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Abstract 
The ground state energies of two interacting electrons in two dimensions are studied within the framework of 
shifted 1/N expansion. The effect of external uniform magnetic and electric have been studied. Energies of the 
relative part of the Hamiltonian of the system are calculated for both weak and strong field regimes. Our results 
show a very good agreement with those obtained by other computational methods like asymptotic integration 
(AIM) and exact diagonalizaion methods. 
Keywords: energy eigenvalues, electric field, 1/N expansion, magnetic field, two-electron quantum dot  
1. Introduction 
Quantum dots QDs are generally refer to nanostructures made from semiconductor materials, in which carries 
are confined in all spatial dimensions. Modern semiconductor processing techniques allowed the artificial 
creation of quantum confinement shape of few electrons. Because of the similarity between atoms and quantum 
dots they are called artificial atoms. However, there are considerable differences in physical characterizations 
between them. The confining potential of nucleus is singular but that of quantum dots is nonsingular, which 
makes the parabolic confinement approximation possible. And artificial atoms, typical dimensions range from 
nanometers to few microns, are much larger than real atoms. Furthermore, there are mainly two energy scales in 
quantum dots; the Coulomb energy and the confinement potential energy.  
The main technological motivation to investigate semiconductor quantum dots is that smaller structures should 
be faster, dissipate less heat, and quantum mechanical effects are so relevant in such structures that devices with 
fundamentally new properties can be obtained. Therefore, QDs have many applications in microelectronic and 
optoelectronic devices such as photodetectors, far-infrared (FIR) laser amplifiers, one electron transistors and 
high-speed electro-optical modulators (Mendoza, Vazquez, del Castillo-Mussot, & Spector, 2005; Li & Xia, 
2007; Zhu & Gu, 1993; Dutta & Das, 1990; Yoffe, 2001; Ahn & Chuang, 1987).  
A two electron quantum dot, named as quantum dot helium, is the simplest system that describes the 
electron-electron interaction, it is also considered an excellent testing ground for various approximation methods 
used in calculating the energy levels of the system. Several different approaches have been reported in studying 
such a system. Exact diagonalization method (Wagner, Merkt, & Chaplik 1992; Merkt, Huser, & Wagner 1991), 
Hartree and Hartree Fock (HF) (Pfannkuche, Gudmundsson, & Maksym, 1993; Pfannkuche, Gerhats, Maksym, 
& Gudmundsson, 1993; Palacios, Martin-Moreno, Chiappe, Louis, & Tejedor, 1994), the Monte Carlo 
calculations (Harju, Sverdlov, & Nieminen 1998; Bolton, 1996), and 1/N expansion method (El-Said, 2000). 
Electric and magnetic fields influence have been applied to quantum dots using different approaches. Rezaei 
(Rezaei & Kish, 2013) studied the fields effect on the two dimensional quantum dot using direct matrix 
diagonalization method. Soylu (Soylu, 2012) investigated the influence of the fields on various quantum states 
using a asymptotic iteration method. The ground state energies of hydrogenic impurities in cylindrical quantum dots 
were studies using finite difference method (Wang, Wei, & Yi, 2010), complex absorbing potential (CAP) (Sahoo, 
Lin, & Ho 2008), and the finite difference methods have been applied to quantum dot under the influence of electric 
and magnetic fields within the effective mass approximation (Hong, Li-Xue, Xue, Chun-Yuan, & Liun-Jun, 2011). 
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The shifted 1/N-expansion, proposed by Sukhatme and Imbo (Sukhatme & Imbo 1983; Imbo, Pagnamenta, & 
Sukhatme, 1984), is a powerful tool to solve Schrödinger equation for spherical symmetric potentials (Dutta, 
Mukherji, & Varshni, 1986; Roy & Roychoudhury, 1987; Roychoudhury, & Varshni, 1988; Chatterjee, 1990), 
and also it was extended successfully to relativistic potentials (Roychoudhury & Varshni 1989; Mustafa & Sever, 
1991). The method is simple, and it gives accurate results of energy eigenvalues calculations of the system 
without dealing with robust numerical calculations or trail wave functions. The shifted 1/N-expansion method 
has already been used to study various systems, such as two-dimensional magnetoexcitons (Quiroga, Camacho, 
& Gonzalez, 1995), shallow donor impurities (El-Said, 1994), two-electron spherical quantum dot (Pino & 
Villalba, 2001), two interacting electrons in two dimensional quantum dot with the presence of magnetic field 
(El- Said, 2000; Gomez & Romero, 2009). And recently, we have used the method to calculate energies and 
binding energies for quantum dot with Gaussian potential confinement (Al-Hayek & Sandouqa, 2015), the 
results show a very good agreement with other computational methods like asymptotic integration method (AIM) 
and exact diagonalization method. 
In this approach, the calculations are carried out for states with arbitrary quantum numbers (the principal and 
magnetic quantum numbers n and m, respectively) using forth-order perturbation theory in the shifted expansion 
parameter1/ k , where 2k N m a= + − . N is the number of spatial dimensions and (a) is a suitable shift 
parameter which will be discussed later. 
The rest of the this work is organized as follows. In section 2, we formulate the Hamiltonian of two electron 
quantum dot under the influence of external magnetic and electric field. In section 3, we present the shifted 1/N 
expansion method for arbitrary spherical potential V(r), and we apply the method on the potential of the problem. 
Numerical energy results and discussion are given in section 4. Conclusion is presented in section 5.  
2. The Hamiltonian 
The Hamiltonian of two electrons confined in a parabolic quantum dot under the effect of external electric and 
magnetic fields can be separated into center of mass Hcm and relative motion Hrm as follows: 

