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Abstract 

The particle is represented by the wave packet in nonlinear space-time continuum. Because of dispersion, the 
packet periodically appears and disappears in movement and the envelope of the process coincides with the wave 
function. There was considered the partial differential equation of telegraph-type describing the motion of such 
wave packet in spherical coordinate space ),,( ϕθr . There was constructed also the analytical solution ),,( ϕθru  

of this equation and the integral over all space of 22gradu  was supposed being equal to the mass of the particle 

identified with the wave packet. As the solution ),,( ϕθru  depends on two parameter mL,  being positive 

integer, it was possible to calculate our theoretical particle masses LmM  for different mL, . So, we have 

obtained the theoretical mass spectrum of elementary particles. The comparison with known experimental mass 
spectrum shows our calculated theoretical mass spectrum is sufficiently verisimilar.  
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1. Introduction 
In the standard quantum theory, a micro-particle is described with the help of a wave function with a 
probabilistic interpretation. This does not follow from the strict mathematical formalism of the nonrelativistic 
quantum theory, but is simply postulated. A particle is represented as a point that is the source of a field, but 
can not be reduced to the field itself and nothing can be said about its “structure” except with these vague words. 
Modern quantum field theory can not even formulate the problem of finding a mass spectrum. 
This dualism is absolutely not satisfactory as the two substances have been introduced, that is, both the points 
and the fields. Presence of both points and fields at the same time is not satisfactory from general philosophical 
positions – “razors of Ockama”. Besides that, the presence of the points leads to non-convergences, which are 
eliminated by various methods, including the introduction of a re-normalization group that is declined by many 
mathematicians and physicists, for example, P.A.M. Dirac.  
The original idea of Schroedinger was to represent a particle as a wave packet of de Broglie waves. As he wrote 
in one of his letters, he "was happy for three months" before British mathematician Darwin showed that such 
packet quickly and steadily dissipates and disappears. So, it turned out that this beautiful and unique idea to 
represent a particle as a portion of a field is not realizable in the context of wave packets of de Broglie waves. 
Later, de Broglie tried to save this idea by introducing nonlinearity for the rest of his life, but wasn't able to 
obtain significant results. It was proved [Lyamov V.E., 1969] by V.E. Lyamov and L.G. Sapogin in 1968 that 
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every wave packet constructed from de Broglie waves with the spectrum a(k) satisfying the condition of 
Viner-Pely (the condition for the existence of localized wave packets)  
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becomes blurred in every case. 
There is a school in physics, going back to William Clifford, Albert Einstein, Erwin Schrödinger and Louis de 
Broglie, where a particle is represented as a cluster or packet of waves in a certain unified field. According to M. 
Jemer’s classification, this is a ‘unitary’ approach. The essence of this paradigm is clearly expressed by Albert 
Einstein’s own words: «We could regard substance as those areas of space where a field is immense. From this 
point of view, a thrown stone is an area of immense field intensity moving at the stone’s speed. In such new 
physics there would be no place for substance and field, since field would be the only reality . . . and the laws of 
movement would automatically ensue from the laws of field.» 
However, its realization appeared to be possible only in the context of the Unitary Quantum Theory (UQT) 
within last two decades. It is impressive, that the problem of mass spectrum has been reduced to exact analytical 
solution of a nonlinear integro-differential equation. In UQT the quantization of particles on masses appears as a 
subtle consequence of a balance between dispersion and nonlinearity, and the particle represents something like 
a very little water-ball, the contour of which is the density of energy. 
Following, in essence, this general idea, the Unitary Quantum Theory (UQT) represents a particle as a bunched 
field (cluster) or a packet of partial waves with linear dispersion, and the particle is identified with some field. 
Dispersion is chosen in such a way that the wave packet would periodically disappear and appear in movement, 
and the envelope of the process would coincide with de Broglie wave. Based on this idea, the 
relativistic-invariant model of such unitary quantum field theory was built.  

The relativistic invariant equation for our wave packet is following [Boichenko V.A., 1984; Sapogin L.G., 2003; 
2005; 2008]: 
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where Φ  is the function of coordinates ( )xctx ,=μ , 3,2,1,0=μ , describing different characteristics of our 

wave packet, 
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μ vu ,1  is the four-velocity of the particle, 1λ  is some number matrix and matrices 

