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Abstract 
The principal of least action is one of the fundamental ideas in physics. The path of the shortest time of a particle 
in the presence of gravity is an example of this principal. In this paper some methods are introduced to teach the 
optimal path in introductory physics courses. The optimal path (path of the shortest time) is calculated for a few 
families of paths. Finally a numerical method according to Snell’s law in a discrete medium is used to find the 
general optimal path and is compared with the brachistochrone path.  
Keywords: optimal path, path of the shortest time, brachistochrone, the principal of least action, Fermat’s 
principal, Senll’s law 
1. Introduction 
The principle of least action is one of the fundamental ideas in physics. The calculus of variations is a powerful 
mathematical tool used to understand and identify the path for the shortest time (Boas, 2006; Taylor, 2005; 
Thornton & Marion, 2003). This is an advanced mathematical method that is taught usually at the junior level. 
Some knowledge about the optimal problems such as brachistochrone, tautochrone and catenary problems are 
useful for broad range of students (Erlichson, 1999; Babb & Currie, 2008; Aravind, 1981; Gomez-Aiza, Gomez, 
& Marquina, 2006; McKinley, 1979). Here we will introduce several ways to teach this fundamental concept to 
those students at any level who are not familiar with calculus of variations. This is not only a fundamental idea in 
physics but also since optimization is a very important concept in any field this knowledge would be useful even 
for non-science majors. In this paper we will study several families of curves. For each family a variable 
parameter is used and the optimal value of the parameter corresponding to the shortest time is calculated. In two 
cases a combination of inclined surfaces is used. For those cases the students can calculate time analytically as 
function of the height of the inclined surface. This is the parameter that should be found for the optimal path. In 
order to find the minimum time we need to calculate the derivative of time with respect to the variable parameter. 
This derivative even for the simple case is complicated and we calculate it numerically. The next example that is 
considered in this paper is a parabolic family of curves. We will find the corresponding time as a function of a 
parameter that will be defined for this case. Then the shortest time and the corresponding parabolic path will be 
found. At the end a numerical technique according to Snell’s law for a series of discrete media is used to find the 
general optimal path. In the numerical method the shooting method is used in order to find the path that passes 
through the end points. This path numerically starts from the initial position and by adjusting the initial angle we 
can calculate a path that passes through the end point. The brachistochrone path is also introduced in this paper 
and all optimal paths, including the numerical Snell’s path are compared to the brachistochrone curve. The 
numerical Snell’s path in the limit as the numerical intervals goes to zero approaches the brachistochrone curve. 
These are basically the same curve but there is a numerical error for the second method. All students have access 
to computers and they are familiar with some software packages such as Excel, Python, or MATLAB. In general 
we strongly believe students should be exposed to challenging problems by using the advantage of 
computational techniques. We use numerical methods to explore a variety of challenging problems for the 
students (Asadi-Zeydabadi, 2014; Asadi-Zeydabadi & Sadun, 2013; Asadi-Zeydabadi & Sadun, 2014).  
We have introduced this problem to a broad range of audiences, high school teachers, and students at different 
levels. We found out that the majority of them miss the main idea that there is an optimal path. We think that it 
needs to be discussed with more detail in in different ways. This is one reason for writing this paper.  
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2. Simple Linear (Polygon) Paths  
In this section two simple models are introduced. These models can be introduced to any student who has an 
algebra background at the high school or college level. The students do not need to have calculus background 
and they do not need to take derivatives to find the optimal values. There are plenty of linear paths similar to 
these that can be used. These are common examples that are used for a variety of purposes in any introductory 
physics course as sample problems in a lecture, homework problems, and demonstrations in a class or as part of 
an experiment in a lab. Because these are familiar examples and students know their relevant kinematic 
equations, we will use them to introduce the idea of the optimal path (the path for the shortest time).  
Figure (1) shows two different paths from A to B: AB and AMB. In this paper we call the AMB track a 
triangular path. Suppose that a point mass starts from rest at point A. In this example the second path is a 
combination of two inclined surfaces. Point M is at the middle of the horizontal distance between A and B, = /2. The height of the surfaces changes by  and is the variable parameter for this case. This is one of 
the common demonstrations that we use in class. One question that we ask students is to guess (or determine) the 
path corresponding to the shortest time. An interesting question is how time changes as  increases. In all 
examples in this paper we use positive  downward.  
 