 rmHQD cmH H= +   (1)  
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A Where Mcm = 2m* is the total mass, and q = 2e is the total charge and ω0 is the confinement potential. m* is the 
effective mass of each electron, ε and c are the dielectric constant of the dot material and the speed of light, 
respectively. We introduce the relative coordinate of the two electrons r = r1 – r2 and momentum P = p1 + p2, 
with the reduced mass µ = m*/2.  
The magnetic field effect appears in the effective frequency Ω = (ω0

2+ ωc
2/4)1/2 in the Hamiltonian, where ωc = 

eB/m*c is the cyclotron frequency. The magnetic field B is assumed to be uniform and perpendicular to the dot 
plane along the z axis. The vector potential is chosen to be in the symmetric gauge as A = (1/2) B × r. The 
eigenvalue of the angular momentum operator Lz is mħ, = 0, ±1, ±2 ….is the azimuthal quantum number. We 
assume the term qF.r in Equation (3) to be F r, Equation (3) can be written as: 
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The main task is to solve the Hamiltonian of the relative motion (Equation (3)). Using the substitution 
02  l  x r =  Equation (3) becomes  
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0  is the characteristic length in the x-y plane, a* and R*are the effective Bohr radius and effective Redberg, 
respectively. λ represents the ratio of the electron Coulomb interaction to the harmonic confinement, any change 
in the Coulomb strength or harmonic confinement results in a change in the coupling constant λ. 

Equation (6) related to the relative motion of the two electron quantum dot under the influence of both magnetic 

and electric fields confined by the potential ( ) F 2V x x x.
x
λ= + +

 
3. 1/N Expansion Formalism 
Following the work of Imbo (Imbo, Pagnamenta, & Sukhatme, 1984) related to shifted 1/N expansion method, 
we formulating the radial Schrödinger equation for an arbitrary spherical potential V(r) as 

 ( )( ) ( ) ( ) ( )
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where 2k N m= + . N is the number of spatial dimensions. 
In terms of the shifted variable k k a= − (a is a shifted parameter), we rewrite Equation (3) as: 
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where Q is a constant which rescales the potential (in large k  limit) and it will be determined below. The 
energy eigenvalues are given by an expansion in powers of 1 / k . 
The shifted 1/N expansion method consists in solving equation (4) systematically in terms of the expansion 
parameter1 / k . The leading contribution to the energy comes from the effective potential  