)3232( ×μλ  satisfy the commutation relations 

Ig μνμννμ λλλλ 2=+ , ,3,2,1,0, =νμ  

where μνg is the metrical tensor. This fundamental equation of UQT describes, in our opinion, all properties of 
elementary particles. It is possible to derive from (1) the Dirac equation and also the relativistic invariant 
Hamilton – Jacoby equation [Sapogin L.G., 1988; 1991; 2003; 2005; 2008]. We have succeeded in solving only 
the simplified scalar variant of eq. (1). However, the solution obtained has allowed to determine theoretically 
[Sapogin L.G., 1988; 1991; 2003; 2005; 2008] the elementary electrical charge and the fine-structure constant 
α  with high precision (our theoretical value 962.137/1=α ), the known experimental 
value 03552.137/1=α  Our efforts to find more complete solution of eq.(1) were unsuccessful. Note, our 
approach based on Unitary Quantum Theory has nothing in common with Standard Model of Elementary 
Particles. 
2. Common approaches 
Nevertheless, our idea to consider a particle as some moving wave packet which periodically disappears and 
appears in movement, has allowed to arrive to the conclusion [Sapogin L.G., 2005; 2008] that such particle may 
be described by the common telegraph – type equation of second order. In one-dimension case this equation is 
following: 
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Note, this equation would be relativistic invariant if the root 22 /1 cv−  would be placed in denominator. 
Equation (2) is satisfied exactly by relativistic invariant solutions in the form of a standard planar 
quantum-mechanical wave and also in the form of disappearing and appearing wave-packet, viz.,  
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where ϕ  is an arbitrary function of its argument .vtx −  
We will show that eq. (2) (considered in the case of 3-dimension coordinate space ),,( ϕθr ) allows, namely, to 
determine theoretically the mass spectrum of elementary particles. 
 
Such equation for the function ),,( ϕθruu =  is following: 
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(the symbol m is replaced by M). 
We will use the natural system of units and put 1,1 == ch , and will seek the solution of eq. (5) in the following 
form: 
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where ),,( ϕθrff =  is some function not depending on t . This function represents as hardened wave packet 
in coordinate space ).,,( ϕθr  Substituting (6) in eq. (5), we get 
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We will seek the solution of eq. (7) in form:  

         ),()( ϕθLmYrRf = ,                               (8) 

where 
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LP is the Legendre function, ),( ϕθLmY  is the Spherical Harmonic and mL,  are nonnegative integers 

L=0,1,2,3,…, ..3210 ±±±=m  besides .Lm ≤  Substituting (8) in eq. (7), we come to the following 
equation with respect to the function :)(rR  
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The solution )()( rRrR L=  of this equation depends on parameter L  and we obtain the family of solutions 

),,,( truLm ϕθ of equation (5) depending on parameters mL,  and describing corresponding partial wave-packets. 

It is natural to suppose that the modulus of every solution Lmu   describes the amplitude of the world unitary 

potential LmΦ  determined by this equation, and the world potential itself is represented by the quadrate of 

amplitude modulus, i.e.  
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Further, we consider the gradient of this potential as the tension of corresponding field (it is the custom in 
electrodynamics) of the partial wave packet and consider the quadrate of the tension as the density LmW of the 
energy or of the wave packet’s mass distributed continuously in space. So, the mass LmMM =  of our partial 
wave packet may be determined as the integral of density LmW  over all space ),,( ϕθr : 
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where .grad 2
LmLmW Φ=  We rewrite the equation (9) in form: 

        22
2 1))()1()(''(

)('
12 vrRLLrrR

rRr
ivM −+−= ,  ).('

dr
d

=                  (12) 

We consider the mass of the wave packet as its inner (proper) characteristic not depending on the velocity of its 
movement. Now, replacing the mass by the integral, and next differentiating both parts of equality and supposing 

0=v  obtain the following differential equation for )(rR : 
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where C is some constant. This equation possesses the analytical general solution: 
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where 21,CС arbitrary constants and J and Y are are the Bessel functions. Since we seek the finite solution 

)(rR  for ∞→→ rr ,0  and tending to zero for, ∞→r  we set 02 =C  and can set some positive value for 
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1C  and some negative value for the constant C in eq. (13). The calculations show the choice of these constants 

has influence only on the absolute value of the masses calculated below but the ratios of these masses remain the 
same. We have chosen the simplest values 

2,11 −== CC  

and have obtained following solution 
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1J( irL +  is the Bessel function of 1st type with imaginary argument, or 
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where ),
2
1( rL +Ι  is the modified Bessel function of 1st type. 

