 2000b). So, this USRSE is technologically achievable with modern day materials.  By Eq. (8) with 
.)( constKsK ==  , and by  
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for any ),( 1ss . It is depicted in lower panel of Figure 3 for the USRSE in Figure 1(b) [with TRSE=4.22 min, and 

4/1~ =K ], with 01 =s  corresponding to the USRSE bottom at the Earth. This line density profile can be  
technologically achieved by using tapered cable having the cross-sectional area  )(sA  given by our Eq. (8’’’’). 
The USRSE   in Figure 1(b) is actually attached to a Linear Space Elevator (LSE) which can also be designed to 
have a uniform stress maxp<  (Pearson, 1975). The LSE line mass density has a discontinuity at the junction 
between the USRSE and the LSE (to balance the USRSE tension force pulling down the LSE along the 1R -axis). 
Away from the junction, the uniform stress LSE line mass density obeys Eq. (8’’’’) with 

)0,0,()( 321 ==== RRsRsR
  (Pearson, 1975).  We note that unlike the technologically achievable 

USRSE in Figure 1(b) with maxpp < (for CNT), the Earth based elliptic RSE in Figure 1(a) has a non-uniform 
stress that actually exceeds the CNT tensile strength in the midsection of the RSE. However, elliptic RSEs built on 
dwarf planets such as asteroids Ceres and Vesta would have a tensile stress maxpp < (for CNT). They are thus 
technologically achievable. 
Periodic like motion of sliding climbers (seen in the simulations in Figure 2) goes on along nearly constant shape 
RSE strings. This climber motion can be understood by means of Eq. (6). For a time-independent RSE shape )( sR
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Eq. (9) is isomorphic to the familiar conservation law describing oscillatory 1-d motion of a particle with the 
position )(ts  in the potential ))(()( sRsU eff


Φ= . Strikingly, in this potential, sliding climbers simply 

oscillate between two turning points, one of which is close to the Earth (starting point) whereas the other one is in 
outer space; see Figs. 1 and 2. In fact, the RSE bottom (the point 0=s )   becomes a local maximum of the 
potential )(sU (seen by sliding climbers) provided the RSE angular frequency RSEΩ  is bigger than the minimal 
frequency,    

    2/112/11
min )

)0(~
11(|))0(|1(
=

+==+≅Ω
sKR

vsCR
R

v
earth

earth
earth

,  (10) 

with 2
1/)()(~ vsKsK = (Golubovic & Knudsen, 2009; Knudsen & Golubovic, 2014).  Due to this, for 
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, i.e., minmax /2 Ω=< πTT RSE  , a  climber initially at rest will start moving up no matter how 

close is its initial position to the RSE bottom )]0,[ 321 === RRRR earth in Figs. 1(a) and (b), at 0=s  . For 
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the elliptical RSE in Figure 1(a) with the semi-axes earthearth RaRb 2107.3,5.0 == , the climbing threshold RSE 

period min71.22max =T . This is bigger than the RSET of min83.10 of the elliptic RSE in Figure 1(a), 

yielding the oscillatory sliding climber dynamics seen in the simulations in Figure 2, upper panel.  For an USRSE 

with 4/1)(~ =sK , by Eq. (10), min78.37max =T . This is bigger than the RSET of min22.4 of the USRSE 

in Figure 1(b), yielding the oscillatory sliding climber dynamics seen in the simulations in Figure 2, lower panel. 
We note that the USRSE point having the maximum distance R2 away from the −1R axis in Figure 1(b) has the 
speed 1max2 )( vRRSE ≅⋅Ω =1st cosmic speed (for the USRSE with TRSE=4.22 min). Thus, the USRSE loop in 

Figure 1(b) can be used for launching satellites. We will discuss potential applications of the RSE in Sec. 6. It is 
significant to note that [by using differential Eq. (8’’’)] the USRSE loops can be designed with their bottoms 
anywhere above the Earth surface (e.g., above the dense atmospheric layer, to avoid air-resistance).  
5. Shape Stability of RSE and Crumpling Transition 
Numerical simulations of RSEs reveal an interesting morphological phase transition of the RSE strings that 
occurs with changing the (initial) RSE angular frequency RSEΩ , i.e., its period RSET (Golubovic & Knudsen,  
2009; Knudsen & Golubovic, 2014). This transition was seen both in the USRSE and the elliptical RSE. E.g., for 
the elliptical RSE in Fig 1(a), it occurs at a critical value for the RSE period min17≈critT . For critRSE TT < , 
the tension field ),( tsT  remains everywhere positive. It exhibits only small oscillations around 

0)0,( >=tsT  given by Eqs. (8) and (8’). However, for
critRSE TT > , the RSE string (in both the elliptical  