 
Figure 1. Two frictionless paths between the same points. A simple inclined surface, AB and a combination of 

two inclined surfaces, triangular AMB path 
 
It is obvious that (according to the triangular inequality theorem) path AB is shorter than path AMB. A common 
mistake is that most students think the path of the shortest length is the same as the path of shortest time. This is 
true if the motion was uniform (speed was constant and the same for both paths). 
The time for AB and AMB paths can be found by using the simple kinematic equations. We assume both paths 
are frictionless. The final velocities for both paths are the same and one can use conservation of mechanical 
energy to find the final speed at point B.  

 = 2   (1) 

Where  is the gravitational acceleration and  is the vertical position of point B relative to A as shown in Fig 
1. The corresponding time for path AB is given by  

 = =  (2)  

In a similar way we can find the time for AM: 

 = =  (3) 

where = tan = tan  and = .  
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The time for path MB is given in terms of the speed at points M and B, = 2  and = 2 : 

 = = −  (4) 

where = tan = tan . 

The time for path AMB is the sum of  and : 

  = + .  (5) 

Time  depends on  but it is not a monotonic function. Now two questions can be asked of the students. First 
how does  change as a function of  and secondly how does its value change compare with the time for path 
AB, . One of the interesting questions is does ( ) have an optimal (minimum) value as  changes. In order 
to find the minimum ( ), we need to find = 0. Time is minimized if > 0 at the optimal point. Even for 
this simple problem finding the optimal value of  corresponding to the minimum value of  needs a 
numerical solution. Student can either solve = 0 numerically and test > 0 at the optimal value or plot ( ) 
directly and observe the minimum value. The plan is not to use any sophisticated mathematical proofs. We want 
to demonstrate existence of the path of the shortest time to the students, for example, at high school level.  
We can demonstrate with two paths similar to Figure 1 that the time for path AMB was shorter than for AB. 
After the students find out for this particular case that the time for AMB is shorter than for AB, then we can ask 
what does happen if  increases (or show them some additional paths with different ). Most of them think that 
as  increases time decreases. Without using the above equations we can ask if  goes to infinity can time go 
to zero? At this point they will find it is impossible for a particle to travel on a finite path with zero elapsed time 
and therefore there must be an optimal path. They can use the above kinematic equations or a numerical method 
to find the optimal path. 
 

 
Figure 2. The ratio of elapsed time of path AMB to path AB, / , versus : For = 0.1 , = 10°, =9.8 /  

 
Figure 2 shows the ratio of time for path AMB to the time for path AB, / , from (2) and (5) and it shows the 
minimum value for time. We used = 0.1 , = 10°, = 9.8 m/s, for this case. If a different value for 
gravitational acceleration (e.g. the value for the moon) is used we will get the same results as in Figure 2. The 
value of time for path AB is = 0.82 s and the minimum time for path AMB is = 0.52 s that occurs at =0.26 m and with time ratio of = 0.63. We can also find out from Figure 2 that if = 1.1 m the elapsed time of 
both paths are equal = = 0.83 . Another useful question that can be asked of the students is the effect of 
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the magnitude of gravity on ( ). Figure 3 shows ( ) for earth and moon gravities, = 1.6 /  and = 9.8 / , the minimum time path AMB on earth and moon are 0.52 s and 1.28 s respectively and 
occurs at = 0.26 m. It is obvious that the ratio the minimum time for moon relative to of earth is .. = 2.46 
which is equal to = √6.1. Notice that if there is no gravity then an object with zero initial velocity stays at 
rest. If it starts with some initial velocity then because the net force on the object is zero its velocity remains 
constant and then the path of the shortest length is the same as the path of the shortest time. 

 
Figure 3. The results for time versus  for the earth and moon: = 1.6 /  and = 9.8 / , = 0.1 , = 10° 

 
Figure 4 shows another common example. The ABCD path is combination of two inclined surfaces AB and CD 
in addition to a horizontal path between them. We call this a trapezoidal-like path. We assume again that all 
surfaces are frictionless and that there is a point mass object that starts from rest at point A. Point D is at  
position relative to point A and we again choose the vertical downward direction as the positive direction. We 
want to study the dependence of time on  and find the value of the minimum time and the corresponding .  

 
Figure 4. A path of two inclined and a horizontal surfaces ABCD track, a trapezoidal-like path 

 
The corresponding time interval for Figure 4 can be found from simple kinematic equations. The velocity at 
points B and C are equal and are given by 

 = = 2   (6) 

The time from point A to B is given by 
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 = =   (7) 

where = tan . The time for the horizontal displacement from B to C is  

 = =  .  (8) 

The velocity at point D is  

 = 2   (9) 

and the time for the final part is 

 = = −   (10)  

where = tan . Finally the total time is 

 = + + = + + −   (11) 

The derivative of  with respect to  for this case is also complicated and to find the value of the minimum 
time and corresponding  we need to use a numerical method to solve = 0. Figure 5 shows the time as 
function of  for this case. The minimum time is = 0.5  and occurs at = 0.22 m.  