So, we obtain the following expression for the world unitary potential LmΦ  (taking into consideration (6, 8, 8’, 

10) :  
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Now, we form LmΦgrad  considered as the tension of the field and form also the quadrate of its modulus 
considered as the mass density LmW . We obtain: 
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The integrals of LmW  over all spherical space ),,( ϕθr  for different ,...2,1,0=L  and Lmm ≤±±= ,...,2,1,0  
is equal to required different masses LmM of elementary particles, i.e. 
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Since LmW do not depend on ϕ  and the Legendre functions in expressions of LmW  may be integrated 

analytically, we calculated, at first, analytically (with help of Mathematica-7) the integrals             
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and then calculated numerically (with the help of Mathematica-7) the integrals  
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3. Results 
For example, we have obtained for L=0 и m=0: 
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and 

=1,1M 0.00006798678730 

The calculations for small values of L  are sufficiently simple. But for large L , the quantities LmU are 

represented by long polynomials in r  and )sinh(),cosh( rr  with enormous numerical coefficients and the 

integration of these polynomials meets serious technical difficulties.  

We consider the ensemble 1+L  particles (masses) with given L  and Lm ±= ...0  to be one family and we 

will use the notations LLLL MMM ,1,0, ,...,,  for particles (masses) of the family with given .L  We have 

calculated and analyzed in full the masses of 49 families ( )48,...,0=L , i.e. of 1225 particles. Our PC with 
GBRAMGHz 4,3 =  has required for these calculations nearly 1 weeks of computing time.  

We have compared our theoretical spectrum for 1225 masses with known experimental spectrum for elementary 
particles measured in MeV. The zero-point for the matching of both spectra was required. We have taken for 
such matching the quotient of the muon mass to the electron mass. As we know, this quotient for observed 
muons and electrons is measured experimentally [W. Liu, 1999] with the most precision and is equal 
206.768283(10). Each our calculated mass was divided consecutively by all other 1224 masses and the resulting 
quotients were compared with the mentioned number. It turned out that the quotient of our masses 

45,4810,16 / MM  is equal to 206.7607796 (with relative divergence 0.0039%) and we have taken our mass 

45,48M  equal to 0.2894982442536304 1010−⋅  for zero-point, i.e. for our electron mass. After, there were 

divided all other 1224 masses mLM ,  by 45,48M  and we have obtained our theoretical spectrum in electron 

masses which may be compared (after expressing in MeV ) with known experimental masses. Here is the table 1 
with our masses LmM  for 33 cases of the well coincidence with well known experimental values (relative errors 

are less than 1% in 30 cases and between 1.3% and 1.8% in three cases). 
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Note, the ratio of our proton mass 1,12M  and our electron mass 45,48M  is equal 1832.355 with relative error 

0.207% in comparison with well known experimental ratio 1836.152167. Our calculated spectrum containing 
169 masses from muon to the heaviest mass approximates also others well known particles and, although the 
coincidences with experimental data are worse but quite acceptable (with relative divergences not more than 
several per cent). The mass values for negative m  coincides with the mass valued for positive m  
(antiparticles?). 

On the whole, this table shows the striking coincidence of our theoretical values with essential quantity of the 
known experimental masses and, by no means, such coincidence may be called occasional. The probability of 
such occasional coincidence is less 6010− . Note, the choice of the nominee for the electron’s mass is not unique 
and may be further calculations of families with 100....60=L would allow to obtain the better result. Our 
calculated theoretical spectrum contains also the values near to the masses of quarks. The experimental data for 
quarks are not so precise and are determined in an indirect way. We give the separate table 2 with the calculated 
and experimental quark masses.   

We have carried out also the series of calculations LmM  for L  exceeding 48 including 60=L . The ratio of 

maximal 6890039443641.00,0 =M  to minimal 11
60,60 103909395521.0 −⋅=M  is of order 910 . The ratio of 

maximal 
0,0M  to the mass 7

1,12 105304640719.0 −⋅=M  of proton is equal 74400. This number does not 

contradict the known the experimental data. 

Note, the radial function )(rULm  being the density mass as function of r, is equal zero always for r=0 and for all 

L, m, and, at first, increases very swiftly on the right from for r=0 and then very swiftly decreases. The plot of 
)(rULm  reminds for large L quasi delta-function approaching to coordinates origin as L increases (very 

simplified analogy is shown on Figure 1).  

Such theoretical model describes a particle as very small bubble in space-time continuum cut by spherical 
harmonics. Curious, such model, namely, was considered by A. Poincare [Poincare A., 1974]. 

Certainly, we do not intend to assert that our results are adequate in full to the known experimental mass 
spectrum of elementary particles. The divergences are present. Our theoretical spectrum contains the large 
quantity (1053) of masses between electron mass and muon mass but such real particles are not observed till now. 

Our spectrum contains many light particles )48(, >LM mL
 with masses differing extremely little one from another. 