RSE and the USRSE) undergoes a dramatic shape change and chaotic long time dynamics: Tension field 
develops a noise like behavior in which ),( tsT  assumes both positive and negative values. In effect, the RSE 
string crumples due to the buckling of the string sections that are under locally negative ),( tsT .  Macroscopically, 
the string crumpling triggers a narrowing of the RSE initial shape, displayed in Figure 4(d) for the elliptical RSE 
with min66.21=RSET . The narrowing eventually turns initially elliptic RSE into two nearly independently 
fluctuating linear type space elevators connecting the massive elevator top and bottom regions.  Chaotic dynamics 
of the two elevator’s branches reflects an ergodic-like (thermal equilibrium like) string state similar to that of the 
directed polymers (Kardar, 2007) stretched between the RSE top and bottom. Related to the RSE narrowing is the 
dynamics of the RSE angular momentum 1L  about the 1R -axis (in the frame rotating with the Earth as in Figure 
1); see Figure 4(c) for the elliptical RSE with min66.21=RSET :  The 1L  decays to zero over a two week 
period. [In contrast to this, for critRSE TT > , the USRSE narrows and loses its 1L  only partially.] As seen in Figs.  
4 (a) and (b) at min66.21=RSET , these phenomena destabilize the position of the elliptical RSE top. It drifts 
away from its initial position (at 0.8 Earth radii above geostationary level) to a new slightly higher position around 
which the RSE top continues to chaotically oscillate.   
In drastic contrast to this, for critRSE TT < , the string shapes of both the elliptic RSE and the USRSE remain  
nearly the same as in their initial configuration in Figs. 1(a) and (b), i.e., no RSE narrowing occurs. Related to 
this, as evidenced in Figure 4(c) for the elliptical RSE with min83.10=RSET , the RSE angular momentum 

1L  is nearly constant in time, whereas the RSE top exhibits only very small oscillations around its initial 
position; see Figure 4(a) and (b). 
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Figure 4. From the simulations of Knudsen and Golubovic (2014): For the elliptic RSE in Figure 1(a), the RSE 

top coordinates )(1 tR  in (a), )(3 tR  in (b), and, in (c), the evolution of the RSE angular momentum 1L  about 
the 1R -axis (in the frame rotating with the Earth), for min83.10=RSET and min66.21=RSET . In (d), the 
evolution of the RSE profile (of one of its two branches), for min66.21=RSET over the first ten days. Here, for 
any RSE point P, the Y  is its distance away from the (instantaneous) axis A connecting the RSE bottom and top, 

and X  is the distance between the normal projection of P onto the axis  A and the RSE bottom point  (at
0=X ) 

 
6. Using RSEs to Launch Spaceships and Satellites 
By the discussions of Sec. 4, RSE is a rapid extraterrestrial transportation system which requires no internal 
engines for the climbers sliding along the elevator strings. Climbers motion is naturally facilitated by employing 
basic natural phenomena, the inertial forces due to the internal RSE rotation around the R1-axis in Figure 1. As 
noted before in Sec. 4, RSEs can be used to launch satellites and interplanetary spaceships (Knudsen & 
Golubovic, 2014). In this section we will discuss this RSE capability in more detail. It is also significant to note 
that the RSE strings can be used to host space stations and research posts. Sliding climbers can be then used to 
transfer useful loads and humans from the Earth to these extraterrestrial locations. 
Satellites and spaceships transported by sliding climbers can be released (launched) along RSEs. Let us look at a 
climber that has started its motion at near rest at the RSE tying position with the Earth in Figure 1 [there,

earthRsR == |)0(|


]. Let us then look at an object released from the climber when it reaches the RSE position
]0)(),(),([)( 321 == sRsRsRsR


 in the DRF. The released object’s speed in the DRF, that is its speed along 

the tangent at )(sR


 is ds/dt.  This tangential velocity is obtained by Eq. (9) yielding,   

 ))](([)]0)0(([)(
2
1 2

tsRsR
dt

tds
effeff


Φ−=Φ=






 .  (11) 

Using here the Eqs. (5) and (7), we find,  
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  .  (12) 

Of the practical interest is the released object speed observed in the inertial frame. Consider, for example, the 
situation in which the object is released when the elevator loop is in the plane of Figure 1(a, upper panel) or 
Figure1 (b) (then the R2 axis of DRF points along the north-south direction). Let the object be released from a 
climber which is on the lower branch of RSE in Figure 1. The RSE velocity at this point is in the direction of the 
Earth rotation and has the magnitude  

   ),(|)(| 12 sRsRv earthRSERSE Ω+Ω=   (13)
 

in the inertial frame. This velocity points into the plane of Figure 1. In addition to this velocity, the released object 
also has the tangential velocity ds/dt which is in the plane of Figure 1.  Thus, by Pythagorean Theorem, the total 
released object speed in the inertial frame, vreleased  satisfies 