 
Figure 5. The results for the case that is shown in Fig 4, for = 9.8 / , = 0.1 , and = 10°  

 
In these two examples we find the time analytically. To find the minimum time or optimal path we use a 
numerical method. In next section we will use a parabolic example and use numerical techniques to find time as 
a function of a parameter, the minimum time, and the corresponding optimal path.  
3. Parabolic Paths 
We will consider a family of parabolic paths that pass through two fixed points and we will compare them with a 
straight-line path between those points. As in the previous section the plan is to find the optimal path for the 
family of the parabolic paths. Figure 6 shows a linear and parabolic path between point A and B. Let point A be 
at origin (0, 0), then the coordinate of point B is , = , ,  and the equation of the parabola is 
given by 

 = +   (12) 
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b = tan −  , and  is a parameter that changes the depth of the parabolic equation and we will optimize 
the path by changing this parameter.  
 

 
Figure 6. The parabolic and linear path between two points 

 
The length of the probolic path is given by 

 =  1 + =  1 + (2 + )   (13) 

and the corresponding time is 

 = =  =  ( )( )   (14)  

We evaluated this integral numerically. Figure 7 shows the results for time as function of , which is the 
variable parameter. The minimum time occurs where the slope is zero, = 0. The minimum time is = 0.47 
s corresponding to = −2.2 .  
 

 
Figure 7. The results  versus  for: = 9.8 / , = 0.1 , = 10°, for the parabolic path 

 
4. The Optimal Path, the Brachistochrone Problem 
The examples in previous sections provide the optimal case for a given family of curves. In general there is an 
infinite family of the curves that can be defined between two points. We know that we need to use the calculus 
of variations to find the optimal path (path of shortest time) between two points. This path is known as the 
brachistochrone or cycloid. The equation of brachistochrone that passes through the origin i.e. point A (0, 0), 
and point B , , is given by the following parametric equations  

 = ( − sin )  (15) 
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and 

 = (1 − cos )  (16) 
where  is a parameter that can be determined by the coordinates of the point B and  is a parameter that 
gives the relationship between  and .The value of  for point B , , is given by  

 =    (17) 

The value of R can be found from (15) or (16)  

 = =   (18) 

The time corresponding for the brachistochrone path is found numerically to be = 0.47 s. Table 1 compares 
the results of the previous examples with the brachistochrone problem and Figure 8 shows all of these paths 
together.  
 
Table 1. Comparison of the results of the previous examples with the brachistochrone problem 

 Optimal parameter Time/Minimum time Path length 
Inclined surface  = 0.82 s 0.58 m 
Triangular path = 0.26 m = 0.52 s 0.71 m 
Trapezoid-like path  = 0.216 m. = 0.50 s 0.698 m 
Parabolic path  = −2.2   = 0.49 s 0.69 m 
Brachistochrone path  = 0.47 s 0.678 m 

 

 
Figure 8. The paths for all five cases. (a) Linear, (b) Triangular, (c) Trapezoidal-like, (d) Parabolic and (e), the 

brachistochrone paths 
 

The main purpose of this paper is to come up with a reasonable method to teach least action to students in 
introductory physics courses without directly using the calculus of variations. We can introduce it in the same 
manner as Snell’s law. We believe that Snell’s law also needs to be introduced in the light of both Huygens’s and 
Fermat’s principle. We should mention that even in the introductory physics courses Snell’s law can be 
described as based on Fermat’s principal. This important idea states that light follows the path of shortest time. 
In geometrical optics the laws of refraction and reflection are fundamental laws for ray tracing. Both refraction 
and reflection laws can be described by Fermat’s principle. We know that the reason for the refraction of light is 
due to the change of the refractive index which causes the speed of light to change as it goes from one medium 
to another. Since the speed is changing, the direction of the light path corresponding to shortest time also 
changes. When light travels in a uniform medium then the index of refraction and speed of light are constant and 
the path of the shortest time and shortest length are the same. In this case light travels in straight line. 
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The same argument can be used to calculate the path of a particle that takes the least time where its speed 
depends on the particle position. In the presence of gravity the speed of a particle depends on its vertical 
coordinate, . With the aid of numerical techniques we can apply this fundamental idea when speed varies with 
position. Numerical techniques allow students to study this topic, which is not easy to teach without a higher 
level of math than is expected for an introductory course. We believe that in the twenty first century students 
should know basic numerical techniques both in high school and in introductory college physics courses.  
In analogy with Snell’s Law the velocity of the particle depends on the spatial coordinate of the particle. The 
speed of the particle depends on the vertical coordinates, , as = 2  . 
 