It may be supposed there is exists quasi-continuous distribution of lightest particles not affirmed till now by 
experiments. We suppose that this region of our calculated spectrum contains also the values corresponding to 
masses of all 6 neutrinos, and it will be possible to discover their theoretical masses after sufficiently precise 
experimental determination of their masses.  

Our spectrum contains 169 particles from the muon to the heaviest particle 0,0M but there is observed the large 

quantity of particles in this interval with short “life-time” (so called “resonances”) of order sec10 22− . These 
divergences require the further researches. With respect to light particles, it may be supposed there are exist 
some selection principles (not discovered till now theoretically) for such particles and these principles lead to 
essential decreasing of particles quantity between muons and electrons. We suppose that such principles arise 



ISSN: 1916-9639                                                         Applied Physics Research 
E-ISSN: 1916-9647                                                         Vol. 2, No. 1, May 2010 

www.ccsenet.org/apr 93

theoretically from some relations between the tensors of different valences (ranks) and spherical functions for 
different L,m and leave this complicate problem for future researches. On the other hand the presence of more 
than a thousand of light particles between the electron and muon can be explained by the numerous coupled 
particles μμμ −−− ,,eee  and light particles which have less mass than the electron can belong to numerous 

neutrino and their coupled particles. May be all these light particles constitute the dark matter? 

It arise the question with respect to the particles with short “life-time”: may we take all these particles for 
elementary? Our Unitary Quantum Theory allows formulating the following criterion. If the way which the 
particle (which we identify with appearing and disappearing wave packet) passes from the moment of its 
appearing to the moment of its destruction is much longer than de Broglie wave, then such particle may be 
called elementary. Have we reason to call “elementary” the particle with life-time of order sec10 22−  ? 

Let us point to following essential circumstance. Viz., if we will use the Schrödinger equation in spherical 
coordinates (relativistic-noninvariant) or Klein—Gordon equation (relativistic-invariant) instead our initial 
equation (5), then we will come to the same theoretical mass spectrum. Really, the mention Schrödinger equation 
is following: 
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where M  is the particle’s mass. We will seek the solution of this equation in form of unitary wave packet f :   
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where    ),,( ϕθrff =   is the function of coordinates and does not depend on the time. The function u  is 

considered as the amplitude of the world unitary potential Ф.  Substituting (23) in (22), we obtain (after 
simplification) following equation 
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This equation coincides with our equation (7)  if we put 21 v−  instead h . The further study described above 
remains without changes. 

Let us consider Klein—Gordon equation in spherical coordinates and in natural units system 

( 1,1 == hс ): 
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where  M  is the particle’s mass. We will seek the solution  
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where ),,( ϕθrff =  is the function of coordinates not depending explicitly on t. Substituting (26) in (25), we 

obtain following equation after simplification: 
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This equation coincides in full with our equation (7) and we will come to the same results. 
So, different initial equations (5), (22), (25) (the last is relativistic invariant and the other two are relativistic 
non-invariant) lead to the same theoretical mass spectrum. Note the following remarkable fact: the standard 
theory allowed to detect spectra by using always the quantum equations with outer potential and as corollaries to 
geometric relations between de Broglie wave’s length and characteristic dimension of potential function. The 
quantum equation of our theory do not contain the outer potential and describe a particle in empty free space; the 
mass quantization arises owing to the delicate balance of dispersion and non-linearity which provides the 
stability of some wave packets number. It is the first case when spectra are detected by using the quantum 
equations without outer potential. 
Here is the table 3 with all our theoretical masses from the muon to the heaviest 0,0M  (MeV). 
4. Conclusion 
In view of all said above, we are bold, nevertheless, to say that our results represent the substantial advancement 
on the way of solution for the extremely complicated theoretical problem of the mass spectrum for elementary 
particles and to underline that this advancement is owing to our Unitary Quantum Theory. We hope that further 
analysis with the help of exact equation (1) of our theory will allow to obtain more precise results. 

We would like to propose the name “Dzhan—particle” for our heaviest particle 0,0M  in honour of the general 

Air Force RF astronaut V.A. Dzhanibekov. As we know, particles with mass of such order are observed in 
cosmic rays.    

The authors are thankful to astronaut V.A. Dzhanibekov, to Professors V.M. Dubovik (Dubna, JINR), F.A. 
Gareev (Dubna, JINR), Yu.L. Ratis (Samara State University) and to translator S.V. Romanova for support of 
our work and fruitful discussions.  
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Table 1. Calculated and experimental some elementary particles masses (MeV) 

(e – electron, μ - muon, 0π - π -meson, −p proton etc.) 