   . )/()( 22 dtdsvv RSEreleased +=   (14) 

By Eqs. (12) through (14), the speed of the released object in the inertial frame satisfies the equation  
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Ω+Ω++−= 
 (15) 

if the object is released when the elevator loop is in the plane of Figure 1(a, upper panel) or Figure 1 (b), from a 
climber which is on the lower branch of RSE in Figure 1. If this speed is large enough, the released object will 
unbind from the Earth, and approach infinity with the speed ∞v  (“escaping speed”) that can be obtained from the 
mechanical energy conservation law,  

 .
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By Eqs. (15) and (16),  
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  (17) 

Above, we introduced the first cosmic speed sec/89.7)/( 2/1
1 kmRGMv earthearth == .   Again we stress that 

the Eq. (17) applies if the object is released when the elevator loop is in the plane of our Figure 1(a, upper panel) of 
Figure 1(b), from a climber which is on the lower branch of RSE in Figure 1. This particular case is significant 
because the enhancement of the released object speed provided by the rotation of the Earth is at its maximum (for 
the RSE rotating around the R1 axis in the direction indicated in Figure 1). For the interesting (for RSE systems) 
situations with ΩRSE>>Ωearth [see the discussions following Eq. (5)], the results in Eqs. (13), (15) and (17) reduce to 
approximate yet more illuminating results, 

  |,)(| 2 sRv RSERSE Ω≈   (13’)
 

   ,)]([
|)(|

)(
2
1 2

2
22 sR

sR
MG

R
MGv RSE

earth

earth

earth
released Ω++−≈    (15’) 

while the escaping speed (“speed at infinity”) approximately satisfies the simple equation, 

    .)]([)()(
2
1 2

2
2

1
2 sRvv RSEΩ+−≈∞

  (17’) 

The approximate results (13’), (15’), and (17’) are equivalent to ignoring the Earth rotation (setting Ωearth=0) in 
the exact results in Eqs. (13), (15), and (17). Thus, the above approximate results are significant also because 



apr.ccsenet.org Applied Physics Research Vol. 9, No. 1; 2017 

67 

they (approximately) apply to the objects released from the RSE at any orientation of the rotating RSE plane 
relative the R1-R2 plane in Figure 1. [We stress that |R2(s)| in the above equations is the distance between the 
release point and the R1 axis.] 
The approximate results (13’), (15’), and (17’) offer a better insight into the launching actions of the RSE.  By 
Eq. (17’), the released object (spaceship) will escape to an interplanetary travel [ 0)( 2 >∞v ] if the RSE speed of 
the release point of (=ΩRSE|R2(s)|) is bigger than the first cosmic speed v1. By the Eq. (17’), the highest possible 
escaping speed  ∞v

 
is achieved if the object is released from a sliding climber at the RSE point with the 

maximum value of |R2|. For example, for the elliptic RSE in the figure 1(a), this point is the midpoint of the RSE, 
with |R2|max=b=0.5Rearth at R1=a+Rearth=4.2107 Rearth. At this point, with TRSE=10.83 min, one has 
ΩRSE|R2(s)|=3.9v1. With this value, the Eq. (17’) predicts the value of the highest possible escaping speed (speed 
at infinity) from this RSE to be 1max 3310.5)( vv ≈∞  which is only slightly smaller than 15200.5 vv =∞  as 
obtained by using the exact Eq. (17). We note that for the marginal case with ΩRSE|R2(s)|=v1, whence the 
approximation Eq. (17’) predicts 0=∞v , the exact equation (17) yields an 0)( 2 >∞v  

, meaning that the object 
still unbinds with a small escape velocity at infinity. A situation like this is (incidentally) realized in the USRSE in 
the Figure 1(b), with TRSE=4.22 min. For its point with the maximum value of |R2| (|R2|max=0.052Rearth at R1 
=1.02Rearth) we find ΩRSE|R2(s)|=1.04v1 (which is only slightly above v1). The approximate Eq. (17’) would then 
yield 14040.0 vv ≈∞  

, whereas the exact Eq. (17) gives 154303.0 vv =∞  for this case [if the object is released 
when the elevator loop is in the plane of our Figure 1, from a climber which is on the lower branch of USRSE in 
Figure 1(b)].  
The shape of a USRSE loop is determined by solving the differential equation (8’’’), and thus it depends on the 
value of TRSE=2π/ΩRSE. In Figure 5 (upper panel), we display the USRSE shapes for several different values of 
TRSE, all for the same value of the parameter  4/1~ =K  (corresponding to the string tensile stress 

GPap 24.20=  if the USRSE is made of carbon nano-tubes, see Sec. 4). In Figure 5 (lower panel), we plot, 
versus TRSE, the USRSE speed  ΩRSE|R2(s)|max  as well as the speed at infinity ∞v  of an object released from a 
climber at |R2(s)|max  on the lower branch of USRSE in Figure 1(b) when this branch is in the plane of our Figure 
1. With a known RSE shape, this speed can be calculated from Eq. (17).  Note that ∞v vanishes at a characteristic 
value of TRSE of about 6 min. 
 