 
Figure 9. (a) Light traveling in discreet multimedia and the direction of light (or the motion of the particle) is 

changing as it travels from one layer to another. (b) Two media, with two different particle speeds 
 
Figure 9-a shows layers of different media. As light (or in our example the particle) travels through this medium 
the particle experiences a change in the path as a result of change in the speed in order to follow the path of 
shortest time. Suppose an object has different speeds in two media as shown in Figure 9. In each medium the 
speed of the object is constant therefore the path corresponding for the shortest time in each medium is straight 
line. As the object is moving from the top medium to the second medium the speed changes and in order to 
minimize the time the direction of the motion of the object changes similar to the light ray going from one 
medium to another. This is similar to Snell’s law in optics. We are looking for the path for the shortest time 
between points ( , ) and ( , ).  

 = + = ( ) + ( )
  (19) 

The only variable in the above equation is . By taking derivative of time with respect to x and equating it to 
zero, = 0, one will find  

 =   (20) 

or  

 =   (21) 

where as we see from Figure  8 ,  sin = ( ) ,  sin = ( ) ,  + =  and  + = . But in the case of the motion of an object under the influence of gravity, speed changes 
continuously with . With numerical methods either (20) or (21) can be used and a  interval that is very small 
is used so we can assume the change in the speed in that interval is negligible. The speed in th interval is =2 , where  is the distance of th interval from the point at which we assume the object starts from rest. 
By substituting the speed in either (20) or (21) we will get:  
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 =   (21) 

 =   (22) 

As we seen in (21) or (22) the path does not depend on the value of  as we have seen in (15) and (16), but the 
time depends on . As we have shown earlier the times ratio between two points on the surface of the moon 
with two points with the same vertical distance on the surface of earth is given by: 

 = ≈ √   (23) 

Figure 10 compares the results of using Snell’s law with that of the brachistochrone path. We use a shooting 
method in the numerical Snell’s law. The shooting method basically starts the ray with an initial angle at the 
initial point, A, and if the ray doesn’t reach the target (final) point, B, then we aim it at a different angle until it 
reaches the neighborhood of the end point with an acceptable error.  
Another advantage of using this method is that students can see a connection between a fundamental idea that 
works in different fields of physics, for example, optics and mechanics. Since calculus of variations is a 
mathematical foundation of Lagrangians and Hamiltonians (Boas, 2006; Taylor, 2005; Thornton & Marion, 
2003), this concept is a reasonable bridge to that level of physics. This idea also provides students the basis of 
the path integral formulation in quantum mechanics that was introduced by Feynman (Feynman, Hibbs, & Styer, 
2005; Sakurai, 2014). The technical advantage of this method is to expose students to basic numerical methods. 
This is an example of speed as function of position. We could provide many examples with the same application. 
One of the interesting examples is the relativistic brachistochrone path that can be discussed analytically and 
numerically (Goldstein & Bender, 1986). This is not only a useful physics example but also it can be used in 
modeling a lot of optimization problems. A simple conceptual problem is road traffic, where we usually follow 
the path of shortest time rather than shortest length. These can be different because of traffic conditions.  

 
Figure 10. The brachistochrone path (solid line (b)) and the result of the numerical solution of Snell’s law for a 

set of multilayers of media (dashed line (a)) 
 
5. Conclusion 
In this paper we discuss several methods to teach the principal of the least action which is an important idea to be 
taught to students at different levels of math preparation. In these examples students also learn some basic 
computational techniques. We have discussed this topic with students at different levels and with high school 
teachers to understand how we can deliver this topic. We first approach this idea intuitively by showing some 
demonstrations without using any equations. Most of the audiences think the path of the shortest time and 
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shortest length are the same. When they find out they are not the same, most of them think the path is a 
monotonic function of the corresponding changed path. If the time were a monotonic function then it would go 
to zero. For example, the audience thinks that as  goes to infinity for case 1 and 2, time would approach zero. 
In fact we know that it is impossible for time to go to zero and therefore the path is not a monotonic function and 
thus there is an optimal path. After the students understand the main idea then we analyze the problem with more 
mathematical detail by using the physics equations and numerical methods as discussed in the paper.  
The main conclusion is that this is an important idea but it is a challenging problem for students. However we 
can teach this problem to a broad range of audiences intuitively, mathematically and numerically including 
physics formula and setting some simple experiments without using calculus of variations.  
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