 

mLM ,  THEORY EXPERIMENT NOTATION ERROR % 

45,48M  0.51099906 0.51099906 e -- 

10,16M  105.6545640 105.658387 μ  0.0036 

4,18M  135.8958708 134.9739 0π  0.683 

0,23M  137.2902541 139.5675 −+ ππ ,  1.62 

1,14M  541.7587460 548.86 η  1.29 

7,7M  894.0806293 891.8 0** , KK +  0.25 

1,12M  936.3325942 938.2723 p 0.206 

4,10M  957.1290490 957.2 ω  0.0083 

5,9M  1110.473414 1115.63 Λ  0.462 

6,8M  1224.151552 1233 0
1b  0.71 

1,11M  1271.916682 1270 *K  0.14 

4,9M  1331.705434 1321.32 −Ξ  0.78 

2,10M  1378,127355 1382.8 0∑  0.33 

0,12M  1524.617683 1520.1 2Λ  0.29 

5,8M  1549.444919 51540±  1F  0.28 
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6,7M  1595.510637 1594 1ω  0.094 

3,9M  1601.282953 1600 'ρ  0.08 

6,6M  1718.917400 1720 3
0N  0.06 

1,10M  1774.917815 1777 τ  0.1 

4,8M  1906.842877 1905 +Δ5  0.096 

2,9M  1965.115639 1950 4Δ  0.77 

0,11M  2092.497779 2100 4Λ  0.35 

5.7M  2195.695293 2190 
N(2190) 

 
0.25 

4,7M  2818.645188 2820 cη  0.048 

0,10M  2954.549810 2980 η  0.85 

5,6M  3082.979571 3096 ψ
J  0.42 

3,7M  3543.664516 3556.3 χ  0.35 

5,5M  3687.679612 3686.0 'ψ  0.04 

2,7M  4496.650298 4415 '''ψ  1.84 

4,6M  5642.230394 5629.6 bΞ  0.8 

3,5M  9499.927309 9460.32 ϒ` 0.41 

1,6M  10075.78271 10023.3 ϒ`` 0.523 

0,7M  10533.15222 10580 ϒ``` 0.442 

0,0M  69622749 ? Dzhan ? 

 



ISSN: 1916-9639                                                         Applied Physics Research 
E-ISSN: 1916-9647                                                         Vol. 2, No. 1, May 2010 

www.ccsenet.org/apr 97

 
Table 2. Calculated and experimental quark masses (MeV) 
 

mLM ,  THEORY EXPERIMENT 

16,38M 5.003455873 3-7 

25,30M  2.75072130 1.5-3.0 

4,20M  94.4251568 2595 ±  

1,11M  1271.9166 901250 ±  

4,6M  4300.86662 704200 ±  

0,3M  179100 4300178000 ±

 

Table 3. All theoretical masses from the muon to the heaviest 0,0M  (MeV) 

 
 

105.655,105.94,106.241,108.291,108.997,109.597,110.133,112.784,117.054,118.136,
120.31,121.826,122.664,125.522,125.71,127.187,127.237,127.306,131.445,133.013,
135.896,137.29,142.287,144.326,145.96,147.309,147.698,149.62,149.905,153.765,
153.827,159.796,162.135,162.192,165.33,172.249,177.091,178.559,178.758,180.585,
180.895,187.69,192.661,192.917,195.832,199.852,203.297,205.588,209.097,218.681,
219.639,221.135,224.061,225.089,231.432,231.656,241.805,249.092,252.972,253.184,
269.993,270.91,276.443,280.151,281.016,289.488,300.299,301.848,304.024,314.364,
318.997,335.848,339.955,341.136,342.52,349.235,357.381,366.838,373.402,402.126,
408.316,423.36,423.429,432.83,445.413,459.388,461.593,472.253,504.945,521.772,
529.951,531.566,539.326,541.759,560.236,571.51,606.559,619.012,672.537,686.757,
705.247,705.477,730.141,738.98,812.354,828.374,866.997,894.081,897.982,915.038,
936.333,957.129,996.316,1110.47,1135.57,1137.9,1224.15,1271.92,1331.71,1378.13,
1524.62,1549.43,1595.51,1601.28,1718.92,1774.92,1906.84,1965.1,2092.5,2195.7,
2334.9,2557.69,2818.65,2906.6,2954.55,3082.98,3543.66,3687.68,3832.21,4300.87,
4315.87,4496.65,5642.23,6026.01,6570.85,6666.64,7358.75,9219.36,9499.93,10075.8,
10533.2,12941.1,16897.,18035.6,18261.3,25000.7,28935.4,33698.9,36955.4,54518.8,
71060.4,87704.5,131517.,179100.,266419.,601983.,1.20005´106,3.4545´106,6.96227´107 
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Figure 1. The plot for )(0,0 rU  

 