 
Figure 5. In the upper panel, we plot the USRSE loop shapes obtained for several different values of TRSE, all for 
the same value of the parameter 4/1~ =K . In the lower panel, we plot, versus TRSE, the USRSE speed ΩRSE|R2(s)|max 
as well as the speed at infinity ∞v  of an object released from a sliding climber at |R2(s)|max on the lower branch of 
USRSE in Figure 1(b) when this branch is in the plane of our Figure 1. It is obtained from Eq. (17). The two speeds 

are given in units of the first cosmic speed v1. Adapted from Knudsen and Golubovic (2014) 
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Thus far we have discussed the case with no sliding friction between the climber and the RSE string. Only then 
Eq. (9) applies. The friction may be significantly depressed, e.g., by magnetic levitation. With some friction 
present, climbers would eventually stop near the RSE point minimizing the effective potential seen by the climber 
in DRF, ))(()( sRsU eff


Φ= . From the equipotentials displayed in Figure 1, this point occurs very close to the RSE 

point maximizing its 2R  coordinate in Figure 1. Interestingly, as noted above, the USRSE point having the 
maximum distance |R2| away from the −1R axis in Figure 1(b) has the speed 1max2 || vRRSE ≅⋅Ω =1st cosmic 
speed (for the particular USRSE shown in Figure 1(b), with TRSE=4.22 min and 4/1~ =K ; see Sec. 4)  Thus, 
the USRSE  loop in Figure 1(b) can be used for launching satellites carried from the Earth by a sliding climber. 
Indeed, due to the friction, the climber would eventually stop close to the USRSE point having the maximum 
distance away from the −1R axis in Figure 1(b). At this point, the stopped climber rotates with the RSE with the 
speed 1v≅ =1st cosmic speed. Thus, the climber can directly release the carried satellite into a nearly circular low 
Earth orbit. 
7. Physics of Untied RSE 
What will happen if one unties the elliptic RSE (ERSE) in Figure 1 from the Earth? This interesting question is 
investigated by Knudsen and Golubovic (2015). Interestingly, it was found that the tying may not be needed at 
all to achieve the stable double rotating motion of ERSE. In fact, the magical mass distribution )(sμ  in Eq. (8) 
does not assume that the loopy ERSE is tied. Thus, it is in principle possible that an untied ERSE exhibits 
persistent shape and everlasting double rotating motion much like the tied ERSE. This intriguing possibility was 
explored by studying the dynamics of the untied elliptical RSE (Knudsen & Golubovic, 2015). The actual untied 
ERSE behavior was found to depend on the length of its long semi-axis a (along the R1-axis in Figure 1).  The 
study shows that there are two characteristic values of a, called ahopping and aunbinding. If a < ahopping, the untied 
ERSE exhibits nearly the same dynamics as a tied ERSE. That is, its bottom and top points execute only very 
small oscillations about their initial positions. Thus, strikingly, for a < ahopping, untied ERSE bottom effectively 
remains quasi-tied to the Earth. It remains close to the Earth as if the ERSE were tied to the Earth. On the other 
side, if a > ahopping, the untied ERSE as a whole hops away and then it falls back to the Earth. The amplitude of 
this hopping (maximum height reached by the RSE bottom) increases with increasing a and it diverges as a 
approaches the aunbinding. In this limit, as well as for any a > aunbinding, the ERSE unbinds from the Earth much like 
an object with a speed above the second cosmic speed. 
8. Summary 
In summary, the RSEs are rapid outer space transportation systems that require no internal engines for the 
climbers sliding along the elevator strings. RSE strings exhibit interesting nonlinear dynamics and statistical 
physics phenomena.  RSEs’ action fundamentally employs truly basic natural phenomena -- gravitation and 
inertial forces. Satellites and space-crafts carried by sliding climbers can be released (launched) along RSEs. 
RSE strings can host space stations and research posts. Sliding climbers can be then used to transport useful 
loads and humans from the Earth to these outer space locations. The RSE exhibits a variety of interesting 
dynamical phenomena explored by numerical simulations. Thanks to its special design aided by its magical mass 
distribution, the RSE exhibits persistent shape and enduring double rotating motion. Under some conditions 
however the RSE may undergo a morphological transition to a chaotic state reminiscent of fluctuating directed 
polymers encountered in the statistical physics of strings and membranes. 
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