  ( ) ( )2

28eff

V r
V r
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( )V r  is assumed to be well behaved so that ( )effV r  has a minimum at 0r r=  and there are well-defined 
bound states. Q is then determined from the following equation  

  ( )3 2
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It is convenient to shift the origin of coordinates to 0r r=  by defining 
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The energy eigenvalues are given by an expansion in powers of 1/ k  where 2k N m a= + − , N being the 
number of spatial dimensions and the shifted parameter a (see Appendix). 
For any value of the radial quantum number rn ( 1rn n m= − − ) and for any value of m  the energy ( ),E n m  
is given by an expansion in powers of 1 k   

 ( ) 0 1 2 3,E n m E E E E= + + + + ⋅⋅ ⋅ ⋅   (12) 

where 0E , 1E , 2E , 3E , …. are given in appendix.  
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The shift parameter is fixed from the requirement that the term 1E vanishes. Therefore,  

  ( )2 2 2 1r
ma n ω∗

= − +


,  (13) 

ω  is the anharmonic frequency parameter given in (Appendix, Equation A7). For any specific choice of n, m  
and N, the constant Q should be such as to make Eqs. (7) and (8) identical. This means  

  k Q= ,  (14)  

using Eqs. (10), (Equation A4), and (13), an explicit equation for determining the root 0r , 
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Having determined 0r , all the energy eigenvalues can be computed.  
By substituting the applied potential, ( )V r , which describes the applied electric and magnetic fileds in Eqs. (10), 
(15), (Equation A4), we get 
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3. Numerical Results Discussions 
The calculated energies of two interacting electrons in a two-dimensional quantum dot using 1/N expansion are 
presented in Tables 1-3. Table 1 lists energy calculations for two interacting electrons in two dimensional 
quantum dot under the influence of magnetic field only (λ = 1, F = 0). Energies are obtained for ground state 
with different values of magnetic quantum number m. The energy eigenvalues increase as the magnitude of the 
orbital quantum number m increases. For comparison of energy accuracy of our results, we list the energies 
obtained by exact method (García-Castelán, Choe, & Lee, 1998) and asymptotic iteration method AIM (Soylu, 
2012). Our results show a very good agreement.  
Table 2 displays energy eigenvalues using magnetic field only with higher strength (λ = 10 and F = 0). The 
effect of enhancing the interaction term, λ, on energies is clearly seen by comparing the results in Table 2 with 
Table 1 for the same state. This increase in energy is due to increase of the Coulomb interaction energy between 
the two electrons comparable to the parabolic confinement one. The results show also a very good accuracy with 
diagonalization and AIM methods (García-Castelán, Choe, & Lee, 1998; Soylu, 2012). 
Table 3 shows the calculated energy eigenvalues for the two-electron quantum dot system under the effect of 
both electric and magnetic field for λ = 1 and different electric field strengths (F = 0, F =10 and F = 100). The 
dependence of energies on the electric field strength is seen. As the electric field strength increases, the 
calculated energy eigenvalues increases. Our calculated energy results are compared with those obtained using 
AIM method. The data shows a very good accuracy of the shifted 1/N expansion method (Soylu, 2012).  
4. Conclusion 
In summary, we have calculated the energy eigevalues of two electron quantum dot in two dimensions under the 
influence of both magnetic and electric fields within the frame work of the shifted 1/N expansion. The effect of 
both electric and magnetic fields on the ground state energies of the system have been found for different 
magnetic quantum number m. The solution of the relative part of the Hamiltonian is made for different degrees 
of the Coulomb to confinement ratios (λ) and electric field strength (F). 
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The simplicity and efficiency of using the shifted 1/N expansion is shown in our work. Hence, no need to deal 
with robust numerical calculations or trial wave functions. Our results have a very good agreement with other 
different numerical methods. Finally, we think that the shifted 1/N expansion can be applied effectively to other 
kinds of potential confinements in spherical quantum dots. 

 
Table 1. Calculation results for the ground state energies of two-electron quantum dot with λ = 1 and F = 0. 
Energies are in 1/2hω0 unit 

|n  m> Present results Exact AIM 
|0  0> 3.42204 3.4952 3.49652 
|0  1> 4.85217 4.8553 4.85534 
|0  2> 6.65338 6.6538 6.65384 
|0  3> 8.54834 8.5485 8.54845 
|0  4> 10.4814 10.4814 10.48140 
|0  5> 12.434 12.4340 12.43403 
|0  6> 14.3983 14.3983 14.39830 
|0  7> 16.3701 16.3701 16.37013 
|0  8> 18.3472 18.3472 18.34718 
|0  9> 20.328 20.3280 20.32802 

 
Table 2. Calculation results for the ground state energies of two-electron quantum dot with. λ = 10 and F = 0. 
Energies are in 1/2hω0 unit 

|n  m> Present results    Exact AIM 
|0   0> 10.4382 10.4816 10.48157 
|0   1> 10.8339 10.8495 10.84954 
|0   2> 11.7859 11.7903 11.79025 
|0   3> 13.0706 13.0720 13.07195 
|0   4> 14.5541 14.5546 14.5564 
|0   5> 16.1626 16.1628 16.16284 
|0   6> 17.8541 17.8543 17.85425 
|0   7> 19.6037 19.6037 19.60371 
|0   8> 21.3954 21.3954 21.39538 
|0   9> 23.2188 23.2188 23.21878 

 
Table 3. Calculation results for the ground state energies of two-electron quantum dot with λ = 1 for different 
electric filed strength F. Energies are in 1/2hω0 unit 

 F = 0 F = 10 F =100 

|n  m> Present results AIM Present results AIM Present results AIM 
|0   0>   2.2702    2.3195 9.62726 9.7255 36.9759 37.1878 

|0   1> 2.82468 2.8278 12.5221 12.5245 52.7579 52.7602 

|0   2> 3.64314 3.6436 15.733 15.7331 67.9271 67.9269 

|0   3> 4.54309 4.5432 18.8051 18.8051 81.8352 81.8350 

|0   4> 5.47819 5.4782 21.7253 21.7253 94.7532 94.7530 

|0   5> 6.43189 6.4319 24.5153 24.5153 106.898 106.8980 

|0   6> 7.39678 7.3967 27.1964 27.1963 118.422 118.4217 
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Appendix  

Substituting Equation (7) in Equation (4) and performing a series expansion in powers of x about x = 0 yields 
(Imbo, Pagnamenta, & Sukhatme, 1984). 
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+ − + − ⋅⋅ ⋅ + + + + ⋅⋅⋅ =        



 (A1)

 The Schrödinger equation for an  -dimensional anharmonic oscillator is  

 ( ) ( ) ( )
2 2

2 2
02

1
22

d m x P x x x
m dx

ω ε ψ λψ∗
∗

 − + + + = 
 

   (A2) 

Where ( )P x  is the perturbation term given by 

  ( ) ( ) ( )1/2 3 2 4
1 3 2 4P x g x x g x xε ε ε ε= + + +  

 ( ) ( )3/2 3 5 2 2 4 6
1 3 5 2 4 6g x x x g x x xδ δ δ δ δ δ+ + + + + +   (A3) 

We can compare Eqs. (A1) and (A3) term by term to define all the anharmonic parameters in terms of k , Q, 0r  
and potential derivatives.  

Proceeding in a straightforward way we obtain the following identifications: 
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( ) ( )

( )

1/2 1/24 (2) (2)2
0 0 0 0

2 (1)
0

3 3
4 2

r V r r V r
m m Q m V r

ω ∗ ∗ ∗

   
= + = +   
      

    (A4) 

1g
k

=  

2
0Er

k
λ =  

  ( ) ( ) ( ) ( )2 2 22
0 0

0

2 1  3
8 4 8

a a a r kV rk
Qm m m k

ε ∗ ∗ ∗

− − −
= − + +

  ,  (A5) 

( )
2

1 2
2

a
m

ε ∗= − ,   ( )
2

2
3 2

4
a

m
ε ∗

−= − ,   ( )(3)2
0

3 0 62
V r

r
Qm

ε ∗

−= +  

( )(4)2
06

4 0
5

248
V r

r
Qm

ε ∗= + ,   ( )( ) 2

1

1 3
4

a a
m

δ ∗

− − −
=


,   ( )( ) 2

2

3 1 3
8

a a
m

δ ∗

− −
=


 

( ) 2

3

2 a
m

δ ∗

−
=


,   ( ) 2

4

5 2
4

a
m

δ ∗

− −
=


 ,   ( )(5)2

07
5 0

3
1204

V r
r

Qm
δ ∗

−= + ,   ( )(6)2
08

6 0
7

7208
V r

r
Qm

δ ∗= + . 

Where ( ) ( )nV r  is the nth derivative of ( )V r  with respect to r. 
For any value of the radial quantum number rn ( 1rn n m= − − ) and for any value of   the energy ( ),rE n m  
is given by an expansion in powers of 1 k   

 ( ) 0 1 2 3,rE n m E E E E= + + + + ⋅⋅ ⋅ ⋅   (A6)  

Where    

     
( )2

02
0 2

08
V r

E k
Qm r∗

 
= + 

 

   

     ( )
2

1 2
0

1 2
2 4r

kE n a
r m

ω ∗

  = + − −  
  

   

     ( )( ) ( ) ( ){ }
2

2

2 2 42

0

1
1 3 1 2 3 1 2 2

8 r r r
E a a n n n

r m
ε ε

∗
= − − + + + + +





  ( ) ( ){ }2 2

1 1 3 3

1
6 1 2 11 30 30

r r r
n n nε ε ε ε

ω
− + + + + + 


   


 

     ( ) ( ) ( ){ }2 2 3
3 2 4 62

0

1 1 2 3 1 2 2 5 3 8 6 4r r r r r rE n n n n n n
kr

δ δ δ= + + + + + + + +
    

( ) ( ){ 2 2
2 2 4

1 1 2 12 1 2 2r r rn n nε ε ε
ω

− + + + + 


 

( ) ( )2 3 2
4 1 1 1 32 21 59 51 34 2 6 1 2r r r rn n n nε ε δ ε δ+ + + + + + +     

( ) ( )2
1 5 3 130 1 2 2 6 1 2r r rn n nε δ ε δ+ + + + +    

( ) ( ) }2 2 3
r 3 3 3 52 11 30n 30 10 13 40 42 28r r r rn n n nε δ ε δ+ + + + + + +    
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{ ( ) ( )2 2 2
1 2 1 2 3 2 32 2

1 4 36 1 2 8 11 30 30r r rn n nε ε ε ε ε ε ε
ω

+ + + + + +      


 

( ) ( )2 2
2 4 1 3 424 1 2 8 31 78 78r r rn n nε ε ε ε ε+ + + + +      

( ) }2 3 2
3 412 57 189 225 150r r rn n n ε ε+ + + +    

{ ( ) ( )2 2 2 2 3
1 3 1 3 1 33 3

1 8 108 1 2 48 11 30 30r r rn n nε ε ε ε ε ε
ω

+ + + + + +     


 

( ) }2 3 4
330 31 109 141 94r r rn n n ε + + + + 
  

where 

( ) /2
2

j
j j

m

ε
ε

ω∗
=


  

( ) / 2
2

j
j j

m

δ
δ

ω∗
=


, j = 1, 2, 3, …. 
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